The systems, methods, and apparatus disclosed herein are directed to an exchangeable working channel for a surgical instrument comprising a proximal portion, a distal portion, and an instrument channel configured to receive the exchangeable working channel. The exchangeable working channel may comprise a shaft comprising a proximal region and a distal region; an inner surface defining a lumen extending through the shaft; and an outer surface configured to interface with the instrument channel of the surgical instrument. The exchangeable working channel may further comprise one or more locking members configured to releasably couple to the proximal portion or the distal portion of the surgical instrument. The exchangeable working channel may increase a service life of the surgical instrument as a worn working channel can be exchanged with a new one.
|
1. A removable working channel of a surgical instrument, the surgical instrument extending from a proximal end to a distal end and having a working channel sheath configured to receive the removable working channel, the removable working channel comprising:
a shaft, comprising:
a proximal region and a distal region, the distal region of the shaft being located proximal relative to the distal end of the surgical instrument when the removable working channel is received within the working channel sheath;
an inner surface defining a lumen extending through the shaft, wherein the inner surface is configured to allow passage of a medical tool through the shaft to extend outward beyond the distal end of the surgical instrument; and
an outer surface having a substantially circular cross-section and configured to interface with the working channel sheath of the surgical instrument, wherein a diameter of the outer surface of the shaft is substantially the same as a diameter of an inner surface of the working channel sheath; and
a first locking member comprising a luer fit or a threaded fit component, the first locking member at the proximal region of the shaft, the first locking member configured to releasably couple to the proximal end of the surgical instrument.
15. A surgical instrument configured to receive a removable working channel, the surgical instrument comprising:
a proximal end and a distal end;
an instrument channel extending through the proximal and distal end, the instrument channel comprising:
a proximal region and a distal region; and
a first inner surface defining a lumen extending through the instrument channel;
a working channel sheath attached to the first inner surface of the instrument channel and configured to interface with the removable working channel; and
a first coupling member comprising a luer fit or a threaded fit component, the first coupling member at the proximal end of the surgical instrument, the first coupling member configured to releasably couple to a proximal region of the removable working channel, the removable working channel further including a distal region located proximal relative to the distal end of the surgical instrument when the removable working channel is received within the working channel sheath,
wherein the removable working channel comprises a second inner surface configured to allow passage of a medical tool through the instrument channel to extend outward beyond the distal end of the surgical instrument when the removable working channel is received within the working channel sheath, and
wherein an outer surface of the removable working channel has a substantially circular cross-section and a diameter that is substantially the same as a diameter of the first inner surface.
2. The removable working channel of
3. The removable working channel of
4. The removable working channel of
5. The removable working channel of
6. The removable working channel of
7. The removable working channel of
8. The removable working channel of
10. The removable working channel of
11. The removable working channel of
12. The removable working channel of
13. The removable working channel of
14. The removable working channel of
16. The surgical instrument of
17. The removable working channel of
18. The surgical instrument of
19. The surgical instrument of
20. The surgical instrument of
21. The surgical instrument of
|
This application claims the benefit of U.S. Provisional Application No. 62/507,709, filed May 17, 2017, which is hereby incorporated by reference in its entirety.
The present disclosure relates generally to medical devices, and more particularly to an exchangeable working channel for a surgical and/or medical instrument.
Medical procedures may involve manipulation of a tool positioned remotely from the operator. For example, the tool may be advanced through a working channel of a surgical instrument (e.g., catheters, endoscopes, etc.) through which the tool is inserted into the body of a patient. In one example, the surgical instrument may be used in the context of minimally invasive surgery, during which medical tools may be inserted into a patient's body through an incision or orifice to access and/or treat tissue. In another example, the surgical instrument may be used in procedures such as biopsies and endoscopy. The surgical instrument may comprise an interior lumen (e.g., a working channel) providing a pathway to the tissue site. Catheters and various tools, such as, for example, a grasping forcep, a biopsy forcep, a cytology brush, a balloon dilator, a snare, a needle, and/or a basket, can be inserted through the working channel of the surgical instrument to access the tissue site.
The systems, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One aspect relates to a removable working channel of a surgical instrument, the surgical instrument having a proximal portion, a distal portion, and a working channel sheath configured to receive the removable working channel, the removable working channel comprising: a shaft, comprising: a proximal region and a distal region; an inner surface defining a lumen extending through the shaft; and an outer surface configured to interface with the working channel sheath of the surgical instrument; and a first locking member at the proximal region of the shaft, the first locking member configured to releasably couple to the proximal portion of the surgical instrument. In some implementations, the surgical instrument may comprise an endoscope.
In some implementations, the first locking member comprises at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component.
Some implementations further comprise a second locking member at the distal region of the shaft, the second locking member configured to releasably couple to the distal portion of the surgical instrument. In some implementations, the second locking member comprises an annular ring or a spring clamp at the distal region of the shaft. In some implementations, the second locking member comprises at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component. In some implementations, the removable working channel does not comprise a locking member at the distal region of the shaft.
In some implementations, the first locking member comprises a locking component configured to engage with a tool; and the first locking member is configured to be releasable from the proximal portion of the surgical instrument when, in use, the tool engages and actuates the locking component of the first locking member.
Some implementations further comprise at least one identification member configured to store data comprising information regarding a source of the removable working channel. In some implementations, the at least one identification member comprises a radio-frequency identification (RFID) tag.
In some implementations, the shaft is made of extruded plastic. In some implementations, the shaft is made of at least one of polyether block amide (PEBA), Nylon, polytetrafluoroethylene (PTFE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density poly ethylene (LLDPE), polyvinyl chloride (PVC), polystyrene, acrylonitrile butadiene styrene (ABS), polypropylene (PP), thermoplastic elastomers (TPE), fluorinated ethylene propylene (FEP), acetal copolymer, polysulfone, polyetheretherketone (PEEK), polyetherimide, polyphenylene oxide (PPO), perfluoroalkoxy (PFA) plastic, polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene (ECTFE), and tetrafluoroethylene/hexafluoropropylene/vinylidene fluoride (THV) copolymer. In some implementations, the shaft further comprises an inner liner attached to the inner surface. In some implementations, the inner liner is made of PTFE, HDPE, LDPE, LLDPE, or hydrophilic materials.
In some implementations, the shaft comprises a reinforcement member disposed at least partially between the inner surface and the outer surface. In some implementations, the reinforcement member comprises at least one of (i) one or more coils, (ii) one or more braids, and (iii) one cable tube.
In some implementations, an outer diameter of the shaft is greater than or equal to about 1.2 mm and less than or equal to about 6 mm. In some implementations, an outer diameter of the shaft is about 3.2 mm.
Another aspect relates to an surgical instrument configured to receive a removable working channel, the surgical instrument comprising: a proximal portion and a distal portion; an instrument channel extending through the proximal and distal portions, the instrument channel comprising: a proximal region and a distal region; and an inner surface defining a lumen extending through the instrument channel; a working channel sheath attached to the inner surface of the instrument channel and configured to interface with the removable working channel; and a first coupling member at the proximal portion of the surgical instrument, the first coupling member configured to releasably couple to a proximal region of the removable working channel.
Some implementations further comprise a second coupling member at the distal portion of the surgical instrument, the second coupling member configured to releasably couple to a distal region of the removable working channel. In some implementations, the working channel sheath is made of extruded plastic. In some implementations, the working channel sheath is made of PEBA, Nylon, PTFE, HDPE, LDPE, LLDPE, PVC, polystyrene, ABS, PP, TPE, FEP, acetal copolymer, polysulfone, PEEK, PPO, PFA plastic, PVDF, ETFE, ECTFE, and THV copolymer. In some implementations, the working channel sheath comprises an inner liner made of PTFE, HDPE, LDPE, or LLDPE.
In some implementations, the working channel sheath comprises at least one of (i) one or more coils, (ii) one or more braids, and (iii) one cable tube. In some implementations, the coils, the braids, or the cable tubes are at least partially made of stainless steel, copper, other metals, Nitinol alloy, graphite, polyparaphenylene terephthalamide, Ultra-high-molecular-weight polyethylene (UHMWPE), PEEK, or nylon.
Some implementations further comprises at least one detector configured to read data from at least one identification member of the removable working channel, the data comprising information regarding a source of the removable working channel.
Yet another aspect relates to a tool configured to adjust an attachment between a removable working channel and a surgical instrument, the removable working channel having proximal and distal regions, the surgical instrument having proximal and distal portions, the tool comprising: an actuator configured to engage and actuate at least one of (i) one or more locking members at the proximal region of the removable working channel and (ii) one or more coupling members at the proximal portion of the surgical instrument, wherein, in use, the engagement and actuation of the at least one of (i) one or more locking members and (ii) one or more coupling members by the actuator facilitates at least one of locking and unlocking the attachment between the removable working channel and the surgical instrument.
Still another aspect relates to a method for sanitizing one or more removable working channels of a surgical instrument, the method comprising: removing a first removable working channel from the surgical instrument; analyzing an integrity of the first removable working channel; cleaning and reinstalling the first removable working channel in an instrument channel of the surgical instrument in response to the integrity of the first removable working channel being uncompromised; and replacing the first removable working channel with a second removable working channel in the instrument channel in response to the integrity of the first removable working channel being compromised.
In some implementations, the one or more removable working channels further comprise at least one identification member configured to store data comprising information regarding a source of the one or more removable working channels. In some implementations, the at least one identification member comprises a radio-frequency identification (RFID) tag. Some implementations further comprise updating the identification member with data regarding whether the first removable working channel or the second removable working channel is installed in the instrument channel of the surgical instrument. In some implementations, the one or more removable working channels are made of extruded plastic.
In some implementations, removing the first removable working channel from the surgical instrument comprises removing the first removable working channel through a proximal end of the instrument. In some implementations, replacing the first removable working channel with the second removable working channel comprises inserting a distal end of the second removable working channel through a proximal end of the instrument channel until the distal end of the second removable working channel reaches near a distal end of the instrument channel.
In some implementations, the surgical instrument comprises: a proximal portion and a distal portion; an instrument channel extending through the proximal and distal portions; a working channel sheath attached to an inner surface of the instrument channel; and one or more coupling members at the proximal portion or the distal portion of the surgical instrument.
In some implementations, the one or more coupling members comprise at least one of a clamp, a friction fit component, a latch, a snap fit component, a screw lock, a luer fit, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, and an O-ring component. In some implementations, the surgical instrument comprises an endoscope.
In some implementations, the one or more removable working channels further comprise one or more locking members configured to releasably couple to the one or more coupling members of the surgical instrument.
In some implementations, removing the first removable working channel from the surgical instrument comprises: engaging a tool to at least one of (i) the one or more coupling members of the surgical instrument and (ii) the one or more locking members of the first removable working channel; actuating the tool to release the one or more coupling members of the surgical instrument from the one or more locking members of the first removable working channel; and removing the first removable working channel from the surgical instrument.
In some implementations, replacing the first removable working channel with a second removable working channel comprises inserting a distal end of the second removable working channel through a proximal end of the instrument channel until at least one of the one or more coupling members of the surgical instrument engage with at least one of the one or more locking members of the second removable working channel.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings and appendices, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
Introduction
During a medical procedure (e.g., minimally invasive surgery) using a surgical instrument (e.g., a catheter, endoscope, laparoscope, etc.) comprising an instrument channel, medical tools, such as, for example, cannulas, graspers, forceps, scissors, retractors, and/or stabilizers may be inserted through the instrument channel of the surgical instrument to reach a target organ or tissue. Components of these medical tools may be made of, for example, stainless steel, tungsten, other metals, or other rigid materials. As a result, when a medical tool passes through the instrument channel of the surgical instrument, the medical tool may scratch, deform, or otherwise damage the inner surface of the instrument channel. Over repeated uses of the surgical instrument, interaction between the medical tools and the inner surface of the instrument channel can result in wear and tear of the inner surface of the instrument channel. Thus, in some cases, the service life of the surgical instrument may be limited by the service life of the instrument channel of the surgical instrument.
The present disclosure relates to removable working channel(s) that may be installed or removed from the instrument channel of the surgical instrument. The removable working channel may be configured to be installed inside the instrument channel of the surgical instrument and to at least partially cover the inner surface of the instrument channel. When the removable working channel is worn enough to warrant replacement, the worn working channel can be exchanged with a new working channel. Thus, the disclosed removable working channel can provide an improved service life of the surgical instrument.
The disclosed systems and apparatuses can provide advantages for medical procedures and applications, including but not limited to surgeries that involve the use of endoscopic, laparoscopic, and/or catheter-delivered tools. Thus, though the disclosed removable working channels are described in portions of the present disclosure below within the context of endoscopy, it should be understood that such removable working channels can also be used with other surgical instruments and in other types of procedures in order to provide the disclosed benefits. For example, a removable working channel as described herein can be used in other types of instruments including but not limited to a bronchoscope, a sinuscope (e.g., as used in sinusplasty), a nasopharyngoscope, a laryngoscope, a laparoscope, a gastroscope, a colonoscope, a hysteroscope, a cystoscope, a uroscope, a urethroscope, a cardioscope (e.g., as used in heart catheterization), and an arthroscope, and more generally in procedures that involve delivering tools through flexible and/or curved scopes, catheters, or tubes (collectively referred to as endoscopes, for simplicity of describing the various embodiments discussed herein).
As used herein, “distal” refers to a relative position or location a scope, instrument, or tool that is positioned closer to the patient during use, and “proximal” refers to a relative position or location of the scope, instrument, or tool positioned closer to the operator (e.g., a physician or robotic control system). Stated differently, the relative positions of components of the scope, instrument, tool, and/or the robotic system are described herein from the vantage point of the operator, going from a proximal location to a distal location.
As used herein, the terms “about” or “approximately” refer to a range of measurements of a length, thickness, a quantity, time period, or other measurable values. Such range of measurements encompasses variations of +/−10% or less, preferably +/−5% or less, more preferably +/−1% or less, and still more preferably +/−0.1% or less, of and from the specified value, in so far as such variations are appropriate in order to function in the disclosed devices, systems, and techniques.
Various embodiments will be described below in conjunction with the drawings for purposes of illustration. It should be appreciated that many other implementations of the disclosed concepts are possible, and various advantages can be achieved with the disclosed implementations. Headings are included herein for reference and to aid in locating various sections. These headings are not intended to limit the scope of the concepts described with respect thereto. Such concepts may have applicability throughout the entire specification.
Example Surgical Instrument and Removable Working Channel
With reference to
In some embodiments, the instrument channel 102 may have a diameter ranging from about 1.2 mm to about 6 mm. More specifically, the instrument channel 102 may have a diameter about 2.8 mm, about 3.7 mm, about 4.2 mm, and about 6 mm. In some embodiments, the instrument channel 102 may be substantially straight along its longitudinal axis, as illustrated in
As shown in
As shown, the removable working channel 200 includes a proximal region 205, a distal region 207, and an inner surface 212 defining a lumen 208. The lumen 208 of the removable working channel 200 may be a working area usable for the passage of intraoperative instruments, generally referred to herein as medical tools. In other embodiments (not illustrated), one or more additional channels may be incorporated to provide further capabilities, such as, for example, flush/irrigation, aspiration, illumination, laser energy, etc. The lumen 208 of the removable working channel 200 may also be configured to deliver a variety of therapeutic substances along with a tool configured to pass through the removable working channel 200. These substances may be delivered precisely to a target site using the insertion, articulation, and/or other capabilities of the surgical instrument 100 of the present disclosure.
With reference to
The outer diameter of the shaft 202 may be substantially similar to, equal to, or less than the inner diameter of the instrument channel 102 of the surgical instrument 100. One example of the removable working channel 200 can define a shaft having an outer diameter that is greater than or equal to about 1.2 mm, or less than or equal to about 6 mm. In another example, the removable working channel 200 may have a shaft having an outer diameter of about 3.2 mm. The thickness of the shaft wall 210 may be greater than or equal to about 0.1 mm or less than or equal to about 0.3 mm.
In some embodiments, the shaft 202 of the removable working channel 200 may be made of plastic materials or extruded plastic. For example, the shaft 202 may be made of at least one of polyether block amide (PEBA), Nylon, and polytetrafluoroethylene (PTFE), high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low density poly ethylene (LLDPE), polyvinyl chloride (PVC), polystyrene, acrylonitrile butadiene styrene (ABS), polypropylene (PP), thermoplastic elastomers (TPE), fluorinated ethylene propylene (FEP), acetal copolymer, polysulfone, polyetheretherketone (PEEK), polyetherimide, polyphenylene oxide (PPO), perfluoroalkoxy (PFA) plastic, polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), ethylene chlorotrifluoroethylene (ECTFE), tetrafluoroethylene/hexafluoropropylene/vinylidene fluoride (THV) copolymer, or other similar medical grade extrusions. Additionally or alternatively, the shaft 202 may be at least partially made of one or more compressible materials. That way, when the removable working channel 200 is inserted into the surgical instrument 100, the removable working channel 200 may be collapsible or compressible to facilitate the insertion.
In some embodiments, the shaft 202 of the removable working channel 200 may further comprise an inner liner (not shown) attached to the inner surface 212 of the shaft 202. The inner liner may be made of at least one of PTFE, HDPE, LDPE, or LLDPE, or other similar medical grade extrusions. The inner liner may reduce friction and facilitate the passing of medical instruments through the lumen 208 of the removable working channel 200. A lubricant may be added to the surface of the inner liner or the inner surface 212 of the removable working channel 200 to further reduce friction between the surface of the inner liner or the inner surface 212 and the medical instruments.
In one embodiment, the shaft 202 may further comprise a reinforcement member disposed at least partially between the inner surface 212 and the outer surface 214 of the shaft 202. In another embodiment, the reinforcement member may be disposed inside the inner surface 212 of the shaft 202 or outside the outer surface 214 of the shaft 202. Examples of the reinforcement member include one or more coils, one or more braids, or one or more cable tubes. The coils, the braids, and/or the cable tubes may be at least partially made of stainless steel (e.g., stainless steel 304 or stainless steel 316), copper, other metals, Nitinol alloy, graphite, or polymers such as polyparaphenylene terephthalamide (e.g., tradename Kevlar), Ultra-high-molecular-weight polyethylene (UHMWPE) (e.g., tradename Spectra), PEEK, or nylon. It is to be appreciated that other materials may be used depending on the application and the materials just described are not provided in a limiting manner.
As described above with reference to
Similarly, the removable working channel 200 may further comprise the one or more locking members 222 at or near the distal region 206 of the removable working channel 200. The one or more locking members 222 may be configured to releasably couple with the surgical instrument (not shown). As shown in
With reference to
Similarly, the one or more locking members 222 at the distal end of the removable working channel 200 may be configured to releasably couple with the one or more coupling members 122 of the surgical instrument 100. In another embodiment in which the surgical instrument 100 does not comprise one or more coupling members 122 at or near the distal portion 106 (not shown), the one or more locking members 220 may be configured to releasably couple to the distal portion 106 of the surgical instrument 100.
The locking members 220 and 222 of the removable working channel 200 on the proximal region 204 and the distal region 206, respectively, may comprise a removable luer fit component 223, a clamp, a friction fit component (also known as interference fit), a latch, a threaded fit component 224, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component.
In one example, the locking members 220 and/or 222 may comprise a removable luer fit component configured to fit into a complementary removable luer fit component of the surgical instrument 100. In another example, the locking members 220 and/or 222 may comprise a clamp configured to removably hold at least a portion of the surgical instrument 100 (e.g., proximal portion 104 or distal portion 106). In yet another example, the locking members 220 and/or 222 may comprise a friction fit component configured to slip into the instrument channel 102 of the surgical instrument 100 and lock by friction with the inner surface of the instrument channel 102. In still another example, the locking members 220 and/or 222 may comprise a latch configured to join or fasten to a latch component of the surgical instrument 100 or directly to a portion of the surgical instrument 100. The latch may comprise (1) a ball with a spring or (2) a pogo latch.
In one example, the locking members 220 and/or 222 may comprise a threaded fit component configured to rotatably fit and lock into the instrument channel 102 of the surgical instrument 100 via an interlocking between threads of the threaded fit component and those on the inner surface of the instrument channel 102. In one example, the locking members 220 and/or 222 may comprise a slip fit component configured to fit and lock into the instrument channel 102 of the surgical instrument 100. In another example, the locking members 220 and/or 222 may comprise a bayonet component. The bayonet component may comprise a catch, a detent, or a pin configured to removably couple to a receptor (e.g., a hole, a groove, or an L-shaped groove) on the inner surface of the instrument channel 102 of the surgical instrument 100. Alternatively, the bayonet component of the removable working channel 200 may be a receptor (e.g., a hole, a groove, or an L-shaped groove) configured to receive a catch, a detent, or a pin on the inner surface of the instrument channel 102 of the surgical instrument 100. In yet another example, the locking members 220 and/or 222 may comprise a magnet configured to interact with a magnet at or near the instrument channel 102 of the surgical instrument 100. In still another example, the locking members 220 and/or 222 may comprise a screw lock configured to rotatably lock the removable working channel 200 to the surgical instrument 100 via an interlocking between threads of the screw lock and those on the surgical instrument 100. In another example, the locking members 220 and/or 222 may comprise an O-ring component configured to be placed inside and seal against the instrument channel 102 of the surgical instrument 100.
In some embodiments, the locking members 220 and/or 222 of the removable working channel 200 may comprise one or more locking components configured to engage with a tool 216. The locking members 220 and/or 222 may be releasable from the surgical instrument 100 when, in use, the tool 216 engages and actuates the locking components. In another embodiment, the tool 216 may be configured to selectively actuate and release certain type or types of the locking components. For example, the tool 216 may be a key that is configured to engage and unlock only one type of the locking components. The key may be configured such that the key is not able to engage or unlock other types of the locking components. In yet another embodiment, the tool 216 may be configured to wirelessly communicate with the locking components to actuate them.
As described above with reference to
As shown in
Similarly, the surgical instrument 100 may further comprise one or more coupling members 120 at or near the proximal portion 104 of the surgical instrument 100. The one or more coupling members 120 of the surgical instrument 100 may be configured to releasably couple with the one or more locking members 220 of the removable working channel 200. In another embodiment in which the removable working channel 200 does not comprise one or more locking members at or near the proximal region 204 of the removable working channel 200 (not shown), the one or more coupling members 120 may be configured to releasably couple to the proximal region 204 of the removable working channel 200. For example, the one or more coupling members 120 may comprise a clamp mechanism configured to couple to or pinch at the proximal region 204 of the removable working channel 200.
As shown in
The coupling members 120 and 122 on the proximal portion 104 and the distal portion 106, respectively, of the surgical instrument 100 may comprise a removable luer fit component, a clamp, a friction fit component (also known as an interference fit component), a latch, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component. In one example, the coupling members 120 and/or 122 of the surgical instrument 100 may comprise a removable luer fit component configured to fit into a complementary removable luer fit component of the removable working channel 200. In another example, the coupling members 120 and/or 122 may comprise a clamp configured to removably hold at least a portion of the removable working channel 200. In yet another example, the coupling members 120 and/or 122 may comprise a friction fit component configured to lock by friction with the outer surface of the removable working channel 200. In still another example, the coupling members 120 and/or 122 may comprise a latch configured to join or fasten to a latch component of the removable working channel 200 or directly to a portion of the removable working channel 200. The latch may comprise (1) a ball with a spring and/or (2) a pogo latch.
In one example, the coupling members 120 and/or 122 may comprise a threaded fit component configured to rotatably fit and lock with the removable working channel 200 via an interlocking between threads of the threaded fit component and those on the outer surface of the removable working channel 200. In one example, the coupling members 120 and/or 122 may comprise a slip fit component configured to fit and lock with the removable working channel 200. In another example, the coupling members 120 and/or 122 may comprise a bayonet component. The bayonet component may comprise a catch, a detent, or a pin configured to removably couple to a receptor (e.g., a hole, a groove, or an L-shaped groove) on the outer surface of the removable working channel 200. Alternatively, the bayonet component of the surgical instrument 100 may be a receptor (e.g., a hole, a groove, or an L-shaped groove) configured to receive a catch, a detent, or a pin on the outer surface of the removable working channel 200. In yet another example, the coupling members 120 and/or 122 may comprise a magnet configured to interact with a magnet placed on the removable working channel 200. In still another example, the coupling members 120 and/or 122 may comprise a screw lock configured to rotatably lock at least a portion of the surgical instrument 100 to at least a portion of the removable working channel 200 via an interlocking between threads of the screw lock and those on the removable working channel 200. In another example, the coupling members 120 and/or 122 may comprise an O-ring component configured to be seal against the removable working channel 200.
In some embodiments, the coupling members 120 and/or 122 of the surgical instrument 100 may comprise one or more locking components configured to engage with a tool 216. The coupling members 120 and/or 122 of the surgical instrument 100 may be configured to be released from the removable working channel 200 when the tool 216 engages and actuates the locking components of the coupling members 120 and/or 122. In another embodiment, the tool 216 may be configured to selectively actuate and release certain type or types of the locking components. For example, the tool 216 may be a key that is configured to engage and unlock only one type of the locking components. The key may be configured such that the key is not able to engage or unlock other types of the locking components. In yet another embodiment, the tool 216 may wirelessly communicate with the locking components to actuate them.
The surgical instrument 100 may comprise a sensor and/or a detector configured to communicate with a processor (e.g., of a surgical robotic system or a computing device in communication with the surgical robotic system) configured to process or verify the information received from the at least one identification member of the removable working channel 200. The user of the surgical instrument 100 (e.g., an operator, a physician, or a robotic surgical system) may set requirements as to which removable working channel 200 may be installed to the surgical instrument 100. After the processor receives information from the removable working channel 200 (e.g., from the sensor or detector), the processor may determine whether the removable working channel 200 satisfies the requirements set by the user. The surgical instrument 100 may be configured to only receive a removable working channel 200 whose information is verified by the processor. In some embodiments, the surgical instrument 100 may be configured to receive only removable working channels 200 whose information satisfies a certain set of requirements set by the user. For example, the surgical instrument 100 may be configured to receive removable working channels 200 produced by verifiable manufacturers only or by a certain set of one or more manufacturers only. In another embodiment, the surgical instrument 100 may be configured to receive only removable working channels 200 that have not been used before. In yet another embodiment, the processor may be configured to transmit a message or otherwise warn a user that one or more requirements of the removable working channel 200 have not been met (e.g., if the source or the manufacturer of the removable working channel 200 is not verifiable).
With reference to
The working channel sheath 110 may be made of plastic or extruded plastic. In another embodiment, the working channel sheath 110 may be made of at least one of PEBA, Nylon, PTFE, HDPE, LDPE, LLDPE, PVC, polystyrene, ABS, PP, TPE, FEP, acetal copolymer, polysulfone, PEEK, polyetherimide, PPO, PFA plastic, PVDF, ETFE, ECTFE, and THV copolymer, or other similar medical grade extrusions. In another embodiment, the working channel sheath 110 may further comprise an inner liner attached to the inner surface 111 of the working channel sheath 110. The inner liner may be made of at least one of PTFE, HDPE, LDPE, LLDPE, or other similar medical grade extrusions, or hydrophilic materials. The hydrophilic inner liner coating may be useful for some applications such as tissue/stone removal or easing the passage of medical tools.
The working channel sheath 110 may further comprise one or more coils, one or more braids, or one or more cable tubes. The coils, the braids, and/or the cable tubes may be at least partially inside the working channel sheath 110. In another embodiment, the coils, the braids, and/or the cable tubes may be disposed inside the inner surface 111 of the working channel sheath 110 or outside the outer surface of the working channel sheath 110. The coils, the braids, and/or the cable tubes may be at least partially made of stainless steel (e.g., stainless steel 304 or stainless steel 316), copper, other metals, Nitinol alloy, graphite, or polymers such as polyparaphenylene terephthalamide (e.g., tradename Kevlar), UHMWPE (e.g., tradename Spectra), PEEK, or nylon. It is to be appreciated that other materials may be used depending on the application and the materials just described are not provided in a limiting manner.
Referring to
Other Examples of Surgical Instruments and Removable Working Channels
In
Similar to the surgical instrument 100 of
Similar to the surgical instrument 100 of
With reference to the embodiment of
The snap fit component 422 of the removable working channel 400 is configured to releasably couple to the snap fit component 322 of the surgical instrument 300. The outer diameter of the distal region 406 of the removable working channel 400 is greater than the diameter of the instrument channel 302 at or near its proximal end. Thus, when the removable working channel 400 is inserted into a proximal end of the instrument channel 302, the distal region 406 of the removable working channel 400 is folded toward the radially inward direction in order for the removable working channel 400 to be able to pass through the instrument channel 302. To facilitate the insertion, the removable working channel 400 may be at least partially made of one or more compressible materials. In some embodiments, when inserting the removable working channel 400 into a proximal end of the instrument channel 302, the user may use a tool (e.g., a mandrel with a handle) to move the removable working channel 400 into the instrument channel 302. When the snap fit component 422 of the removable working channel 400 reaches the distal portion 306 of the surgical instrument 300, the diameter of the instrument channel 302 becomes greater to be substantially similar to the outer diameter of the distal region 406 of the removable working channel 400. As a result, the distal region 406 of the removable working channel 400 radially expands from its folded state to conform to the shape of the instrument channel 302 at the distal portion 306. When the snap fit component 422 of the removable working channel 400 slides along the instrument channel 302 further distally, the distal region 406 of the removable working channel 400 abuts the step portion of the snap fit component 322 of the surgical instrument 300, which prevents a further distal movement of the removable working channel 400.
In some embodiments, the snap fit component 322 of the surgical instrument 300 may comprise an annular recess on an inner surface at or near the distal end of the instrument channel 302, and the snap fit component 422 of the removable working channel 400 may comprise an annular ring on its outer surface. The annular ring of the removable working channel 400 may be configured to snap into and removably couple with the annular recess of the instrument channel 302. In other embodiments, the snap fit component 422 of the removable working channel 400 may comprise a spring clamp on its outer surface. The spring clamp of the removable working channel 400 may be configured to snap into and removably couple with the annular recess of the instrument channel 302. In other embodiments, the snap fit component 322 of the surgical instrument 300 may comprise a wire spring clamp embedded at or near the distal end of the instrument channel 302 (e.g., on the inner surface at or near the distal end of the instrument channel 302). The wire spring clamp may be configured to removably hold the distal region 406 of the removable working channel 400.
The releasable coupling between the two snap fit components 322 and 422 is at least partially achieved by friction between the inner surface of the instrument channel 302 at or near the distal portion 306 and the snap fit component 422 of the removable working channel 400. When the removable working channel 400 is removed from the instrument channel 302 in a proximal direction, the snap fit component 422 of the removable working channel 400 slides in a proximal direction, so the diameter of the instrument channel 302 contacting the snap fit component 422 becomes smaller. As a result, the snap fit component 422 of the removable working channel 400 is forced into the portion of the instrument channel 302 outside the distal region 406 whose diameter is smaller than the outer diameter of the distal region 406 of the removable working channel 400. Accordingly, the snap fit component 422 of the removable working channel 400 is pushed against the inner surface of the instrument channel 302, causing frictions resisting the uncoupling between the two snap fit components 322 and 422. However, the coupling between the two snap fit components 322 and 422 is not permanent and may be released by enough pulling force and/or manipulation of the distal region 406 of the removable working channel 400 (e.g., pulling the distal region 406 toward the radially inward direction) that overcomes the forces of the snap fit. In some embodiments, one or more tools may be used to remove the removable working channel 400 from the instrument channel 302.
With reference to
In
With reference to
Similar to the surgical instrument 100 of
As shown in
The removable working channel 600 further comprises one or more locking members 620 at the proximal region 604 of the removable working channel 600. The locking members 620 of the removable working channel 600 are configured to releasably couple to the coupling members 520 of the surgical instrument 500. In an alternate example, the locking members 620 of the removable working channel 600 are configured to releasably couple to the proximal portion 504 of the surgical instrument 500. The locking members 620 of the removable working channel 600 may comprise a removable luer fit component, a clamp, a friction fit component (also known as an interference fit component), a latch, a threaded fit component, a slip fit component, a bayonet, a ball spring or pogo latch, a detent, a magnet, a screw lock, a snap fit component, or an O-ring component. In contrast, the removable working channel 600 does not comprise one or more locking members at or near the distal region 606 of the removable working channel 600 such that the distal region 606 of the removable working channel 600 is not configured to lock or couple to the distal portion 506 of the surgical instrument 500.
Example Identification Members
In
Similar to the removable working channel 200 of
With reference to
Example Tool to Couple and/or Uncouple Between Removable Working Channel and Surgical Instrument
In accordance with one or more aspects of the present disclosure, a tool may be configured to couple and/or uncouple between a removable working channel (e.g., removable working channel 200, 400, or 600 as described above) and a surgical instrument (e.g., surgical instrument 100, 300, or 500 as described above). The removable working channel and/or the surgical instrument may be configured to couple and/or uncouple to each other only through the use of a specific type of the tool. This way, only people with the specific type of the tool may install and/or remove the removable working channel onto/from the surgical instrument.
In some embodiments, the tool may be configured to adjust an attachment between the removable working channel and the surgical instrument. The tool may comprise an actuator configured to engage and actuate at least one of (i) one or more locking members (e.g., locking members 220, 420, and/or 620 as described above) at the proximal region of the removable working channel and (ii) one or more coupling members (e.g., coupling members 120, 320, and/or 520 as described above) at the proximal portion of the surgical instrument. In another embodiment, the actuator may be configured to engage and actuate at least one of (i) one or more locking members (e.g., locking members 222 and/or 422 as described above) at the distal region of the removable working channel and (ii) one or more coupling members (e.g., coupling members 122 and/or 322 as described above) at the distal portion of the surgical instrument.
The engagement and actuation of the at least one of (i) one or more locking members and (ii) one or more coupling members by the actuator facilitates locking and/or unlocking an attachment between the removable working channel and the surgical instrument. In another embodiment, the tool may be configured to wirelessly communicate with the one or more locking members of the removable working channel to engage or actuate the one or more locking members. In yet another embodiment, the tool may be configured to wirelessly communicate with the one or more coupling members of the surgical instrument to engage or actuate the one or more coupling members. Examples of the tool include, and are not limited to, a key, a driver, a pipe, a needle, and a transmitter.
In some embodiments, the actuator of the tool may be configured to be able to engage only with a certain type or types of the locking members and/or the coupling members. Such an exclusive engagement may be enabled by (1) physical features of the actuator, the locking members, and/or the coupling members or (2) electronic or wireless communications between the tool and the locking members or the coupling members. For example, in one embodiment, the actuator of the tool may have a physical shape that can engage with only a certain type or types of the locking members and/or the coupling members. In another embodiment, the tool may be configured to wirelessly communicate with the locking members and/or the coupling members to allow engagement with only a certain type or types of the locking members and/or the coupling members.
Example Method for Sanitizing or Replacing Removable Working Channels of Surgical Instrument
With the removable working channel and the surgical instrument described herein, a user may sanitize or replace the surgical instrument by removing a removable working channel installed in an instrument channel of the surgical instrument, checking the integrity of the removable working channel, and then either (1) cleaning and reinstalling the removable working channel or (2) replacing the removable working channel with a new removable working channel in the surgical instrument, depending on the integrity of the first removable working channel.
At block 805, the user (e.g., a human operator or an autonomous system) may remove a first removable working channel from a surgical instrument. For example, in implementations in which the removable working channel 200 is installed in the instrument channel 102 of the surgical instrument 100, removing the first removable working channel may comprise removing the removable working channel 200 out of the proximal end of the instrument channel 102. In implementations in which the surgical instrument 100 comprises one or more coupling members 120 and/or 122, and the first removable working channel 200 comprises one or more locking members 220 and/or 222, which are configured to releasably couple to the one or more coupling members 120 and/or 122 of the surgical instrument 100, respectively, block 805 may involve (1) engaging a tool to at least one of (i) the one or more coupling members 120 and/or 122 of the surgical instrument 100 and (ii) the one or more locking members 220 and/or 222 of the first removable working channel 200; (2) actuating the tool to release the one or more coupling members 120 and/or 122 of the surgical instrument 100 from the one or more locking members 220 and/or 222 of the first removable working channel 200; and (3) removing the first removable working channel 200 from the surgical instrument 100.
At block 810, the user may analyze the integrity of the first removable working channel. In some implementations, the user may check the duration of usage of the first removable working channel 200. For example, the user may check the duration of usage of the first removable working channel 200 by accessing data from one or more identification members attached to the first removable working channel 200 (e.g., identification members 730 or one or more RFID tags). At block 815, the user may determine whether the integrity of the first removable working channel is compromised. In some implementations, the standard(s) or factor(s) for deciding whether the removable working channel 200 is compromised may be pre-determined by the user. Additionally or alternatively, the determination of whether the integrity of the first removable working channel is compromised may be determined based on detecting cases of wear and tear, such as areas that include scrapes, holes, or any other signs of wear and tear.
At block 820, if the user determines that the integrity of the first removable working channel is compromised, the user may replace the first removable working channel with a second removable working channel in the instrument channel of the surgical instrument. In some implementations, replacing the first removable working channel with the second removable working channel may involve inserting the distal region 206 of the second removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until the distal region 206 of the second removable working channel 200 reaches near the distal end of the instrument channel 102. In implementations in which the second removable working channel 200 comprises one or more locking members 220 and/or 222, and the surgical instrument 100 comprises one or more coupling members 120 and/or 122, block 820 may involve inserting the distal region 206 of the second removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until at least one of the one or more coupling members 120 and/or 122 of the surgical instrument 100 engages with at least one of the one or more locking members 220 and/or 222 of the second removable working channel 200.
Alternatively, at block 825, if the user determines that the integrity of the first removable working channel is not compromised, the user may clean and reinstall the first removable working channel in the instrument channel of the surgical instrument. In some implementations, reinstalling the first removable working channel 200 in the instrument channel 102 of the surgical instrument 100 may involve inserting the distal region 206 of the first removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until the distal region 206 of the first removable working channel 200 reaches or is near the distal end of the instrument channel 102. In implementations in which the first removable working channel 200 comprises one or more locking members 220 and/or 222, and the surgical instrument 100 comprises one or more coupling members 120 and/or 122, reinstalling the first removable working channel 200 in the instrument channel 102 of the surgical instrument 100 may involve inserting the distal region 206 of the first removable working channel 200 through the proximal end of the instrument channel 102 of the surgical instrument 100 until at least one of the one or more coupling members 120 and/or 122 of the surgical instrument 100 engages with at least one of the one or more locking members 220 and/or 222 of the first removable working channel 200.
At block 830, for a removable working channel (e.g., removable working channel 800) or a surgical instrument including one or more identification members (e.g., identification members 730), the user may optionally update data saved in the identification members with information regarding the installed working channel. Depending on whether the first removable working channel was replaced with the second removable working channel in block 820 or the first removable working channel was cleaned and replaced in block 825, the information regarding the installed working channel may include information as to whether the first removable working channel is reinstalled in the surgical instrument (e.g., surgical instrument 100) or the second removable working channel is installed in the surgical instrument. In the case where the identification member is a RFID tag, the user may use an RFID writer to update a data structure in the RFID tag that specifies whether the removable working channel has been replaced, a date that the removable working channel has been replaced, a count associated with a number of times the working channel has been sanitized but not replaced, or any other suitable data associated with the use or replacement of a removable working channel with respect to a surgical instrument.
Implementing Systems and Terminology
Implementations disclosed herein provide systems, methods and apparatus for increasing a service life of a surgical instrument. More specifically, implementations of the present disclosure relate to a removable working channel for a surgical instrument and to a surgical instrument configured to receive and interfere with the removable working channel.
It should be noted that the terms “couple,” “coupling,” “coupled” or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is “coupled” to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.
The methods described herein may be stored as one or more instructions on a processor-readable or computer-readable medium. The term “computer-readable medium” refers to any available medium that can be accessed by a computer or processor. By way of example, and not limitation, such a medium may comprise RAM, ROM, EEPROM, flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. It should be noted that a computer-readable medium may be tangible and non-transitory. As used herein, the term “code” may refer to software, instructions, code or data that is/are executable by a computing device or processor.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is required for proper operation of the method that is being described, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, the term “plurality” denotes two or more. For example, a plurality of components indicates two or more components. The term “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.
The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”
The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of the present disclosure. For example, it will be appreciated that one of ordinary skill in the art will be able to employ a number corresponding alternative and equivalent structural details, such as equivalent ways of fastening, mounting, coupling, or engaging tool components, and equivalent mechanisms for producing particular actuation motions. Thus, the present disclosure is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Patent | Priority | Assignee | Title |
10945904, | Mar 08 2019 | AURIS HEALTH, INC | Tilt mechanisms for medical systems and applications |
10959792, | Sep 26 2019 | AURIS HEALTH, INC | Systems and methods for collision detection and avoidance |
11026758, | Jun 28 2017 | Intel Corporation | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
11109928, | Jun 28 2019 | AURIS HEALTH, INC | Medical instruments including wrists with hybrid redirect surfaces |
11135398, | Jul 19 2017 | Neptune Medical Inc. | Dynamically rigidizing composite medical structures |
11147633, | Aug 30 2019 | AURIS HEALTH, INC | Instrument image reliability systems and methods |
11206974, | Feb 09 2016 | OLYMPUS WINTER & IBE GMBH | Surgical instrument and method for producing a surgical instrument |
11207141, | Aug 30 2019 | AURIS HEALTH, INC | Systems and methods for weight-based registration of location sensors |
11234780, | Sep 10 2019 | AURIS HEALTH, INC | Systems and methods for kinematic optimization with shared robotic degrees-of-freedom |
11278703, | Apr 21 2014 | AURIS HEALTH, INC | Devices, systems, and methods for controlling active drive systems |
11357586, | Jun 30 2020 | AURIS HEALTH, INC | Systems and methods for saturated robotic movement |
11369386, | Jun 27 2019 | AURIS HEALTH, INC | Systems and methods for a medical clip applier |
11382650, | Oct 30 2015 | Auris Health, Inc. | Object capture with a basket |
11403759, | Sep 18 2015 | Auris Health, Inc. | Navigation of tubular networks |
11432981, | Mar 08 2019 | Auris Health, Inc. | Tilt mechanisms for medical systems and applications |
11439419, | Dec 31 2019 | AURIS HEALTH, INC | Advanced basket drive mode |
11452844, | Mar 14 2013 | Auris Health, Inc. | Torque-based catheter articulation |
11464591, | Nov 30 2015 | Auris Health, Inc. | Robot-assisted driving systems and methods |
11497568, | Sep 28 2018 | Auris Health, Inc. | Systems and methods for docking medical instruments |
11511079, | Mar 30 2016 | Auris Health, Inc. | Apparatuses and methods for monitoring tendons of steerable catheters |
11534248, | Mar 25 2019 | AURIS HEALTH, INC | Systems and methods for medical stapling |
11534249, | Oct 30 2015 | Auris Health, Inc. | Process for percutaneous operations |
11547284, | Mar 29 2013 | FUJIFILM Corporation | Endoscopic surgery device |
11559360, | Oct 30 2015 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
11564759, | Aug 31 2016 | Auris Health, Inc. | Length conservative surgical instrument |
11571229, | Oct 30 2015 | Auris Health, Inc. | Basket apparatus |
11660153, | Mar 15 2013 | Auris Health, Inc. | Active drive mechanism with finite range of motion |
11701187, | Sep 26 2019 | Auris Health, Inc. | Systems and methods for collision detection and avoidance |
11712154, | Sep 30 2016 | Auris Health, Inc. | Automated calibration of surgical instruments with pull wires |
11712173, | Mar 28 2018 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
11717147, | Aug 15 2019 | AURIS HEALTH, INC | Medical device having multiple bending sections |
11730351, | May 17 2017 | Auris Health, Inc. | Exchangeable working channel |
11737835, | Oct 29 2019 | AURIS HEALTH, INC | Braid-reinforced insulation sheath |
11737845, | Sep 30 2019 | AURIS HEALTH, INC | Medical instrument with a capstan |
11744670, | Jan 17 2018 | Auris Health, Inc. | Surgical platform with adjustable arm supports |
11759090, | May 31 2018 | Auris Health, Inc. | Image-based airway analysis and mapping |
11759605, | Jul 01 2014 | Auris Health, Inc. | Tool and method for using surgical endoscope with spiral lumens |
11771510, | Sep 10 2019 | Auris Health, Inc. | Systems and methods for kinematic optimization with shared robotic degrees-of-freedom |
11771521, | Sep 09 2015 | Auris Health, Inc. | Instrument device manipulator with roll mechanism |
11779400, | Aug 07 2018 | Auris Health, Inc. | Combining strain-based shape sensing with catheter control |
11779414, | Mar 14 2013 | Auris Health, Inc. | Active drive for robotic catheter manipulators |
11819636, | Mar 30 2015 | Auris Health, Inc. | Endoscope pull wire electrical circuit |
11826117, | Jun 07 2018 | Auris Health, Inc. | Robotic medical systems with high force instruments |
11832907, | Jun 28 2017 | Auris Health, Inc. | Medical robotics systems implementing axis constraints during actuation of one or more motorized joints |
11839439, | Dec 11 2017 | Auris Health, Inc. | Systems and methods for instrument based insertion architectures |
11839969, | Jun 29 2020 | AURIS HEALTH, INC | Systems and methods for detecting contact between a link and an external object |
11864842, | Sep 28 2018 | Auris Health, Inc. | Devices, systems, and methods for manually and robotically driving medical instruments |
11872007, | Jun 28 2019 | AURIS HEALTH, INC | Console overlay and methods of using same |
11877754, | Jun 27 2019 | Auris Health, Inc. | Systems and methods for a medical clip applier |
11883121, | Mar 05 2004 | Auris Health, Inc. | Robotic catheter system |
11896330, | Aug 15 2019 | AURIS HEALTH, INC | Robotic medical system having multiple medical instruments |
11896335, | Aug 15 2018 | Auris Health, Inc. | Medical instruments for tissue cauterization |
11911126, | Dec 31 2019 | AURIS HEALTH, INC | Dynamic pulley system |
11931901, | Jun 30 2020 | AURIS HEALTH, INC | Robotic medical system with collision proximity indicators |
11944422, | Aug 30 2019 | Auris Health, Inc. | Image reliability determination for instrument localization |
11950863, | Dec 20 2018 | AURIS HEALTH, INC | Shielding for wristed instruments |
11950872, | Dec 31 2019 | AURIS HEALTH, INC | Dynamic pulley system |
11950898, | Mar 28 2018 | Auris Health, Inc. | Systems and methods for displaying estimated location of instrument |
11957428, | Jun 28 2019 | Auris Health, Inc. | Medical instruments including wrists with hybrid redirect surfaces |
11957446, | Dec 08 2017 | Auris Health, Inc. | System and method for medical instrument navigation and targeting |
11974948, | Jun 11 2013 | Auris Health, Inc. | Method, apparatus, and a system for robotic assisted surgery |
11992183, | Mar 28 2017 | Auris Health, Inc. | Shaft actuating handle |
11992626, | Mar 13 2013 | Auris Health, Inc. | Integrated catheter and guide wire controller |
ER3263, | |||
ER3577, | |||
ER3829, | |||
ER7333, | |||
ER7625, | |||
ER8081, |
Patent | Priority | Assignee | Title |
10016900, | Oct 10 2017 | AURIS HEALTH, INC | Surgical robotic arm admittance control |
10022192, | Jun 23 2017 | AURIS HEALTH, INC | Automatically-initialized robotic systems for navigation of luminal networks |
10130427, | Sep 17 2010 | AURIS HEALTH, INC | Systems and methods for positioning an elongate member inside a body |
10145747, | Oct 10 2017 | AURIS HEALTH, INC | Detection of undesirable forces on a surgical robotic arm |
10159532, | Jun 23 2017 | Auris Health, Inc. | Robotic systems for determining a roll of a medical device in luminal networks |
3572325, | |||
3913565, | |||
4294234, | Jun 22 1979 | Olympus Optical Co., Ltd. | Endoscope |
4392485, | Feb 17 1981 | RICHARD WOLF GMBH, KNITTLINGEN, GERMANY | Endoscope |
4607619, | Feb 28 1984 | Snow Brand Milk Products, Co., Ltd. | Locking mechanism for an endoscope |
4690175, | Nov 16 1982 | Asahi Kogaku Kogyo Kabushiki Kaisha | Flexible tube for endoscope |
4706656, | May 15 1985 | Olympus Optical Co., Ltd. | Endoscope device with tool channel |
4741326, | Oct 01 1986 | FUJI PHOTO OPTICAL CO , LTD | Endoscope disposable sheath |
4745908, | May 08 1987 | ACMI Corporation | Inspection instrument fexible shaft having deflection compensation means |
4748969, | May 07 1987 | ACMI Corporation | Multi-lumen core deflecting endoscope |
4750475, | Aug 14 1985 | Kabushiki Kaisha Machida Seisakusho | Operating instrument guide mechanism for endoscope apparatus |
4771766, | Jul 08 1986 | Kabushiki Kaisha Machida Seisakusho | Guide tube assembly of endoscope |
4846791, | Sep 02 1988 | Advanced Medical Technology & Development Corp. | Multi-lumen catheter |
4869238, | Apr 22 1988 | OPIELAB, INC , A CORP OF WASHINGTON | Endoscope for use with a disposable sheath |
4906496, | Oct 15 1986 | SMS Corporation; Ube Industries, Ltd. | Double-walled tube assembly |
4907168, | Jan 11 1988 | COORS BREWING COMPANY, GOLDEN, CO 80401 A CORP OF CO | Torque monitoring apparatus |
4967732, | May 01 1989 | Kabushiki Kaisha Machida Seisakusho | Endoscope |
5050585, | Mar 28 1988 | ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, 36-9 MAENO-CHO 2-CHOME, ITABASHI-KU, TOKYO 174, JAPAN A CORP OF JAPAN | Sheathed endoscope |
5083549, | Feb 06 1989 | Candela Corporation | Endoscope with tapered shaft |
5106387, | Mar 22 1985 | Massachusetts Institute of Technology | Method for spectroscopic diagnosis of tissue |
5108800, | May 17 1990 | United Chinese Plastics Products Co., Ltd. | Artificial flower |
5125909, | Jun 14 1989 | Richard Wolf GmbH | Flexible tubular channel with external supporting ridges |
5168864, | Sep 26 1991 | Clarus Medical, LLC | Deflectable endoscope |
5217002, | May 14 1990 | Asahi Kogaku Kogyo Kabushiki Kaisha | Flexible tube of endoscope and method of producing the same |
5251611, | May 07 1991 | Method and apparatus for conducting exploratory procedures | |
5257617, | Dec 25 1989 | Asahi Kogaku Kogyo Kabushiki Kaisha | Sheathed endoscope and sheath therefor |
5261391, | Aug 23 1991 | Kabushiki Kaisha Machida Seisakusho | Threaded flexible guide tube for endoscope |
5287861, | Oct 30 1992 | Coronary artery by-pass method and associated catheter | |
5313934, | Sep 10 1992 | DEVMED GROUP INC | Lens cleaning means for invasive viewing medical instruments |
5386818, | May 10 1993 | Laparoscopic and endoscopic instrument guiding method and apparatus | |
5448988, | Dec 02 1992 | Kabushiki Kaisha Toshiba | Endoscope |
5478330, | Dec 01 1992 | Boston Scientific Scimed, Inc | Steerable catheter with adjustable bend location and/or radius and method |
5482029, | Jun 26 1992 | Kabushiki Kaisha Toshiba | Variable flexibility endoscope system |
5489270, | Jun 11 1993 | CORDIS WEBSTER, INC | Controlled flexible catheter |
5507725, | Dec 23 1992 | LIGHTWAVE ABLATIOIN SYSTEMS | Steerable catheter |
5533985, | Apr 20 1994 | Tubing | |
5580200, | Apr 16 1993 | CLARK, GORDON ALEXANDER | Method and apparatus for rapidly engaging and disengaging threaded coupling members |
5681296, | Aug 11 1994 | Terumo Kabushiki Kaisha | Catheter tube and a method of processing the inner surface of a tube |
5704534, | Dec 19 1994 | Ethicon Endo-Surgery, Inc. | Articulation assembly for surgical instruments |
5720775, | Jul 31 1996 | CORDIS WEBSTER, INC | Percutaneous atrial line ablation catheter |
5741429, | Sep 05 1991 | EV3 PERIPHERAL, INC | Flexible tubular device for use in medical applications |
5749889, | Feb 13 1996 | Conmed Corporation | Method and apparatus for performing biopsy |
5873817, | May 12 1997 | GYRUS ACMI, INC | Endoscope with resilient deflectable section |
5876325, | Nov 02 1993 | Olympus Optical Co., Ltd. | Surgical manipulation system |
5879287, | Nov 17 1995 | Machida Endoscope Co., Ltd. | Endoscope for medical use |
5882347, | Sep 09 1996 | Cordis Corporation | Catheter with internal stiffening ridges |
5888191, | Feb 14 1997 | Fuji Photo Optical Co., Ltd. | Conduit-separated endoscope system |
5910129, | Dec 19 1996 | EP Technologies, Inc. | Catheter distal assembly with pull wires |
5938586, | May 16 1996 | Wilk & Nakao Medical Technology, Incorporated | Endoscope biopsy channel liner and associated method |
6012494, | Mar 16 1995 | Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. | Flexible structure |
6143013, | Apr 28 1995 | STRYKER EUROPEAN HOLDINGS III, LLC | High performance braided catheter |
6157853, | Nov 12 1997 | STEREOTAXIS, INC | Method and apparatus using shaped field of repositionable magnet to guide implant |
6197015, | Dec 09 1998 | ABBOTT LABORATORIES VASCULAR ENTITLES LIMITED; Abbott Laboratories Vascular Enterprises Limited | Angiography catheter with sections having different mechanical properties |
6198974, | Aug 14 1998 | CORDIS WEBSTER, INC | Bi-directional steerable catheter |
6315715, | Apr 25 1996 | CONFLUENT MEDICAL TECHNOLOGIES, INC | Flexible inner liner for the working channel of an endoscope |
6404497, | Jan 25 1999 | Massachusetts Institute of Technology | Polarized light scattering spectroscopy of tissue |
6436107, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive surgical procedures |
6464632, | Feb 13 1999 | CONFLUENT MEDICAL TECHNOLOGIES, INC | Flexible inner liner for the working channel of an endoscope |
6485411, | Apr 12 2000 | GYRUS ACMI, INC | Endoscope shaft with superelastic alloy spiral frame and braid |
6491626, | Apr 16 1999 | NuVasive, Inc | Articulation systems for positioning minimally invasive surgical tools |
6537205, | Oct 14 1999 | Boston Scientific Scimed, Inc | Endoscopic instrument system having reduced backlash control wire action |
6554793, | Apr 07 1998 | STM Medizintechnik Starnberg GmbH | Flexible trocar with an upturning tube system |
6716178, | May 31 2001 | Advanced Cardiovascular Systems, INC | Apparatus and method for performing thermal and laser doppler velocimetry measurements |
6746422, | Aug 23 2000 | Boston Scientific Scimed, Inc | Steerable support system with external ribs/slots that taper |
6749560, | Oct 26 1999 | GYRUS ACMI, INC | Endoscope shaft with slotted tube |
6790173, | Jun 13 2002 | SOLAR CAPITAL LTD , AS SUCCESSOR AGENT | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
6827710, | Nov 26 1996 | 180S USA LLC; 180S IP HOLDINGS LLC | Multiple lumen access device |
6827712, | Jun 18 1997 | Covidien LP | Robotic arm DLUs for performing surgical tasks |
6837846, | Apr 03 2000 | Intuitive Surgical Operations, Inc | Endoscope having a guide tube |
6908428, | Sep 04 2003 | STRYKER GI LTD | Sleeve for endoscopic tools |
6921362, | Oct 10 2002 | PENTAX Corporation | Outer sheathed endoscope |
6958035, | Oct 15 2002 | DUSA PHARMACEUITCALS, INC , A CORP OF NEW JERSEY | Medical device sheath apparatus and method of making and using same |
7008401, | Feb 02 1990 | Boston Scientific Scimed, Inc | Assemblies for creating compound curves in distal catheter regions |
7130700, | Nov 19 2002 | Medtronic INC | Multilumen body for an implantable medical device |
7594903, | Sep 25 2002 | ABBOTT CARDIOVASCULAR SYSTEMS INC | Controlling shaft bending moment and whipping in a tendon deflection or other tendon system |
7645230, | Feb 11 2003 | Olympus Corporation | Over-tube, method of manufacturing over-tube, method of disposing over-tube, and method of treatment in abdominal cavity |
7645231, | Mar 28 2003 | Fujinon Corporation | Endoscopic fluid supply conduit system |
7789827, | Aug 21 2006 | KARL STORZ Endovision, Inc. | Variable shaft flexibility in endoscope |
7930065, | Dec 30 2005 | Intuitive Surgical Operations, Inc | Robotic surgery system including position sensors using fiber bragg gratings |
8052636, | Jul 01 2005 | AURIS HEALTH, INC | Robotic catheter system and methods |
8246536, | Apr 26 2006 | Hoya Corporation | Treatment tool insertion channel of endoscope |
8444637, | Dec 29 2006 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Steerable ablation device |
8498691, | Dec 09 2005 | AURIS HEALTH, INC | Robotic catheter system and methods |
8515215, | Apr 20 2007 | Koninklijke Philips Electronics N.V. | Optical fiber shape sensing systems |
8652030, | May 21 2010 | Olympus Corporation | Two-part bending endoscope |
8758231, | May 14 2009 | Cook Medical Technologies LLC | Access sheath with active deflection |
8827947, | Jul 27 2010 | Koninklijke Philips N.V.; Koninklijke Philips Electronics N V | Breast pump |
9186046, | Aug 14 2007 | AURIS HEALTH, INC | Robotic instrument systems and methods utilizing optical fiber sensor |
9427551, | Mar 16 2013 | CLPH, LLC | Steerable catheters and methods for making them |
9504604, | Dec 16 2011 | AURIS HEALTH, INC | Lithotripsy eye treatment |
9561083, | Mar 17 2015 | AURIS HEALTH, INC | Articulating flexible endoscopic tool with roll capabilities |
9591990, | Mar 09 2007 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Automated catalog and system for correction of inhomogeneous fields |
9622827, | May 15 2015 | AURIS HEALTH, INC | Surgical robotics system |
9636184, | May 15 2015 | AURIS HEALTH, INC | Swivel bed for a surgical robotics system |
9713509, | Sep 09 2015 | AURIS HEALTH, INC | Instrument device manipulator with back-mounted tool attachment mechanism |
9727963, | Sep 18 2015 | AURIS HEALTH, INC | Navigation of tubular networks |
9737371, | Sep 30 2014 | AURIS HEALTH, INC | Configurable robotic surgical system with virtual rail and flexible endoscope |
9737373, | Sep 09 2015 | AURIS HEALTH, INC | Instrument device manipulator and surgical drape |
9744335, | Mar 30 2015 | AURIS HEALTH, INC | Apparatuses and methods for monitoring tendons of steerable catheters |
9763741, | Oct 24 2013 | AURIS HEALTH, INC | System for robotic-assisted endolumenal surgery and related methods |
9788910, | Jun 25 2015 | AURIS HEALTH, INC | Instrument-mounted tension sensing mechanism for robotically-driven medical instruments |
9818681, | Dec 25 2014 | Shinko Electric Industries Co., Ltd. | Wiring substrate |
9844353, | Mar 13 2013 | AURIS HEALTH, INC | Reducing incremental measurement sensor error |
9844412, | Oct 24 2013 | AURIS HEALTH, INC | Methods and apparatus for constructing endoscopic device with helical lumen design |
9867635, | Mar 08 2013 | AURIS HEALTH, INC | Method, apparatus and system for a water jet |
9918681, | Sep 16 2011 | AURIS HEALTH, INC | System and method for virtually tracking a surgical tool on a movable display |
9931025, | Sep 30 2016 | AURIS HEALTH, INC | Automated calibration of endoscopes with pull wires |
9949749, | Oct 30 2015 | AURIS HEALTH, INC | Object capture with a basket |
9955986, | Oct 30 2015 | AURIS HEALTH, INC | Basket apparatus |
9962228, | Aug 31 2016 | AURIS HEALTH, INC | Length conservative surgical instrument |
20010004676, | |||
20030036748, | |||
20030130564, | |||
20030158545, | |||
20030163199, | |||
20030195664, | |||
20040015122, | |||
20040054322, | |||
20040138525, | |||
20040193013, | |||
20040249246, | |||
20050004515, | |||
20050125005, | |||
20050154262, | |||
20050159646, | |||
20050222581, | |||
20050272975, | |||
20050273085, | |||
20050288549, | |||
20060041188, | |||
20060111692, | |||
20060241368, | |||
20060264708, | |||
20060276827, | |||
20070060879, | |||
20070112355, | |||
20070135733, | |||
20070135763, | |||
20070135803, | |||
20070156019, | |||
20070270645, | |||
20070270679, | |||
20070282167, | |||
20070287886, | |||
20080039255, | |||
20080051629, | |||
20080065103, | |||
20080097293, | |||
20080108869, | |||
20080139887, | |||
20080146874, | |||
20080177285, | |||
20080208001, | |||
20080212082, | |||
20080218770, | |||
20090099420, | |||
20090163851, | |||
20090247880, | |||
20090254083, | |||
20090262109, | |||
20090299344, | |||
20090306587, | |||
20100030023, | |||
20100073150, | |||
20100114115, | |||
20100130823, | |||
20100217184, | |||
20100249497, | |||
20100249506, | |||
20110009863, | |||
20110046441, | |||
20110077681, | |||
20110098533, | |||
20110130718, | |||
20110148442, | |||
20110152880, | |||
20110261183, | |||
20110306836, | |||
20120071894, | |||
20120071895, | |||
20120123327, | |||
20120136419, | |||
20120143226, | |||
20120190976, | |||
20120191107, | |||
20120239012, | |||
20120259244, | |||
20120283747, | |||
20130018400, | |||
20130030519, | |||
20130035537, | |||
20130090552, | |||
20130109957, | |||
20130144116, | |||
20130165854, | |||
20130165908, | |||
20130304091, | |||
20130317276, | |||
20130317519, | |||
20130345519, | |||
20140046313, | |||
20140142591, | |||
20140200402, | |||
20140276391, | |||
20140276594, | |||
20140309649, | |||
20140316397, | |||
20140357984, | |||
20140364870, | |||
20140379000, | |||
20150031950, | |||
20150051592, | |||
20150101442, | |||
20150119638, | |||
20150164594, | |||
20150164596, | |||
20150335480, | |||
20160001038, | |||
20160007881, | |||
20160067450, | |||
20160151122, | |||
20160227982, | |||
20160270865, | |||
20160287279, | |||
20160287346, | |||
20160296294, | |||
20160346049, | |||
20160374541, | |||
20160374590, | |||
20170007337, | |||
20170065364, | |||
20170065365, | |||
20170100199, | |||
20170119413, | |||
20170119481, | |||
20170165011, | |||
20170172673, | |||
20170202627, | |||
20170209073, | |||
20170281218, | |||
20170290631, | |||
20170333679, | |||
20170340396, | |||
20170365055, | |||
20170367782, | |||
20180025666, | |||
20180055589, | |||
20180177383, | |||
20180177556, | |||
20180177561, | |||
20180214011, | |||
20180221038, | |||
20180221039, | |||
20180250083, | |||
20180271616, | |||
20180279852, | |||
20180280660, | |||
20180289243, | |||
20180289431, | |||
20180325499, | |||
20180333044, | |||
20180360435, | |||
20190000559, | |||
20190000560, | |||
20190000566, | |||
20190000568, | |||
20190000576, | |||
20190083183, | |||
20190105110, | |||
20190105776, | |||
20190105785, | |||
20190107454, | |||
20190110839, | |||
20190110843, | |||
20190151148, | |||
20190167366, | |||
20190175009, | |||
20190175062, | |||
20190175287, | |||
20190175799, | |||
20190183585, | |||
20190183587, | |||
20190216548, | |||
20190216550, | |||
20190216576, | |||
20190223974, | |||
20190228525, | |||
20190228528, | |||
20190246882, | |||
20190262086, | |||
20190269468, | |||
20190274764, | |||
20190290109, | |||
20190298160, | |||
20190298458, | |||
20190298460, | |||
20190298465, | |||
20190307987, | |||
20190328213, | |||
20190336238, | |||
20190365209, | |||
20190365479, | |||
20190365486, | |||
20190374297, | |||
20190375383, | |||
20190380787, | |||
20190380797, | |||
20200000530, | |||
20200000533, | |||
20200022767, | |||
20200038128, | |||
20200039086, | |||
20200046434, | |||
20200046942, | |||
20200054405, | |||
20200054408, | |||
20200060516, | |||
CN101500470, | |||
CN102665590, | |||
EP543539, | |||
EP776739, | |||
EP904796, | |||
EP1442720, | |||
JP2006525087, | |||
JP2007511247, | |||
JP2010046384, | |||
JP2011015992, | |||
JP2012105793, | |||
WO67640, | |||
WO2074178, | |||
WO4039273, | |||
WO4105849, | |||
WO5032637, | |||
WO5081202, | |||
WO7146987, | |||
WO8097540, | |||
WO9092059, | |||
WO9097461, | |||
WO10081187, | |||
WO10088187, | |||
WO11005335, | |||
WO13107468, | |||
WO15093602, | |||
WO16003052, | |||
WO9414494, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 09 2018 | Auris Health, Inc. | (assignment on the face of the patent) | / | |||
Jul 18 2018 | JENKINS, THOMAS R | AURIS HEALTH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046434 | /0376 |
Date | Maintenance Fee Events |
May 09 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 04 2018 | SMAL: Entity status set to Small. |
Jul 25 2018 | PTGR: Petition Related to Maintenance Fees Granted. |
Jun 10 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jan 03 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 21 2023 | 4 years fee payment window open |
Jan 21 2024 | 6 months grace period start (w surcharge) |
Jul 21 2024 | patent expiry (for year 4) |
Jul 21 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 21 2027 | 8 years fee payment window open |
Jan 21 2028 | 6 months grace period start (w surcharge) |
Jul 21 2028 | patent expiry (for year 8) |
Jul 21 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 21 2031 | 12 years fee payment window open |
Jan 21 2032 | 6 months grace period start (w surcharge) |
Jul 21 2032 | patent expiry (for year 12) |
Jul 21 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |