A method performed by a film deposition apparatus including a process chamber and a rotary table that is disposed in the process chamber and includes a substrate-mounting surface on which a substrate is placeable. The method includes a first cleaning process of supplying a cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table in a first cleaning position, and a second cleaning process of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table in a second cleaning position that is lower than the first cleaning position.
|
1. A method performed by a film deposition apparatus including a process chamber and a rotary table that is disposed in the process chamber and includes a substrate-mounting surface on which a substrate is placeable, the method comprising:
a first cleaning process of supplying a cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table in a first cleaning position; and
a second cleaning process of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table in a second cleaning position that is lower than the first cleaning position, wherein
in the first cleaning process, the cleaning gas is supplied for a first time period;
in the second cleaning process, the cleaning gas is supplied for a second time period; and
a ratio between the first time period and the second time period is determined based on a ratio between a thickness of a deposit on an upper surface of the rotary table and a thickness of the deposit on a side surface or a lower surface of the rotary table.
2. The method as claimed in
3. The method as claimed in
a third cleaning process of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table and moving the rotary table from the first cleaning position to the second cleaning position,
wherein the third cleaning process is performed after the first cleaning process and before the second cleaning process.
4. The method as claimed in
5. The method as claimed in
another cleaning process of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table and moving the rotary table from the second cleaning position to the first cleaning position,
wherein the another cleaning process is performed after the second cleaning process and before the first cleaning process.
6. The method as claimed in
7. The method as claimed in
a third cleaning process, which is performed after the first cleaning process, of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table and moving the rotary table from the first cleaning position to the second cleaning position; and
a fourth cleaning process, which is performed after the second cleaning process, of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table and moving the rotary table from the second cleaning position to the first cleaning position,
wherein the first cleaning process, the third cleaning process, the second cleaning process, and the fourth cleaning process are repeated in this order.
|
The present application is based upon and claims the benefit of priority of Japanese Patent Application No. 2016-237074, filed on Dec. 6, 2016, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
An aspect of this disclosure relates to a cleaning method and a film deposition apparatus.
2. Description of the Related Art
In a film deposition apparatus used for manufacturing semiconductor devices, a film is deposited not only on the upper surface of a substrate but also on the upper surface, the side surface, and the lower surface of a rotary table on which the substrate is placed. When the film deposited on the upper surface, the side surface, and the lower surface of the rotary table becomes thick, the film flakes off and forms particles. For this reason, a cleaning gas is routinely supplied into a process chamber to remove the film deposited on the upper surface, the side surface, and the lower surface of the rotary table (see, for example, Japanese Laid-Open Patent Publication No. 2010-153805).
With the related-art method, however, because the gap between a nozzle for supplying the cleaning gas and the rotary table is narrow, the flow rate of the cleaning gas supplied from the nozzle becomes high and most of the cleaning gas is ejected before the film deposited on the upper surface of the rotary table is removed. This in turn increases the cleaning time necessary to remove the film deposited on the upper surface of the rotary table, and causes the time necessary to remove the film to vary depending on surfaces of the rotary table.
In an aspect of this disclosure, there is provided a method performed by a film deposition apparatus including a process chamber and a rotary table that is disposed in the process chamber and includes a substrate-mounting surface on which a substrate is placeable. The method includes a first cleaning process of supplying a cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table in a first cleaning position, and a second cleaning process of supplying the cleaning gas from above the substrate-mounting surface of the rotary table while rotating the rotary table in a second cleaning position that is lower than the first cleaning position.
Embodiments of the present invention are described below with reference to the accompanying drawings. Throughout the specification and the drawings, the same reference number is assigned to substantially the same components, and repeated descriptions of those components are omitted.
<Film Deposition Apparatus>
An example of a film deposition apparatus that can perform cleaning methods according to embodiments of the present invention is described.
As illustrated by
The rotary table 2 is rotatably disposed in the vacuum chamber 1. The rotary table 2 may be formed of, for example, quartz. A central portion of the rotary table 2 is fixed to a core 21 having a cylindrical shape. The core 21 is fixed to an upper end of a rotational shaft 22 that extends in the vertical direction. The rotational shaft 22 passes through a bottom 14 of the vacuum chamber 1, and a lower end of the rotational shaft 22 is attached to a drive unit 23. The drive unit 23 includes, for example, a pneumatic cylinder and a stepping motor. The drive unit 23 moves the rotational shaft 22 up and down and thereby moves the rotary table up and down. Also, the drive unit 23 rotates the rotational shaft 22 about a vertical axis and thereby rotates the rotary table 2. The rotational shaft 22 and the drive unit 23 are housed in a tubular case 20 with an opening at the upper end. A flange formed at the upper end of the case 20 is hermetically attached to a lower surface of the bottom 14 of the vacuum chamber 1 via a bellows 16 that is expandable and contractible in the vertical direction such that the internal atmosphere of the case 20 is isolated from the external atmosphere. Because the bellows 16 expands and contracts as the rotary table 2 moves up and down, the internal atmosphere of the case 20 can be kept isolated from the external atmosphere.
As illustrated in
As illustrated in
In the present embodiment, as illustrated in
Each of the reaction gas nozzles 31 and 32 includes multiple gas discharge holes 35 (see
The first reaction gas may be any type of gas. Generally, a material gas of a film to be formed is selected as the first reaction gas. For example, when a silicon dioxide film is to be formed, a silicon-containing gas such as a Bis(tertiary-butylamino)silane (BTBAS) gas is selected as the first reaction gas.
The second reaction gas may be any type of reaction gas that can react with the first reaction gas to form a reaction product. For example, when a silicon dioxide film is to be formed, an oxide gas such as an ozone (O3) gas is selected as the second reaction gas.
The cleaning gas nozzle 33 is used when a cleaning process is performed. Similarly to the reaction gas nozzles 31 and 32, the cleaning gas nozzle 33 includes multiple gas discharge holes (not shown) that are open toward the rotary table 2 and arranged at an interval of, for example, 10 mm along the longitudinal direction of the cleaning gas nozzle 33. In this example, the cleaning gas nozzle 33 supplies a cleaning gas to the first process region P1. Also, the cleaning gas nozzle 33 may be provided in a position where the cleaning gas nozzle 33 can supply the cleaning gas to the second process region P2. Further, the cleaning gas nozzle 33 may be provided both in a position where the cleaning gas nozzle 33 can supply the cleaning gas to the first process region P1 and a position where the cleaning gas nozzle 33 can supply the cleaning gas to the second process region P2. The cleaning gas may be any type of gas. For example, when used to remove a silicon dioxide film, a fluorine-containing gas such as chlorine fluoride (ClF3) or nitrogen trifluoride (NF3) is selected as the cleaning gas. Also, a combination of these gases may be used.
As illustrated in
As illustrated in
Each of the separation gas nozzles 41 and 42 placed in the groove 43 of the protruding part 4 includes multiple gas discharge holes 42h (see
A narrow separation space H is formed between the first ceiling surface 44 and the upper surface of the rotary table 2. When an N2 gas is supplied from the gas discharge holes 42h of the separation gas nozzle 42, the N2 gas flows through the separation space H into the spaces 481 and 482. Because the volume of the separation space H is less than the volumes of the spaces 481 and 482, the pressure in the separation space H can be made higher than the pressures in the spaces 481 and 482 by supplying the N2 gas. Thus, the separation space H with a high pressure is formed between the spaces 481 and 482. Also, the flow of the N2 gas from the separation space H into the spaces 481 and 482 functions as a counter flow to the first reaction gas from the first process region P1 and the second reaction gas from the second process region P2. Accordingly, the separation space H separates the first reaction gas from the first process region P1 and the second reaction gas from the second process region P2. This configuration prevents the first reaction gas from mixing and reacting with the second reaction gas in the vacuum chamber 1.
A height h1 of the first ceiling surface 44 from the upper surface of the rotary table 2 is preferably determined based on the pressure in the vacuum chamber 1, the rotational speed of the rotary table 2, and/or the amount of supplied separation gas during a film forming process so that the pressure in the separation space H becomes higher than the pressures in the spaces 481 and 482.
