A non-volatile memory device driving method, applicable to a non-volatile memory device comprising a row decoder and a memory array, comprises: utilizing the row decoder to transmit multiple word line signals to multiple word lines of the memory array; according to an address, utilizing the row decoder to switch a selected word line signal of the multiple word line signals from a predetermined voltage level to a program voltage level; utilizing the row decoder to switch at least one support word line signal of the multiple word line signals from the predetermined voltage level to a first pass voltage level; when the selected word line signal is remained at the program voltage level, utilizing the row decoder to switch the at least one support word line signal from the first pass voltage level to a higher second pass voltage level.
|
11. A non-volatile memory device, comprising:
a memory array, comprising a plurality of word lines; and
a row decoder, configured to receive an address, and to transmit a plurality of word line signals to the plurality of word lines;
wherein the row decoder is further configured to switch a selected word line signal of the plurality of word line signals from a predetermined voltage level to a program voltage level according to the address, and to switch at least one support word line signal of the plurality of word line signals from the predetermined voltage level to a first pass voltage level;
wherein the selected word line signal is transmitted via a selected word line of the plurality of word lines to program a memory cell coupled with the selected word line, the at least one support word line signal is transmitted via at least one support word line of the plurality of word lines, and the at least one support word line is different from the selected word line;
wherein when the selected word line signal is remained at the program voltage level, the row decoder switches the at least one support word line signal from the first pass voltage level to a second pass voltage level, and the second pass voltage level is higher than the first pass voltage level.
1. A non-volatile memory device driving method, applicable to a non-volatile memory device comprising a row decoder and a memory array, comprising:
utilizing the row decoder to transmit a plurality of word line signals to a plurality of word lines of the memory array;
according to an address, utilizing the row decoder to switch a selected word line signal of the plurality of word line signals from a predetermined voltage level to a program voltage level, wherein the selected word line signal is transmitted via a selected word line of the plurality of word lines to program a memory cell coupled with the selected word line;
utilizing the row decoder to switch at least one support word line signal of the plurality of word line signals from the predetermined voltage level to a first pass voltage level, wherein the at least one support word line signal is transmitted via at least one support word line of the plurality of word lines, and the at least one support word line is different from the selected word line; and
when the selected word line signal is remained at the program voltage level, utilizing the row decoder to switch the at least one support word line signal from the first pass voltage level to a second pass voltage level, wherein the second pass voltage level is higher than the first pass voltage level.
2. The non-volatile memory device driving method of
3. The non-volatile memory device driving method of
4. The non-volatile memory device driving method of
wherein the at least one support signal comprises a first support word line signal and a second support word line signal, the first support word line signal and the second support word line signal are transmitted via an (M−1)-th word line and an (M+1)-th word line of the plurality of word lines, respectively.
5. The non-volatile memory device driving method of
6. The non-volatile memory device driving method of
7. The non-volatile memory device driving method of
8. The non-volatile memory device driving method of
9. The non-volatile memory device driving method of
10. The non-volatile memory device driving method of
12. The non-volatile memory device of
13. The non-volatile memory device of
14. The non-volatile memory device of
wherein the at least one support signal comprises a first support word line signal and a second support word line signal, and the first support word line signal and the second support word line signal are transmitted via an (M−1)-th word line and an (M+1)-th word line of the plurality of word lines, respectively.
15. The non-volatile memory device of
16. The non-volatile memory device of
17. The non-volatile memory device of
18. The non-volatile memory device of
19. The non-volatile memory device of
20. The non-volatile memory device of
|
The present disclosure relates to a non-volatile memory device and driving method thereof. More particularly, the present disclosure relates to 3D NAND flash memory device and driving method thereof.
In the situation that the process technology of the 2D flash memory approaches to the limit to miniaturization, the 3D flash memory gradually receives attention from the industries in order to efficiently increase the capacity per unit area of the flash memory. The flash memory technologies include NAND flash memory and NOR flash memory, where the NAND flash memory has been widely used because of the fast programming and erasing speed thereof. In the 3D NAND flash memory, multiple word lines are arranged in parallel with tight spacing, and each word line is configured to control thousands of memory cells. Thus, each of the word lines has large transmittance impedance, and a long programming time is required for the conventional driving method of the 3D NAND flash memory, so that a target word line is ensured to be completely charged to the predetermined program voltage level. However, a longer programming time results in a more serious program disturb in the 3D NAND flash memory.
The disclosure provides a non-volatile memory device driving method, applicable to a non-volatile memory device comprising a row decoder and a 3D memory array, comprising the following operations: utilizing the row decoder to transmit a plurality of word line signals to a plurality of word lines of the 3D memory array; according to an address, utilizing the row decoder to switch a selected word line signal of the plurality of word line signals from a predetermined voltage level to a program voltage level, wherein the selected word line signal is transmitted via a selected word line of the plurality of word lines to program a memory cell coupled with the selected word line; utilizing the row decoder to switch at least one support word line signal of the plurality of word line signals from the predetermined voltage level to a first pass voltage level, wherein the at least one support word line signal is transmitted via at least one support word line of the plurality of word lines, and the at least one support word line is different from the selected word line; when the selected word line signal is remained at the program voltage level, utilizing the row decoder to switch the at least one support word line signal from the first pass voltage level to a second pass voltage level, wherein the second pass voltage level is higher than the first pass voltage level.
The disclosure provides a non-volatile memory device comprising a 3D memory array and a row decoder. The 3D memory array comprises a plurality of word lines. The row decoder is configured to receive an address, and to transmit a plurality of word line signals to the plurality of word lines. The row decoder is further configured to switch a selected word line signal of the plurality of word line signals from a predetermined voltage level to a program voltage level according to the address, and to switch at least one support word line signal of the plurality of word line signals from the predetermined voltage level to a first pass voltage level. The selected word line signal is transmitted via a selected word line of the plurality of word lines to program a memory cell coupled with the selected word line, the at least one support word line signal is transmitted via at least one support word line of the plurality of word lines, and the at least one support word line is different from the selected word line. When the selected word line signal is remained at the program voltage level, the row decoder switches the at least one support word line signal from the first pass voltage level to a second pass voltage level, and the second pass voltage level is higher than the first pass voltage level.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the disclosure as claimed.
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
As shown in
The non-volatile memory device 600 further comprises sense amplifiers and data-in structures 660. The sense amplifiers and data-in structures coupled with the column decoder 630 through the bus 662. The sense amplifiers and data-in structures 660 receives data, which is from the input/output port of the non-volatile memory device 600 or from other data sources internal or external to the non-volatile memory device 600, via the data-in line 664. Data supplied by the sense amplifiers and data-in structures 660 is transmitted to the input/output port of the non-volatile memory device 600 or to other destination address internal or external to the non-volatile memory device 600 via the data-out line 666.
The non-volatile memory device 600 further comprises other circuitry 670. The other circuitry 670 may be realized with the general purpose processor or the special purpose application circuit, or be realized with combination of modules providing system-on-a-chip functionality and supported by the non-volatile memory device 600.
The non-volatile memory device 600 further comprises a bias arrangement state machine 680 and a voltage supply 690. The bias arrangement state machine 680 is configured to control the voltage supplied by the voltage supply 690, so as to generated the required voltages such as read, erase, program, erase verify and program verify voltages. In practice, the bias arrangement state machine 480 can be realized with the special purpose logic circuitry, the general purpose processor, or a combination of the special purpose logic circuitry and the general purpose processor.
In operation S702, the row decoder 110 correspondingly transmits the word line signals Sw1-SwN to the word lines 1401-140N of the memory array 130. Then, the row decoder 110 conducts operation S704 to program a memory cell coupled with one of the word lines 1401-140N according to the received address.
During operation S704, the row decoder 110 may select one of the word lines 1401-140N as a “selected word line” according to the received address, and configure the word line signal corresponding to the selected word line to be a “selected word line signal.” Subsequently, the row decoder 110 switches the the selected word line signal from a predetermined voltage level (e.g., OV) to a program voltage level Vpg (e.g., 20V). As shown in
Next, in operation S706, the row decoder 110 may select at least one of the word line signals Sw1-SwN as a “support word line signal”, and switch the support word line signal from the predetermined voltage level (e.g., 0 V) to a first pass voltage level Vps1 (e.g., 5 V). As shown in
In other words, the row decoder 110 may configure the two word lines (e.g., the word lines 140M−1 and 140M+1) next to the selected word line (e.g., the word line 140M) to be the support word lines to transmit the support word line signals. However, the present disclosure is not limited thereto, and the row decoder 110 may configure only one of the two word lines next to the selected word line to be the support word line.
Since a large voltage difference exists between the selected word line and the support word lines during operation S706, the selected word line rapidly charges the parasitic elements thereof (e.g., the capacitor elements 102 and 103 as shown in
In operation S708, when the selected word line signal is remained at the program voltage level Vpg, the row decoder 110 may switch the support word line signal from the first pass voltage level Vps1 to a second pass voltage level Vps2 (e.g., 10 V). As shown in
When the support word line signals are switched from the first pass voltage level Vps1 to the second pass voltage level Vps2, the voltage variations of the support word line signals transmit to the selected word line through the parasitic capacitor elements. Thus, the voltage level of the selected word line is raised rapidly. For example, the voltage variations of the word line signals SwM−1 and SwM+1 is transmitted to the word line 140M through the capacitor elements 102 and 103. Since the parasitic capacitors 620a-620d had obtained enough charges in operation S706, the voltage level of the word line 140M is raised rapidly in operation S708 because of the capacitive coupling.
Notably, in operations S702-S708, when the selected word line signal is remained at the program voltage level Vpg, among the word line signals Sw1-SwN, the other word line signals different from the selected word line signal and the support word line signals may be switched by the row decoder 110 from the predetermined voltage level (e.g., 0V) to the second pass voltage level Vps2 (e.g., 10 V), and be maintained at the second pass voltage level Vps2 until the programming operation is finished. For example, as shown in
In one embodiment, the row decoder 110 not only configures the two word lines, which is next to the selected word line, to be the support lines, but also configures a predetermined number of other word lines to be the support word lines to transmit the support word line signals. Parasitic capacitor elements also exist between the word lines 1401-140N and the semiconductor layer (e.g., the semiconductor layer 310 of
In another embodiment, the row decoder 110 configures all of the other word lines different from the selected word line to be the support word lines to transmit the support word line signal. That is, in operation S706 of this embodiment, all of the other word lines different from the selected word line are configured to transmit support word line signals having the first pass voltage level Vps1. Subsequently, in operation S708, the support word line signals of those all of the other word lines are switched from the first pass voltage level Vps1 to the second pass voltage level Vps2. As shown in
In yet another embodiment, the row decoder 110 configures the word lines not next to the selected word line to be the support word lines. As shown in
As can be appreciated from the foregoing descriptions, since the non-volatile memory device driving method 700 can increase the program capability of the selected word line, the voltage range of the word line signals Sw1-SwN needs not to be increased to overcome the transfer delay caused by the parasitic capacitor elements, and the voltage range of the switching signals Vpp1-VppN also needs not to be correspondingly increased to ensure that the word line signals Sw1-SwN with the enlarged voltage range can completely pass through. Therefore, the non-volatile memory device driving method 700 can reduce the design complexity of the non-volatile memory devices 100 and 600.
Please note that the execution order of the operations illustrated in
Certain terms are used throughout the description and the claims to refer to particular components. One skilled in the art appreciates that a component may be referred to as different names. This disclosure does not intend to distinguish between components that differ in name but not in function. In the description and in the claims, the term “comprise” is used in an open-ended fashion, and thus should be interpreted to mean “include, but not limited to.” The term “couple” is intended to compass any indirect or direct connection. Accordingly, if this disclosure mentioned that a first device is coupled with a second device, it means that the first device may be directly or indirectly connected to the second device through electrical connections, wireless communications, optical communications, or other signal connections with/without other intermediate devices or connection means.
In addition, the singular forms “a,” “an,” and “the” herein are intended to comprise the plural forms as well, unless the context clearly indicates otherwise.
Although the present disclosure has been described in considerable detail with reference to certain embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the present disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims.
Chang, Yao-Wen, Chin, Chi-Yuan, Chang, Hsing-Wen
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
9330766, | Mar 09 2015 | SK Hynix Inc. | Semiconductor device and operating method thereof |
9607711, | Dec 31 2015 | SK Hynix Inc. | Semiconductor memory device and operating method thereof |
20100067305, | |||
20100157684, | |||
20130117620, | |||
20190108889, | |||
20190180824, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 28 2019 | CHANG, HSING-WEN | MACRONIX INTERNATIONAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049376 | /0015 | |
Jan 28 2019 | CHANG, YAO-WEN | MACRONIX INTERNATIONAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049376 | /0015 | |
Jan 28 2019 | CHIN, CHI-YUAN | MACRONIX INTERNATIONAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049376 | /0015 | |
Jun 05 2019 | Macronix International Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 05 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 12 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 11 2023 | 4 years fee payment window open |
Feb 11 2024 | 6 months grace period start (w surcharge) |
Aug 11 2024 | patent expiry (for year 4) |
Aug 11 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 11 2027 | 8 years fee payment window open |
Feb 11 2028 | 6 months grace period start (w surcharge) |
Aug 11 2028 | patent expiry (for year 8) |
Aug 11 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 11 2031 | 12 years fee payment window open |
Feb 11 2032 | 6 months grace period start (w surcharge) |
Aug 11 2032 | patent expiry (for year 12) |
Aug 11 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |