An adapter provides a link between a digital media player having a memory on which is stored digital media files, a display device, and a remote control. The adapter receives from the digital media player data which is used to generate a representation of a user interface which is provided to the display device for display. The adapter also receives from the remote control data for use in generating commands for controlling operations of the digital media player whereby a change in state of the digital media player resulting from a performance of an operation caused by the remote control will be reflected in the user interface on the display device.

Patent
   10656774
Priority
Aug 01 2005
Filed
Nov 30 2016
Issued
May 19 2020
Expiry
Jun 23 2027

TERM.DISCL.
Extension
330 days
Assg.orig
Entity
Large
0
44
currently ok
1. An adaptor for providing a link between a digital media player, a display device, and a remote control, the adaptor comprising:
a processing device;
a first connector in communication with the processing device;
a second connector in communication with the processing device;
a wireless receiver in communication with the processing device; and
at least one memory device in communication with the processing device;
wherein the at least one memory device has stored thereon instructions that are executable by the processing device to cause the adaptor to perform steps comprising:
storing in the at least one memory device a first data;
receiving from the digital media player via the first connector a second data;
using the first data and the second data to generate a first user interface in which a one of a plurality of digital media stored on the digital media player is indicated as being selectable for rendering by the digital media player;
providing via the second connector to the display device the first user interface;
receiving from the remote control via the wireless receiver a user interface navigation command transmission;
using the user interface navigation command transmission received from the remote control via the wireless receiver to transmit to the digital media player via the first connector a command having data which, when received by the digital media player, will cause the digital media player to generate a third data;
receiving from the digital media player via the first connector the third data;
using the first data and the third data to generate a second user interface in which a different one of the plurality of media stored on the digital media player is indicated as being selectable for rendering by the digital media player; and
providing via the second connector of the adapter to the display device the second user interface.
2. The adaptor as recited in claim 1, wherein the first connector is adapted to be releasably coupled to the digital media player and the second connector is adapted to be releasably coupled to the display device.
3. The adaptor as recited in claim 1, wherein the first data comprises one or more generic graphical user interface elements.
4. The adaptor as recited in claim 1, wherein the first data comprises album artwork data.
5. The adaptor as recited in claim 4, the first data is downloaded into the at least one memory device from the digital media player via the first connector.
6. The adaptor as recited in claim 4, wherein the adaptor comprises a fourth connector and wherein the first data is downloaded into the at least one memory device from a computer via the fourth connector of the adapter.
7. The adaptor as recited in claim 1, wherein the display device comprises a television.
8. The adaptor as recited in claim 1, wherein the digital media player comprises an iPodĀ®.
9. The adaptor as recited in claim 1, wherein the second data and the third data received via the first interface comprises text serial interface data.
10. The adaptor as recited in claim 1, wherein the adaptor comprises a wireless transmitter and wherein the instructions cause the adaptor to further perform steps comprising:
receiving from the remote control via the wireless receiver a further command transmission; and
using the further command transmission received from the remote control via the wireless receiver to transmit to the display device via the wireless transmitter a command having data which, when received by the display device, will cause the display device to transition from a first operating state of the display device to a second operating state of the display device.
11. The adaptor as recited in claim 10, wherein the wireless transmitter comprises an IR blaster.
12. The adaptor as recited in claim 1, wherein the adaptor comprises a wireless transmitter and wherein the instructions cause the adaptor to perform a further step of issuing to the remote control a communication for configuring the remote control to communicate with the adapter via the wireless receiver of the adapter.
13. The adaptor as recited in claim 1, wherein the adaptor is adapted to provide a recharging current to the digital media player via the first connector when the digital media player is in coupled to the first interface.
14. The adaptor as recited in claim 1, wherein the adaptor comprises a wireless transmitter and wherein the instructions cause the adaptor to further perform steps comprising:
receiving from the remote control via the wireless receiver a further command transmission; and
using the further command transmission received from the remote control via the wireless receiver to transmit to a sound device via the wireless transmitter a command having data which, when received by the sound device, will cause the sound device to change a volume level setting of the sound device.
15. The adaptor as recited in claim 14, wherein the wireless transmitter comprises an IR blaster.

This application claims the benefit of and is a continuation of U.S. application Ser. No. 14/283,595, filed on May 21, 2014, which application, in turn, claims the benefit of and is a continuation of U.S. application Ser. No. 11/495,076, filed on Jul. 28, 2006, which application, in turn, claims the benefit of U.S. Application No. 60/704,376, filed on Aug. 1, 2005, the disclosures of which are incorporated herein by reference in their entirety.

A described adapter device provides both remote control and a graphical user interface on a television or other secondary viewable screen for accessing, controlling, and browsing the contents of a device that does not have built in remote control or television user interface capabilities. The attached second device could be, for example, a portable digital media player such as an Apple iPod® or the like.

Using the Apple iPod® as an example (but understanding that the principles described are broadly applicable to portable media player devices in general), the iPod® has a serial communications interface on a connector located on the bottom of the device. This communications interface can receive input commands for actions such as play/pause, left, up, select, etc. The communications interface can also send text information that mimics the information displayed on the iPod® LCD. This interface is provided to allow external devices to control playback of media stored within the iPod®. For example, automobile manufacturers may offer integration kits that use the serial protocol to connect steering wheel or dashboard buttons to the iPod® and to also display iPod® player and browsing interface text on a secondary dash mounted display.

It is also known to offer add-on IR remote controls that can be used to control an iPod® from a distance, often in combination with a docking station which facilitates connecting the analog music outputs of the iPod® to a conventional stereo receiver, etc.

The market for accessories for portable media player devices is very large. In this arena, the iPod® portable media player is currently the number one portable media player at the time of writing and will thus be used by way example in the detailed descriptions that follow. It will nevertheless be understood and appreciated that the principles expressed herein are broadly applicable to any media player device in general which is capable of receiving control information and outputting information related to media being played on the device.

As noted, there are several existing accessories that allow an iPod® to be connected to a home stereo system, but they add nothing to the functionality of the device and are basically just cables or passive docks for cable management. There are also remote control devices, but they only offer basic playback control, no browsing of the content stored within the iPod® is possible.

There is thus no product in the market that connects an iPod® to a TV or other display screen for the purpose of rendering the text serial interface data on a TV screen such that it is readable from a distance. The iPod® Photo model connects to a TV for photo display, but not for browsing with a remote. There are also no products in the market today that provide both an enhancement of the iPod® display as well as a wireless remote control.

Accordingly, a need exists for an adapter device which allows a user to remotely access, browse, and control a portable media player using an IR remote and a television or other display screen.

Portable media players, such as the exemplary Apple iPod®, are often built with only buttons and a small screen for access, browsing, and controlling playback of media. When the portable media player is provided with a secondary method for control input and display output such as a serial port, the player may be used with a dock to enhance the user experience.

The proposed adapter device can be implemented as a dock that the media player rests in, as a standalone box connected to the media player via a cable, or as a built in component of another appliance such as a stereo receiver, media renderer, DVR, and the like.

The adapter device (which for convenience may on occasion hereafter be simply referred to as a “dock,” with the understanding that such a device may also be implemented as a standalone box, cable, recharging station add-on, built-in component, etc.) comprises a CPU capable of generating a television display signal and a receiver for accepting input from a wireless remote. When a user presses a button on the associated remote control, the adapter device receives the IR, translates it into the serial protocol used by the portable media player and transmits the message to the portable media player. The portable media player sends a message to the adapter device stating that the display interface has changed, and the adapter device updates the data displayed on the TV.

FIG. 1 illustrates an exemplary basic implementation, showing the connections between the various components of one system embodying the inventive concepts;

FIG. 2 illustrates an alternative exemplary implementation, showing the connections between the various components of a system embodying the inventive concepts;

FIG. 3 shows yet another alternative exemplary implementation and the connections between the various components of a system embodying the inventive concepts;

FIG. 4 illustrates the physical appearance of an exemplary docking and recharging station incorporating an adapter device in accordance with the invention;

FIG. 5 illustrates an exemplary electrical architecture of an adapter device, in block diagram form;

FIG. 6 illustrates an exemplary TV screen display representative of browsing the stored content of a docked portable media player device; and

FIG. 7 illustrates an exemplary TV screen display representative of playing back content from a docked portable media player device.

By way of example only, FIG. 1 shows a basic implementation and the connections between the various components of a system in which the principles of the invention may be practiced. In this illustrated scheme, the serial interface is narrow bandwidth and does not support interface elements such as album artwork. In this case a higher bandwidth interface such as USB may be useful.

FIG. 2 shows an implementation where the portable media player is connected to the dock via USB. In this model the dock has a USB host controller and can access the native music files and extract album art to display on the TV. One aspect of this approach not yet supported by currently available technologies is that the files must be decoded on the dock CPU which may not support media copy controls or digital rights management systems such as Microsoft Janus for WMA files. In a system where the files can be sent over USB to the dock as uncompressed audio, the USB solution would be equivalent to the basic implementation shown in FIG. 1.

FIG. 3 addresses both issues and provides both a serial and USB interface. When the device is placed in the dock, the USB is active and album art for all tracks is extracted and stored in the dock. After all artwork is cached in the dock, the USB is disabled and the serial interface is used to browse and control the portable media player. When the user selects a track to play, the dock CPU finds the correct album art and displays it along with the other track information on the TV. This embodiment assumes that both the serial interface and USB interface do not operate simultaneously, as is the case with the currently available Apple iPod® players. Flash memory in the dock could be used to store the album art so that the synchronization would not be required each time the iPod® was docked. A button could allow a user to select when the dock performed the synchronization of artwork to the dock.

Since the time required to transfer the album art to the dock could be substantial (for example, in the case of a large hard disk based portable media playback device, parsing and extracting album art from 60 GB of media files could take tens of minutes to process), the dock may include an embedded or user upgradeable library of album art that could be matched to songs on the portable media player based on title, artist, etc. This would eliminate the requirement for a USB or other high speed digital link into the portable media player.

Alternatively or in conjunction with the above feature the dock may also include a network connection that could search a remote database for album art as well as other ancillary information such as local concerts based on the album, artist, title, etc. data that is received from the serial link on the portable media player.

The dock may also include Flash memory card slots (CF Card, SD Card, MemoryStick, etc.) for showing photos or storing album art for the music playing on the portable media player.

The adapter device may also leverage the TV UI for programming a universal remote control. The dock CPU may be adapted to display a list of brands or models of TV, Stereo, etc and together with the correct codes for programming the remote. The dock may also send an IR command to a learning remote for programming the remote. The dock may also have a connector for transferring configuration data to the remote via a wired connection.

The associated remote control may include buttons for preset songs, playlists, modes, etc on the portable media player, when the dock receives a command corresponding to one of these buttons it could automatically cause the portable media player to jump to the indicated function. These presets might for example be programmed into the dock by pressing a program button on the remote control or holding down a preset button on the remote control for several seconds. The preset buttons may also be located on the dock (either individually or as duplicates of the remote control button functions) for use without a remote control.

One alternate embodiment may use an IR blaster on the dock to control the TV and stereo. This would permit the use of a less expensive remote control, while still providing remote control of other devices. This design would also allow the dock to execute macros for automating tasks such as turning on both the TV and stereo when the portable media player is turned on.

The dock could also be a charging station for the portable media player.

By way of further detailed example, an exemplary product embodiment (hereafter referred to as the “MediaPod”) is now described.

The MediaPod allows a user to dock their iPod® and use a remote control to browse the contents of the iPod® on the television and control playback of music through the stereo. The dock connects to the iPod® using a cradle connector and the “Apple Accessory Protocol” which is a serial interface for controlling the browse and playback functions of the iPod®. Audio is decoded and converted to analog in the iPod®, and routed from the analog output pins of the cradle connector through the dock to the home stereo system. Any music available on the iPod®, including FairPlay DRM protected files, can be played using the dock. The iPod® is also charged while on the dock.

The design intent is to produce a low cost device without networking, internal audio processing, USB, etc., though as will be appreciated by those of ordinary skill in the art, such hardware may be added as desired in alternative designs, as necessary to support the extended features previously described.

The major components of the product are as follows: An enclosure which houses the main computer board responsible for generating the TV UI and controlling the iPod®, a LED (or other visual feedback device) to indicate power and IR receiver status, a barrel jack connector for power/charging input, an iPod® docking connector, audio and video output jacks (for example, RCA style), an S-Video output jack, and an IR Receiver. The electrical architecture of this main element is illustrated in FIG. 5. Additionally, an AC adapter wall-brick (output may for example be 5 VDC, 1.2 A) is provided to be connected via the barrel jack to provide battery charging and power for the main computer board and accessories, and an infrared remote control is provided to transmit command signals to the main enclosure (iPod® dock), and also to perform basic TV and stereo control functions. These elements are described in further detail below.

The main computer board comprises a microprocessor, flash and RAM memory, as well as the necessary glue circuitry to accommodate the various interfaces. The microprocessor may preferably include integrated video processing capabilities, such as for example the CS98200 available from Cirrus Logic Inc. Firmware programming for implementing the operational functions described and user interface (described in more detail later) may run for example under the Nucleus OS provided by Cirrus logic, and leverage the Sonata development platform. The Apple Accessory Protocol may be used to communicate with and control the docked device.

Audio output format is standard analog stereo via conventional red/white RCA jacks. Video output is 480×720, interlaced in either NTSC or PAL (factory selected according to shipping destination) via either composite (yellow RCA jack) or S-Video (Mini-Din).

The main enclosure may also include a power button for turning the MediaPod on and off, as well as a green LED which will be illuminated when the MediaPod is “on”. When the cradle is powered “off” (but still has power through the wall adapter), the green LED will be off even though the iPod® will be charging whenever it is docked in the main enclosure—regardless of whether the MediaPod is on or off. (Charging status will be displayed on the iPod® screen.)

The iPod® controls will be disabled when docked.

The provided simple remote control is equipped with buttons to mimic the iPod® user interface as well as to provide basic TV and stereo control capabilities. By way of example, the following buttons may be provided:

The remote control may also have a LED for user feedback. This is used to signify when the remote control is in setup mode and also to provide a visual indicator when the batteries need replacement. During normal operation, the LED will illuminate when a key is pressed; during setup, the LED will serve to provide user feedback as is well known in the art, see for example U.S. Pat. No. 6,720,904 of like assignee which is incorporated herein by reference in it's entirety. Low battery status may for example be indicated by a series of flashes every time a key is pressed, as is also well known in the art.

The user interface may include all text-based UI elements available on the iPod® LCD. In this exemplary embodiment, there may not be any way to show album art on the TV because the connection to the iPod® is only serial and audio. The user interface, however, may include some generic graphical elements in order to make the GUI as engaging and entertaining as possible, for example icons that relate to the genre of the music that is currently playing.

If supported by the iPod® Connector protocol, the firmware may also enable the user to “browse by letter” (BBL)—that is, jump to a specific element in a list by indicating the starting letter (rather than just “paging down” to it).

Additionally the MediaPod may support on-screen setup of the remote control to control the consumer's TV and Stereo.

Because the screen during music playback will be effectively static, the MediaPod may have a screensaver mode that will time out the GUI after a period of time in order to prevent screen burn-in. The screensaver will be enabled by default, but with the user option to disable.

All buttons on the remote control will support “press and hold” functionality (that is, when held they will continue to repeatedly send out the same IR signal) with a 30-second timeout. The MediaPod may respond to these repetitive signals as follows:

The MediaPod may output a video signal whenever it is powered on. If no iPod® is docked the video out will indicate that “no iPod® is present”. Likewise, when the MediaPod is powered off, no video signal should be output.

The MediaPod may support multiple languages and may auto-detect the language that the currently docked iPod® is set to. Alternatively, language selection may be user-selectable.

If supported by the iPod® Extended Protocol, the MediaPod may be configured to control photo slideshows from an iPod® Photo.

While exemplary embodiments of the invention has been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.

All patents, patent applications, and other references cited within this document are hereby incorporated by reference in their entirety.

Hirsch, Michael, Kalayjian, Nicholas, Isbister, David

Patent Priority Assignee Title
Patent Priority Assignee Title
5990882, Apr 26 1996 Nokia Technologies Oy Interactive home terminal employing common consumer-electronics as components in a manner to facilitate the bi-directional communication of data
6216185, May 01 1998 ACQIS LLC Personal computer peripheral console with attached computer module
6703940, Jun 15 1999 Bose Corporation Transceiving remote controlling
7027768, Oct 12 2001 Bellsouth Intellectual Property Corporation Method and systems using a set-top box and communicating between a remote data network and a wireless communication network
7103381, Jan 22 2002 MONTEREY RESEARCH, LLC Method and/or apparatus for implementing USB and audio signals shared conductors
7155214, Sep 09 2004 Dana Innovations I-port controller
7363002, Oct 12 2001 AT&T Delaware Intellectual Property, Inc. Method using a set-top box communicating between a remote data network and a wireless communication network
7571014, Apr 01 2004 Sonos, Inc Method and apparatus for controlling multimedia players in a multi-zone system
7627343, Apr 25 2003 Apple Inc Media player system
7689197, Dec 22 2006 Bose Corporation Portable audio system with docking cradle
20020132651,
20030137543,
20030160890,
20030182139,
20030227438,
20040150944,
20040151327,
20040201744,
20040201774,
20050013103,
20050185364,
20050234983,
20050239434,
20050251833,
20060026326,
20060039263,
20060046780,
20060104017,
20060116009,
20060127034,
20060149399,
20060212635,
20060250764,
20060274910,
20070010195,
20070025330,
20070070183,
20070093277,
20070101039,
20070247326,
20080138028,
20090109183,
20100184479,
20110035431,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 08 2006KALAYJIAN, NICHOLASUNIVERSAL ELECTRONICS INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0404650596 pdf
Aug 08 2006ISBISTER, DAVIDUNIVERSAL ELECTRONICS INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0404650596 pdf
Aug 30 2006HIRSCH, MICHAELUNIVERSAL ELECTRONICS INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0404650596 pdf
Sep 14 2012UNIVERSAL ELECTRONICS INC U S BANK NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0674170402 pdf
Nov 30 2016Universal Electronics Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 20 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
May 19 20234 years fee payment window open
Nov 19 20236 months grace period start (w surcharge)
May 19 2024patent expiry (for year 4)
May 19 20262 years to revive unintentionally abandoned end. (for year 4)
May 19 20278 years fee payment window open
Nov 19 20276 months grace period start (w surcharge)
May 19 2028patent expiry (for year 8)
May 19 20302 years to revive unintentionally abandoned end. (for year 8)
May 19 203112 years fee payment window open
Nov 19 20316 months grace period start (w surcharge)
May 19 2032patent expiry (for year 12)
May 19 20342 years to revive unintentionally abandoned end. (for year 12)