A protrusion 5 (see
As illustrated in
As illustrated in
A portion of the bottom 14, which is closer to the center of rotation than the space housing the heater unit 7, protrudes upward toward the core 21 and the central portion of the lower surface of the rotary table 2, and forms a protrusion 12a. A narrow space is formed between the protrusion 12a and the core 21. Also, a narrow space is formed between the rotational shaft 22 and the inner surface of a through hole formed in the bottom 14 for the rotational shaft 22. These narrow spaces communicate with the case 20. A purge gas supply pipe 72 is connected to the case 20. The purge gas supply pipe 72 supplies an N2 gas as a purge gas to purge the narrow spaces. Also, purge gas supply pipes 73 are connected to the bottom 14 of the vacuum chamber 1 at positions below the heater unit 7 (only one purge gas supply pipe 73 is illustrated in
A separation gas supply pipe 51 is connected to a central portion of the top plate 11 of the vacuum chamber 1, and supplies an N2 gas as a separation gas into a space 52 between the top plate 11 and the core 21. The separation gas supplied into the space 52 flows through a narrow space 50 between the protrusion 5 and the rotary table 2, and flows toward the periphery of the rotary table 2 along the upper surface of the rotary table 2 on which the wafer W is placed. Due to the separation gas, the pressure in the space 50 is kept higher than the pressures in the space 481 and the space 482. Accordingly, the space 50 prevents the first reaction gas (e.g., a BTBAS gas) supplied into the first process region P1 and the second reaction gas (e.g., an O3 gas) supplied into the second process region P2 from passing through a central region C and mixing with each other. That is, the space 50 (or the central region C) functions in a manner similar to the separation space H (or the separation region D).
As illustrated in
As illustrated in
<Film Deposition Method>
A film deposition method (or a film deposition process) according to an embodiment is described below. In the descriptions below, it is assumed that a silicon dioxide film is formed.
First, the rotary table 2 is rotated such that the recess 2a is positioned to face the transfer port 15 (see
Next, an N2 gas is supplied from the separation gas nozzles 41 and 42, the separation gas supply pipe 51, and the purge gas supply pipes 72 and 73, and the inside of the vacuum chamber 1 is maintained at a predetermined pressure by the vacuum pump 64 and the pressure controller 65 (see
When each wafer W passes through the first process region P1 below the reaction gas nozzle 31, BTBAS molecules are adsorbed on the surface of the wafer W. Also, when the wafer W passes through the second process region P2 below the reaction gas nozzle 32, O3 molecules are adsorbed on the surface of the wafer W, and the BTBAS molecules are oxidized by O3. Accordingly, when the wafer W passes through the first process region P1 and the second process region P2 once as the rotary table 2 rotates, one molecular layer (or two or more molecular layers) of silicon dioxide is formed on the surface of the wafer W. The wafer W alternately passes through the first process region P1 and the second process region P2 multiple times until a silicon dioxide film with a predetermined thickness is deposited on the surface of the wafer W. After the silicon dioxide film with the predetermined thickness is deposited on the wafer W, supply of the BTBAS gas and the O3 gas is stopped, and the rotation of the rotary table 2 is stopped. Then, through a reverse process of the carry-in process, the wafers W are carried out of the vacuum chamber 1 by the conveying arm 10, and the film deposition process ends.
Thus, the above film deposition process can form a silicon dioxide film that is a reaction product of the BTBAS gas and the O3 gas on the surface of the wafer W.
In the film deposition process, not only the surface of the wafer W but also the upper surface, the side surface, and the lower surface of the rotary table are exposed to the gases. Accordingly, a reaction product such as a silicon dioxide film is formed not only on the surface of the wafer W but also on the upper surface, the side surface, and the lower surface of the rotary table 2. When the film of a reaction product such as a silicon dioxide film formed on the upper surface, the side surface, and the lower surface of the rotary table 2 becomes thick, the film flakes off and forms particles. If such particles are generated in the vacuum chamber 1, the particles are introduced into a silicon dioxide film formed on the surface of the wafer W, and the quality of the silicon dioxide film is reduced.
For this reason, a cleaning process is generally performed, for example, when a film of a reaction product formed on the upper surface of the rotary table 2 reaches a predetermined thickness, when the amount of particles in a silicon dioxide film formed on the wafer W exceeds a predetermined value, or when the continuous operation time exceeds a predetermined value.
With this method, however, when the gap between a nozzle for supplying a cleaning gas and a rotary table is narrow, the flow rate of the cleaning gas supplied from the nozzle becomes high and most of the cleaning gas is ejected before a film deposited on the upper surface of the rotary table is removed. This in turn increases a cleaning time necessary to remove the film deposited on the upper surface of the rotary table, and causes the time necessary to remove the film to vary depending on surfaces of the rotary table.
Below, a cleaning method according to an embodiment is described. The cleaning method of the embodiment can reduce the cleaning time and can uniformly clean the rotary table 2.
<Cleaning Method>
A cleaning method according to an embodiment is described below. The cleaning method of the present embodiment includes two cleaning processes (a first cleaning process and a second cleaning process) that are performed while changing the position of the rotary table 2 in the vertical direction. In the first cleaning process, a cleaning gas is supplied from above a substrate-mounting surface of the rotary table 2 while rotating the rotary table 2 in a first cleaning position in the vacuum chamber 1. In the second cleaning process, a cleaning gas is supplied from above the substrate-mounting surface of the rotary table 2 while rotating the rotary table 2 in a second cleaning position lower than the first cleaning position. Either the same cleaning gas or different cleaning gases may be used in the first cleaning process and the second cleaning process.
In the descriptions below, it is assumed that a process of forming a silicon dioxide film has been performed according to the film deposition method described above, and a reaction product such as a silicon dioxide film deposited on the upper surface, the side surface, and the lower surface of the rotary table 2 during the film forming process is to be removed.
As illustrated in
In the first purge process, while no wafer W is in the recesses 2a of the rotary table 2, the rotary table 2 is moved by the drive unit 23 to an up position, and an N2 gas is supplied from the separation gas nozzles 41 and 42, the separation gas supply pipe 51, and the purge gas supply pipes 72 and 73. During the first purge process, the inside of the vacuum chamber 1 is maintained at a predetermined pressure by the vacuum pump 64 and the pressure controller 65. As a result, an N2 gas atmosphere is formed in the vacuum chamber 1.
Next, in the first cleaning process, as illustrated by
Next, in the second cleaning process, as illustrated by
Next, in the second purge process, while the rotary table 2 is kept in the down position, the N2 gas is supplied from the separation gas nozzles 41 and 42, the separation gas supply pipe 51, and the purge gas supply pipes 72 and 73. During the second purge process, the inside of the vacuum chamber 1 is maintained at a predetermined pressure by the vacuum pump 64 and the pressure controller 65. After a predetermined period of time, the supply of the N2 gas from the separation gas nozzles 41 and 42, the separation gas supply pipe 51, and the purge gas supply pipes 72 and 73 is stopped, and the entire cleaning process ends.
In the cleaning method of the present embodiment, the cleaning gas is supplied into the vacuum chamber 1 while the rotary table 2 is kept at two different positions (the up position and the down position) in the vertical direction to clean the upper surface, the side surface, and the lower surface of the rotary table 2. In the up position, because the gap between the upper surface of the rotary table 2 and the cleaning gas nozzle 33 is narrow, the flow rate of the ClF3 gas supplied from the cleaning gas nozzle 33 becomes high, and a time for which the ClF3 gas remains on the upper surface of the rotary table 2 becomes short. This makes possible to increase the rate of etching of a reaction product such as a silicon dioxide film deposited on the side surface and the lower surface of the rotary table 2. In the down position, because the gap between the upper surface of the rotary table 2 and the cleaning gas nozzle 33 is wide, the flow rate of the ClF3 gas supplied from the cleaning gas nozzle 33 becomes low, and a time for which the ClF3 gas remains on the upper surface of the rotary table 2 becomes long. This makes possible to increase the rate of etching of a reaction product such as a silicon dioxide film deposited on the upper surface of the rotary table 2. Thus, with the above cleaning method, it is possible to efficiently remove a reaction product such as a silicon dioxide film deposited on the side surface and the lower surface of the rotary table 2 while the rotary table 2 is kept in the up position, and to efficiently remove a reaction product such as a silicon dioxide film deposited on the upper surface of the rotary table 2 while the rotary table 2 is kept in the down position. This in turn makes it possible to reduce the cleaning time and to uniformly clean the rotary table 2.
The ratio between the first time period T1 and the second time period T2 is preferably determined based on the amount of the reaction product such as a silicon dioxide film deposited on the side surface and/or the lower surface of the rotary table 2 and the amount of the reaction product such as a silicon dioxide film deposited on the upper surface of the rotary table 2. More specifically, when the amount of the reaction product such as a silicon dioxide film deposited on the upper surface of the rotary table 2 is greater than the amount of the reaction product such as a silicon dioxide film deposited on the side surface and/or the lower surface of the rotary table 2, the second time period T2 is preferably made longer than the first time period T1. In contrast, when the amount of the reaction product such as a silicon dioxide film deposited on the side surface and/or the lower surface of the rotary table 2 is greater than the amount of the reaction product such as a silicon dioxide film deposited on the upper surface of the rotary table 2, the first time period T1 is preferably made longer than the second time period T2.
The flow rate of the N2 gas supplied from the separation gas supply pipe 51 in the second cleaning process is preferably made lower than that in the first cleaning process. This decreases the flow rate of the cleaning gas that flows from the central region C of the rotary table 2 toward the first evacuation region E1 and the second evacuation region E2. This in turn increases the time for which the cleaning gas remains on the upper surface of the rotary table 2, and thereby makes it possible to efficiently remove the reaction product such as a silicon dioxide film deposited on the upper surface of the rotary table 2.
In the cleaning method of the above embodiment, the first cleaning process is performed while the rotary table 2 is in the up position, and the second cleaning process is performed while the rotary table 2 is in the down position. However, the present invention is not limited to this embodiment.
For example, as illustrated by
Also, as illustrated by
Also, as illustrated by
Also, as illustrated by
Further, as illustrated by
Cleaning methods and a film deposition apparatus according to the embodiments of the present invention are described above. However, the present invention is not limited to the specifically disclosed embodiments, and variations and modifications may be made without departing from the scope of the present invention.
In the above embodiments, it is assumed that a silicon dioxide film is formed. However, the cleaning methods according to the embodiments of the present invention may also be applied to cases where other types of films are formed.
The above embodiments are described using a semi-batch-type film deposition apparatus that performs a film deposition process on multiple wafers W placed on the rotary table 2 at once. However, the present invention may also be applied to other types of film deposition apparatuses. For example, the present invention may also be applied to a batch-type film deposition apparatus that performs a film deposition process on each batch of many wafers W placed in a wafer boat at once, and to a single-wafer film deposition apparatus that performs a film deposition process on one wafer W each time.
An aspect of this disclosure provides a cleaning method and a film deposition apparatus that can reduce the cleaning time and can uniformly clean a rotary table.
Tamura, Tatsuya, Umehara, Takahito
Patent | Priority | Assignee | Title |
10969700, | Jul 18 2018 | SEMES CO., LTD. | Apparatus and method for treating substrate |
Patent | Priority | Assignee | Title |
4786352, | Sep 12 1986 | Benzing Technologies, Inc.; BENZING TECHNOLOGIES, INC , A CORP OF CA | Apparatus for in-situ chamber cleaning |
5788778, | Sep 16 1996 | APPLIED KOMATSU TECHNOLOGY, INC | Deposition chamber cleaning technique using a high power remote excitation source |
6092542, | Mar 30 1998 | Ebara Corporation | Cleaning apparatus |
6423146, | Aug 12 1996 | Kabushiki Kaisha Toshiba | Method for cleaning a semiconductor substrate |
6945259, | Jun 26 2000 | Kabushiki Kaisha Toshiba | Substrate cleaning method and substrate cleaning apparatus |
20030216041, | |||
20040093679, | |||
20070289609, | |||
20090023241, | |||
20090047447, | |||
20100122710, | |||
20100248458, | |||
20120000490, | |||
20130174873, | |||
20140069459, | |||
20140251535, | |||
20150050815, | |||
JP200753154, | |||
JP2010153805, | |||
JP2014017322, | |||
KR1020100056273, | |||
TW201433217, | |||
WO2016153343, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 20 2017 | TAMURA, TATSUYA | Tokyo Electron Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044249 | /0189 | |
Nov 20 2017 | UMEHARA, TAKAHITO | Tokyo Electron Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044249 | /0189 | |
Nov 29 2017 | Tokyo Electron Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 29 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 25 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
May 12 2023 | 4 years fee payment window open |
Nov 12 2023 | 6 months grace period start (w surcharge) |
May 12 2024 | patent expiry (for year 4) |
May 12 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 12 2027 | 8 years fee payment window open |
Nov 12 2027 | 6 months grace period start (w surcharge) |
May 12 2028 | patent expiry (for year 8) |
May 12 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 12 2031 | 12 years fee payment window open |
Nov 12 2031 | 6 months grace period start (w surcharge) |
May 12 2032 | patent expiry (for year 12) |
May 12 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |