In order to suppress discharge of an unreacted content in a chemical reaction apparatus for irradiating a content with microwaves, a chemical reaction apparatus includes: a horizontal flow-type reactor in which a liquid content horizontally flows with an unfilled space being provided thereabove; a microwave generator that generates microwaves; and a waveguide that transmits the microwaves generated by the microwave generator to the unfilled space in the reactor, wherein the inside of the reactor is partitioned into multiple chambers to by overflow-type partition plates and that allow the content to flow thereover and an underflow-type partition plate that allows the content to flow thereunder.
|
7. A chemical reaction apparatus, comprising:
a liquid content;
a horizontal flow-type reactor configured to allow the liquid content to flow horizontally;
a plurality of partition plates partitioning the inside of the reactor into multiple chambers comprising at least one of:
an overflow-type partition plate allowing the liquid content to only flow over the overflow-type partition plate; and
an underflow-type partition plate allowing the liquid content to only flow under the underflow-type partition plate, the underflow-type partition plate including an aperture higher than the top of the overflow-type partition, and above the liquid content;
a microwave generator that generates microwaves; and
a waveguide that transmits the microwaves generated by the microwave generator, wherein the microwaves pass through the aperture,
wherein the entire liquid flow in the reactor is continuously separated from the top of the reactor by a constant distance.
1. A chemical reaction apparatus, comprising:
a liquid content;
a horizontal flow-type reactor configured to allow the liquid content to flow horizontally comprising:
an unfilled space above the liquid content;
a microwave generator that generates microwaves;
a waveguide that transmits the microwaves generated by the microwave generator to the unfilled space in the reactor; and
a plurality of partition plates partitioning the inside of the reactor into multiple chambers comprising at least one of:
an overflow-type partition plate that only allows the content to flow thereover; and
an underflow-type partition plate that only allows the content to flow thereunder, wherein each underflow-type partition plate has an aperture higher than the top of the overflow-type partition plate, and above the liquid content, and wherein microwaves can pass through the aperture;
wherein the unfilled space is continuous above the plurality of partition plates in the reactor.
2. The chemical reaction apparatus according to
3. The chemical reaction apparatus according to
4. The chemical reaction apparatus according to
5. The chemical reaction apparatus according to
6. The chemical reaction apparatus according to
|
This application is the U.S. National Phase of International Patent Application Serial No. PCT/JP2015/067411, filed Jun. 17, 2015, which claims priority to Japanese Patent Application No. 2014-128981, filed Jun. 24, 2014, both of which are herein incorporated by reference in their entireties.
The present invention relates to a chemical reaction apparatus for irradiating a liquid content in a reactor with microwaves.
Conventionally, there are known chemical reaction apparatuses for irradiating a content with microwaves (electromagnetic waves), thereby performing heating or the like of the content (see Japanese Unexamined Application Publication No. 2011-235262A, for example).
However, there is a demand for conventional chemical reaction apparatuses to reduce the possibility that an unreacted content is discharged.
The present invention was arrived at in view of these circumstances, and it is an object thereof to provide a chemical reaction apparatus capable of suppressing discharge of an unreacted content by preventing the content from flowing in a shortcut through a horizontal flow-type reactor.
In order to achieve the above-described object, the present invention is directed to a chemical reaction apparatus, including a horizontal flow-type reactor in which a liquid content horizontally flows with an unfilled space being provided thereabove; a microwave generator that generates microwaves; and a waveguide that transmits the microwaves generated by the microwave generator to the unfilled space in the reactor, wherein the inside of the reactor is partitioned into multiple chambers by an overflow-type partition plate that allows the content to flow thereover and an underflow-type partition plate that allows the content to flow thereunder but does not allow the content to flow therebeside, and a portion of the underflow-type partition plate corresponding to the unfilled space is provided with a space through which microwaves can pass.
With this configuration, in a portion where an overflow-type partition plate and an underflow-type partition plate are adjacent to each other, the content moves from below to above or from above to below inside the reactor, and the movement distance of the content increases. As a result, the content is irradiated with microwaves for a longer period of time, and discharge of an unreacted content can be suppressed. Since a portion of the underflow-type partition plate corresponding to the unfilled space is provided with a space through which microwaves can pass, microwaves can pass between chambers also via a route over the underflow-type partition plate.
Furthermore, the chemical reaction apparatus according to the present invention may be configured such that the overflow-type partition plate and the underflow-type partition plate are alternately arranged along a flow direction of the content.
With this configuration, the path through which the content flows can be made longer, and discharge of an unreacted content can be suppressed.
Furthermore, the chemical reaction apparatus according to the present invention may be configured such that a distance between two partition plates arranged adjacent to each other along the flow direction in the order of an overflow-type partition plate and an underflow-type partition plate is larger than a distance between two partition plates arranged adjacent to each other along the flow direction in the order of an underflow-type partition plate and an overflow-type partition plate.
With this configuration, for example, if a flowing solid catalyst having a specific gravity that is larger than that of the content is present in the reactor, the fact that it is difficult for the solid catalyst to move upward between the two partition plates arranged adjacent to each other along the flow direction in the order of an underflow-type partition plate and an overflow-type partition plate may be used to retain the solid catalyst in that chamber.
Furthermore, the chemical reaction apparatus according to the present invention may be configured such that a distance between two partition plates arranged adjacent to each other along the flow direction in the order of an underflow-type partition plate and an overflow-type partition plate is larger than a distance between two partition plates arranged adjacent to each other along the flow direction in the order of an overflow-type partition plate and an underflow-type partition plate.
With this configuration, for example, if a flowing solid catalyst having a specific gravity that is smaller than that of the content is present in the reactor, the fact that it is difficult for the solid catalyst to move downward between the two partition plates arranged adjacent to each other along the flow direction in the order of an overflow-type partition plate and an underflow-type partition plate may be used to retain the solid catalyst in that chamber.
Furthermore, the chemical reaction apparatus according to the present invention may be configured such that distances between two partition plates adjacent to each other are equal.
Furthermore, the chemical reaction apparatus according to the present invention may be configured such that, in a flow path of a content under the underflow-type partition plate, a distance between the underflow-type partition plate and a lower face of the reactor is constant.
With this configuration, the range of the distribution of flow rates of the content that flows under the underflow-type partition plate may be narrowed, and thus the flow rate can be made more uniform. As a result, a situation where the content flows through mainly a portion of the flow path at the underflow-type partition plate is suppressed, and thus flowing of the content in a shortcut can be more reliably suppressed.
With the chemical reaction apparatus according to the present invention, it is possible to suppress discharge of an unreacted content by preventing the content from flowing in a shortcut.
Hereinafter, examples of a chemical reaction apparatus according to the present invention will be described. Note that constituent elements denoted by the same reference numerals are the same as or similar to each other in the following examples, and thus a description thereof may not be repeated.
Below, a chemical reaction apparatus according to Example 1 of the present invention will be described with reference to the drawings. The chemical reaction apparatus according to this example irradiates, with microwaves, a content of a reactor whose inside is partitioned by overflow-type partition plates and underflow-type partition plates into multiple chambers.
The mixing portion 12 mixes a raw material and a solid catalyst. The mixing portion 12 may mix the raw material and the like with a reactant. The raw material may contain multiple materials. For example, in the case of performing esterification in the reactor 13, fat and oils and alcohol may be used as the raw material. The raw material and the solid catalyst may be supplied to the mixing portion 12 by pumps 11 as shown in
The reactor 13 is a horizontally extending reaction unit in which a liquid content is placed with an unfilled space being provided thereabove. The reactor 13 is of a flow-type. That is to say, the reactor 13 is a horizontal flow-type reaction unit in which a liquid content horizontally flows with an unfilled space being provided thereabove. The direction in which the content flows is the longitudinal direction of the reactor 13. In the reactor 13 shown in
The microwave generators 14 generate microwaves. The chemical reaction apparatus 1 according to this example may include one microwave generator 14, or may include two or more microwave generators 14. There is no limitation on the frequency of the microwaves, and examples thereof include 2.45 GHz, 5.8 GHz, 24 GHz, 915 MHz, and other frequencies ranging from 300 MHz to 300 GHz. If the chemical reaction apparatus 1 includes two or more microwave generators 14, the frequencies of the microwaves generated by the microwave generators 14 may be the same, or may be different from each other. In the latter case, for example, microwave irradiation at a frequency A may be performed on the upstream side in the flow direction in the reactor 13 and microwave irradiation at a frequency B may be performed on the downstream side, or microwave irradiation at frequencies A and B may be performed at the same position in the flow direction in the reactor 13. Note that it is assumed that the frequency A and the frequency B are different from each other.
The waveguides 15 transmit the microwaves generated by the microwave generators 14 to the unfilled space in the reactor 13. The number of waveguides 15 provided may be the same as the number of microwave generators 14 as shown in
The microwave control portion 16 controls the output (power) of microwaves used for irradiation in the reactor 13, according to the temperature measured by temperature measuring portions 25 (described later). The control by the microwave control portion 16 makes it possible to keep the temperature inside the reactor 13 at a desired temperature or in a desired temperature range.
The catalyst separating portion 17 separates the catalyst from the product material after the reaction in the reactor 13. If the catalyst that has been mixed with the raw material is a solid catalyst, for example, filtering may be used to separate the solid catalyst, or one of the solid catalyst and the product material may be precipitated to separate the solid catalyst. Furthermore, if the solid catalyst contains a magnetic substance, a magnet that attracts the solid catalyst may be used to separate the solid catalyst. Note that the separated solid catalyst may be used again as appropriate. Furthermore, if a liquid catalyst is used, distillation, extraction, or neutralization may be performed in the catalyst separating portion 17 to separate the catalyst.
The product material from which the catalyst has been separated by the catalyst separating portion 17 is loaded into the treated liquid storage tank 18. Then, this product material is separated as appropriate into a final product, a by-product, and the like. For example, if the raw material is free fatty acid and esterification is performed in the reactor 13, a product that is biodiesel fuel and a by-product that is water are obtained. In this case, an acid catalyst is used. Furthermore, for example, if the raw material is triglyceride and transesterification is performed in the reactor 13, a product that is biodiesel fuel and a by-product that is glycerin are obtained. In this case, an alkali catalyst is used.
Note that an unshown cooler that cools down the material after the reaction in the reactor 13 may or may not be provided on the path after the reactor 13. In the former case, for example, the cooler may use water to cool down the material after the reaction in the reactor 13.
As described above, the unfilled space 22 is present in the upper portion inside the reactor 13. The unfilled space 22 is irradiated with the microwaves generated by the microwave generators 14 and transmitted via the waveguides 15. Note that
The partition plates 41 to 43 may independently transmit microwaves, absorb microwaves, or reflect microwaves. Examples of the microwave-transmitting material include Teflon (registered trademark), quartz glass, ceramic, silicon nitride-alumina, and the like. Accordingly, the partition plates that transmit microwaves may be made of such a microwave-transmitting material. Furthermore, examples of the microwave-absorbing material include carbon except for fullerene, and the like. Accordingly, the partition plates that absorb microwaves may be made of such a microwave-absorbing material. Furthermore, examples of the microwave-reflecting material include metal. Accordingly, the partition plates that do not transmit microwaves may be made of such a microwave-reflecting material. Furthermore, the partition plates may be made of a combination of two or more materials freely selected from the microwave-transmitting material, the microwave-absorbing material, and the microwave-reflecting material.
Furthermore, as shown in
Hereinafter, reasons why the content 20 of the reactor 13 is rotationally agitated by the agitation units 23 will be briefly described. The first reason why the content 20 is agitated by the agitation units 23 is to uniformly heat the content 20 with microwaves. Although depending on the type of content 20 and the temperature of the content, the depth to which microwaves penetrate is constant, and, thus, the agitation is performed in order to uniformly irradiate and uniformly heat the entire content 20 with microwaves. Furthermore, the content 20 can be more efficiently irradiated with microwaves as the surface area of the content 20 at the unfilled space 22 increases. Accordingly, the second reason why the content 20 is agitated is to increase the area subjected to microwave irradiation. Thus, the content 20 is agitated by the agitation units 23 preferably at an intensity that allows the surface of the content 20 at the unfilled space 22 to be disordered, but there is no limitation to this. If the agitation is performed for the first reason, it may be sufficient that the entire content 20 is eventually heated. Furthermore, since the raw material and the like are agitated using the agitation units 23 in this manner, even in the case where a raw material contains two or more materials having different densities, these materials can be mixed and reacted with each other as appropriate. For example, when causing materials having different densities, such as alcohol and waste oil, to react with each other in a vertical flow-type reactor, these materials are easily separated from each other. However, as in this example, if the reactor 13 is of a horizontal flow-type and is provided with the agitation units 23, these materials can be mixed and reacted with each other as appropriate.
Furthermore, as shown in
Next, the partition plates 41 to 43 will be described. The content 20 such as a raw material loaded into the reactor 13 flows through the chambers 31 to 34 and is finally discharged from the downstream side (e.g., the right end of the reactor 13 in
Furthermore, as in an underflow-type partition plate 42a shown in
If multiple overflow-type partition plates are present in the reactor 13, the partition plates may or may not have the same shape. If multiple underflow-type partition plates are present in the reactor 13, the partition plates may or may not have the same shape. Each of the partition plates 41 to 43 may have a thickness of, for example, approximately 1 to 30 mm, or other thicknesses. In any case, the thickness of each of the partition plates 41 to 43 is sufficiently smaller than the length of each of the chambers 31 to 34. The length of each of the chambers 31 to 34 is a length in the longitudinal direction of the reactor 13. As shown in
In the reactor 13 in
Furthermore, for example, as shown in
In
Furthermore, in the reactor 13 in
Furthermore, in the reactor 13 in
Furthermore, in the reactor 13 in
Furthermore, the reactor 13 may be provided with both a portion where a distance between two partition plates arranged adjacent to each other along the flow direction in the order of an underflow-type partition plate and an overflow-type partition plate is larger than a distance between two partition plates arranged adjacent to each other along the flow direction in the order of an overflow-type partition plate and an underflow-type partition plate shown in
There is no particular limitation on a smaller distance among the distances between adjacent partition plates, but the distance may be, for example, 2 to 30 cm. There is no particular limitation on a larger distance among the distances between adjacent partition plates, but the distance may be, for example, 20 to 100 cm. The larger distance may be 2 to 10 times the smaller distance.
There is no particular limitation on the reaction that is caused in the chemical reaction apparatus 1 according to this example, but the reaction may be, for example, esterification reaction, transesterification reaction, ion-exchange reaction, amidation reaction, halogenation reaction, amine substitution reaction, or other substitution reaction, or may be addition reaction, elimination reaction, rearrangement reaction, or the like.
As described above, according to the chemical reaction apparatus 1 of this example, in a portion where an overflow-type partition plate and an underflow-type partition plate are adjacent to each other, the content 20 moves from below to above or from above to below inside the reactor 13, and the movement distance of the content 20 increases. As a result, the content 20 is irradiated with microwaves for a longer period of time, and the possibility that an unreacted content is discharged can be reduced. If an agitation unit is present in a chamber sandwiched between an overflow-type partition plate and an underflow-type partition plate, the content 20 passes through the position of the agitation unit in the chamber when flowing from the upstream side to the downstream side, and, as a result, the content 20 is properly agitated, and the reaction is facilitated.
In this example, the case has been described where the mixing portion 12 that mixes the raw material and the catalyst is provided, but there is no limitation to this. For example, if a premixure of the raw material and the catalyst is used, if the mixing is also performed by the reactor 13, if the solid catalyst that flows inside the reactor 13 is retained in the reactor 13, if a solid catalyst forming a fixed bed is used instead of the solid catalyst that flows inside the reactor 13, or if no catalyst is used, the chemical reaction apparatus 1 does not have to be provided with the mixing portion 12. Note that, if a solid catalyst forming a fixed bed is used, typically, the solid catalyst forming a fixed bed is provided inside the reactor 13. The solid catalyst forming a fixed bed may be fixed, for example, by being pasted on the inner wall of the reactor 13, or by being placed in a layer, a column, or the like that is to be filled with the catalyst, inside the reactor 13. Examples of the shape of the solid catalyst include various grains, a cylinder (that may or may not be hollow, for example), a sphere, a pellet, a ring, a shell, a honeycomb, a foam, a fiber, a cloth, a plate, and other shapes.
Furthermore, in this example, for example, the case has been described where the reactor 13 has four chambers that are continuously arranged in series as shown in
Furthermore, in this example, the case has been described where the chemical reaction apparatus 1 is provided with the temperature measuring portions 25 and the microwave control portion 16, but there is no limitation to this. For example, if it is possible to keep the temperature inside the reactor 13 at a desired temperature or in a desired temperature range by setting the output of microwaves to a predetermined value, the control of the output of microwaves using the temperature does not have to be performed.
Furthermore, in this example, the case has been described where the catalyst separating portion 17 is provided on the path after the reactor 13, but there is no limitation to this. If the catalyst does not have to be separated by the chemical reaction apparatus 1 according to this example, as in the case in which the catalyst is separated by another apparatus, the case in which the solid catalyst that flows inside the reactor 13 is retained in the reactor 13, the case in which a solid catalyst forming a fixed bed is used instead of the solid catalyst that flows inside the reactor 13, or the case in which no catalyst is used in the chemical reaction in the reactor 13, the catalyst separating portion 17 does not have to be provided.
Furthermore, in this example, the case has been described where the raw material and the catalyst are mixed and loaded into the reactor 13, but there is no limitation to this. For example, only the raw material may be loaded into the reactor 13. Furthermore, if the raw material and the catalyst are not mixed, only the raw material may flow inside the reactor 13. That is to say, the content of the reactor 13 may be, for example, a mixture of multiple raw materials. Furthermore, even in the case where the raw material and the catalyst are not mixed, for example, the raw material and the catalyst may flow inside the reactor 13 when the solid catalyst that flows inside the reactor 13 is retained in the reactor 13. Furthermore, if the raw material and the catalyst are not mixed, the mixing portion 12 may, for example, mix the raw material, or mix the raw material (substrate) and the reactant. Furthermore, if the raw material and the like do not have to be mixed, the chemical reaction apparatus 1 does not have to be provided with the mixing portion 12 as described above.
Furthermore, in this example, the case has been described where one or more agitation units 23 that agitate the raw material inside the reactor 13 are provided, but there is no limitation to this. For example, if the reactor 13 is configured such that the entire raw material can be easily irradiated with microwaves (e.g., if the inner diameter of the reactor 13 is small, etc.), the agitation units 23 do not have to be provided.
Furthermore, in this example, the case has been described where the chemical reaction apparatus 1 is provided with the treated liquid storage tank 18, but there is no limitation to this. For example, a mixture of the product material and the by-product discharged from the chemical reaction apparatus 1 may be subjected to extraction of the product material and the like in another apparatus.
Furthermore, it will be appreciated that the present invention is not limited to the example set forth herein, and various modifications are possible within the scope of the present invention.
As described above, the chemical reaction apparatus according to the present invention is effective in that discharge of an unreacted content can be suppressed, and, thus, this apparatus is useful, for example, as a chemical reaction apparatus for irradiating a content with microwaves.
Tsukahara, Yasunori, Deguchi, Yukari, Ishizuka, Akinori
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5393320, | Mar 26 1993 | RODOLFO ANTONIO M GOMEZ | Leaching process for nickel cobalt and manganese ores |
20040056026, | |||
20060237300, | |||
JP2006511775, | |||
JP2006512554, | |||
JP2011234263, | |||
JP2011235262, | |||
JP2011235263, | |||
JP2013103159, | |||
JP2013103160, | |||
JP2013107058, | |||
JP2014099304, | |||
JP58128140, | |||
JP59004431, | |||
JP63264134, | |||
WO2004056468, | |||
WO2004056471, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 17 2015 | Microwave Chemical Co., Ltd. | (assignment on the face of the patent) | / | |||
Jan 30 2017 | ISHIZUKA, AKINORI | MICROWAVE CHEMICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041680 | /0667 | |
Feb 02 2017 | DEGUCHI, YUKARI | MICROWAVE CHEMICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041680 | /0667 | |
Feb 02 2017 | TSUKAHARA, YASUNORI | MICROWAVE CHEMICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041680 | /0667 |
Date | Maintenance Fee Events |
Feb 15 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jan 31 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 18 2023 | 4 years fee payment window open |
Feb 18 2024 | 6 months grace period start (w surcharge) |
Aug 18 2024 | patent expiry (for year 4) |
Aug 18 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 18 2027 | 8 years fee payment window open |
Feb 18 2028 | 6 months grace period start (w surcharge) |
Aug 18 2028 | patent expiry (for year 8) |
Aug 18 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 18 2031 | 12 years fee payment window open |
Feb 18 2032 | 6 months grace period start (w surcharge) |
Aug 18 2032 | patent expiry (for year 12) |
Aug 18 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |