A work machine extending in a fore-aft direction comprising a frame and a ground-engaging mechanism, the ground-engaging mechanism configured to support the frame on a ground surface; a boom assembly coupled to the frame, the boom assembly having a pair of boom arms pivotally coupled to the frame; and an attachment coupled to a fore-section of the boom arms. The attachment may comprise a guide rigidly coupled to a fore-section of the frame; a movable member coupled to the guide, the movable member moveable relative to the frame by a pair of hydraulic cylinders, the guide restricting movement of the movable member in a non-vertical direction; and a work tool coupled to the movable member wherein actuating the pair of hydraulic cylinders engages the movable member, vertically lifting or lowering the work tool relative to the frame.
|
7. A work machine extending in fore-aft direction, the work machine comprising:
a frame and a ground-engaging mechanism, the ground-engaging mechanism configured to support the frame on a ground surface;
a boom assembly coupled to the frame, the boom assembly having a pair of boom arms pivotally coupled to the frame; and
an attachment coupled to a fore-section of the boom arms, the attachment comprising:
a guide rigidly coupled to a fore-section of the frame;
a movable member coupled to the guide, the movable member moveable relative to the frame by a pair of hydraulic cylinders, the guide restricting movement of the movable member in a non-vertical direction;
a work tool coupled to the movable member,
wherein in actuating the pair of hydraulic cylinders engages the movable member, vertically lifting or lowering the work tool relative to the frame; and
auxiliary hydraulic cylinders, wherein in actuating the auxiliary hydraulic cylinders performs one or more of tilting the work tool relative to the frame in a direction of roll about a forward portion of the boom assembly and angling the work tool relative to the frame in a direction of yaw about the forward portion of the boom assembly.
1. A work machine extending in a fore-aft direction, the work machine comprising:
a frame and a ground-engaging mechanism, the ground-engaging mechanism configured to support the frame on a ground surface;
a boom assembly coupled to the frame, the boom assembly having a pair of boom arms pivotally coupled to the frame; and
an attachment coupled to a fore-section of the boom arms, the attachment comprising:
a guide rigidly coupled to a fore-section of the frame, wherein the guide comprises of a vertical support surface, the vertical support surface perpendicular to the fore-aft direction;
a movable member coupled to the guide, the movable member moveable relative to the frame by a pair of hydraulic cylinders, the guide restricting movement of the movable member in a non-vertical direction, the movable member abutting the vertical support surface when the pair of hydraulic cylinders actuate in vertically lifting or lowering the work tool;
a work tool coupled to the movable member, wherein actuating the pair of hydraulic cylinders engages the movable member, vertically lifting or lowering the work tool relative to the frame, and
wherein the pair of hydraulic cylinders comprises of a pair of tilt hydraulic cylinders, a first section of the pair of tilt hydraulic cylinders pivotally coupled to the frame and a second section of the pair of tilt hydraulic cylinders pivotally coupled to the movable member.
2. The work machine of
of the movable member in the non-vertical direction.
3. The work machine of
auxiliary hydraulic cylinders, wherein actuating the auxiliary hydraulic cylinders performs one or more of tilting the work tool relative to the frame in a direction of roll about a forward portion of the boom assembly and angling the work tool relative to the frame in a direction of yaw about the forward portion of the boom assembly.
8. The work machine of
9. The work machine of
|
N/A
The present disclosure relates to an improved work tool attachment configured for use with a work machine.
Work machines, including crawler dozers, loaders, excavators, utility vehicles, tractors, and road pavers, to name a few, are generally vehicles comprising a boom that can be manipulated to perform a variety of functions. One of the challenges in the use of work machines are the large number of different work machines with their respective functions, control systems, user input parameters, standardized attachments, and their respective dependencies. Another challenge is that typically a plurality of different attachments catered towards different functionalities may be coupled with several work machines.
Various issues exist for this problem. Operators of skid steers, crawler dozers, loaders and track loaders, for example, perform a myriad of functions using different attachments, using hand and/or foot controls on the user input interface. Both compact track loaders and crawler dozers have the ability to couple to a variety of attachments wherein some attachments may be of standardized use on one work machine, and another attachment may be of standardized use on another work machine. Furthermore, both work machines differ in size and maneuverability thereby impacting the work environments each respective machine is capable of accessing, and functioning in. When an attachment, such as a blade commonly found on a crawler dozer, is coupled to a compact track loader, the blade is not raised or lowered in a perfectly vertical line with respect to the work machine, or the frame of the work machine, due to the geometry of linkage. Instead, a point on blade would trace a curve as blade is lifted or lowered, thereby creating a inefficiencies in control of the blade attachment, especially with gauging depth control. Therein lies a need to facilitate quick adaptation of an attachment for a work machine based on the attachment type, wherein operator use becomes simplified. The following disclosure addresses this issue.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description and accompanying drawings. This summary is not intended to identify key or essential features of the appended claims, nor is it intended to be used as an aid in determining the scope of the appended claims.
The present disclosure includes an apparatus for a work tool attachment for a work machine, and a work machine.
The work machine may comprise of a frame and a ground-engaging mechanism, the ground-engaging mechanism configured to support the frame on a surface; a boom assembly coupled to the frame, the boom assembly having a pair of boom arms pivotally coupled to the frame; and an attachment coupled to a fore-section of the boom arms. The attachment may comprise of a guide rigidly coupled to a fore-section of the frame, a movable member coupled to the guide, and a work tool. The moveable member may move relative to the frame by a pair of hydraulic cylinders. The guide may restrict movement of the movable member in a non-vertical direction. The work tool may be coupled to the movable member, wherein actuating the pair of hydraulic cylinders engages the moveable member, vertically lifting or lowering the work tool relative to the frame.
The guide may comprise of a vertical support surface, the vertical support surface perpendicular to a fore-aft direction. The movable member may abut the vertical support surface when the pair of hydraulic cylinders actuate in vertically lifting or lowering the work tool.
In one embodiment, the pair of hydraulic cylinders may comprise of a pair of tilt hydraulic cylinders. The first section of the pair of tilt hydraulic cylinders pivotally coupled to the frame and the second section of the pair of tilt hydraulic cylinders pivotally coupled to the movable member.
In a second embodiment, the guide may comprise of a casing. The casing may comprise of a pair of vertical beams and the pair of hydraulic cylinders, wherein the pair of hydraulic cylinders comprises of a pair of vertically-oriented auxiliary hydraulic cylinders. The movable member may be coupled to the pair of vertical beams to restrict movement of the movable member in the non-vertical direction.
The attachment may further comprise auxiliary hydraulic cylinders, wherein the auxiliary hydraulic cylinders performs one or more of tilting the work tool relative to the frame in a direction of roll about a forward portion of the boom assembly and angling the work tool relative to the frame in a direction of yaw about the forward portion of the boom assembly.
The boom arms may remain locked in a lowered position.
The work tool may be one of a blade or a fork.
These and other features will become apparent from the following detailed description and accompanying drawings, wherein various features are shown and described by way of illustration. The present disclosure is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the present disclosure. Accordingly, the detailed description and accompanying drawings are to be regarded as illustrative in nature and not as restrictive or limiting.
The detailed description of the drawings refers to the accompanying figures in which:
The embodiments disclosed in the above drawings and the following detailed description are not intended to be exhaustive or to limit the disclosure to these embodiments. Rather, there are several variations and modifications which may be made without departing from the scope of the present disclosure.
As used herein, unless otherwise limited or modified, lists with elements that are separated by conjunctive terms (e.g., “and”) and that are also preceded by the phrase “one or more of or” at least one of indicate configurations or arrangements that potentially include individual elements of the list, or any combination thereof. For example, “at least one of A, B, and C” or “one or more of A, B, and C” indicates the possibilities of only A, only B, only C, or any combination of two or more of A, B, and C (e.g., A and B; B and C; A and C; or A, B, and C).
As used herein, “based on” means “based at least in part on” and does not mean “based solely on,” such that it neither excludes nor requires additional factors.
The engine 165 (shown in
The work machine 100 comprises a boom assembly 170 coupled to the frame 110. An attachment 105, or work tool 320, may be pivotally coupled at a forward portion 175 of the boom assembly 170, while a rear portion 180 of the boom assembly 170 is pivotally coupled to the frame 110. The frame 110 comprises a mainframe 112 and a track frame 114 (alternative embodiments comprising other work machines may have other ground-engaging frames). The attachment 105 may be coupled to the boom assembly 170 through an attachment coupler 185, which may a Deere and Company's Quik-Tatch, which is an industry standard configuration and a coupler universally applicable to many Deere attachments and several after-market attachments. The attachment coupler 185 may be coupled to a distal section of the boom arms 190, or more specifically the forward portion 175 of the boom assembly 170.
The boom assembly 170 comprises a first pair of boom arms 190 (one each on a left side and a right side) pivotally coupled to the frame 110 and moveable relative to the frame 110 by a pair of boom hydraulic cylinders 200, wherein the pair of boom hydraulic cylinders 200 may also conventionally be referred to as a pair of lift cylinders (one coupled to each boom arm) for a compact track loader. The attachment coupler 185 may be coupled to a forward section 175, or portion, of the pair of boom arms 190, being moveable relative to the frame 110 by a pair of tilt hydraulic cylinders 205. The frame 110 of the work machine 100 further comprises a hydraulic coupler 210 on the fore-section 120 of the work machine 100 to couple one or more auxiliary hydraulic cylinders 215 (shown in
Each of the pair of boom hydraulic cylinders 200, the pair of tilt hydraulic cylinders 205, and the auxiliary cylinders 215 (found on the attachments of embodiments shown herein) are double acting hydraulic cylinders. One end of each cylinder may be referred to as a head end, and the end of each cylinder opposite the head end may be referred to as a rod end. Each of the head end and the rod end may be fixedly coupled to another component, such as a pin-bushing or pin-bearing coupling, to name but two examples of pivotal connections. As a double acting hydraulic cylinder, each may exert a force in the extending or retracting direction. Directing pressurized hydraulic fluid 235 into a head chamber of the cylinders will tend to exert a force in the extending direction, while directing pressurized hydraulic fluid 235 into a rod chamber of the cylinders will tend to exert a force in the retracting direction. The head chamber and the rod chamber may both be located within a barrel of the hydraulic cylinder, and may both be part of a larger cavity which is separated by a moveable piston connected to a rod of the hydraulic cylinder. The volumes of each of the head chamber and the rod chamber change with movement of the piston, while movement of the piston results in extension or retraction of the hydraulic cylinder. The control of these cylinders will be described in further detail with regards to
Controller 240, which may be referred to as a vehicle control unit (VCU), is in communication with a number of components on the work machine 100, including the hydraulic system 220, electrical components such as operator inputs from within the operator cab 160, and other components. Controller 240 is electrically coupled to these other components by a wiring harness such that messages, commands, and electrical power may be transmitted between controller 240 and the remainder of the work machine 100. Controller 240 may be coupled to other controllers, such as the engine control unit (ECU), through a controller area network (CAN). Controller may then send and receive messages over the CAN to communicate with other components of the CAN. The controller 240 may send command signals to actuate the attachment 105 by sending a command signal to actuate an input from the user input interface, shown as joystick 250, from the operator cab 160 (shown in
The hydraulic system 220, communicatively coupled to the controller 240, is configured to operate the work machine 100 and operate the attachment 105 coupled to the work machine 100, including, without limitation, the attachment's lift mechanism, tilt mechanism, pitch mechanism, roll mechanism, and auxiliary mechanisms, for example. This may also include moving the work machine 100 in forward and reverse directions, moving the work machine left and right, and controlling the speed of the work machine's travel. Summarily, the hydraulic pump 230 may be coupled to one or more of the pair of boom hydraulic cylinders 200, the pair of tilt hydraulic cylinders 205, and auxiliary hydraulic cylinder(s) 215. The auxiliary hydraulic cylinder(s) 215 may actuate an attachment 105. The hydraulic pump 230 may deliver hydraulic fluid 235 through the plurality of flow paths, the plurality of flow paths coupled to one or more of the pair of boom hydraulic cylinders 200, the pair of tilt hydraulic cylinder 205, and the auxiliary hydraulic cylinder(s) 215.
Now turning to
In the first embodiment 375, shown in
In both the first embodiment 375 and the second embodiment 390, the stiffness is improved for effective dozing performance by coupling the guide 400 directly to the frame 110 as shown in
An opening 430 to provide visibility for the operator of the work machine may be formed in the guide 400, or more particularly the vertical portion 420 of the guide comprising the vertical support surface 410. The vertical support surface 410 is shown coupled on the work machine 100 with the widthwise center of the vertical support surface 410 coinciding with the widthwise center of the work machine 100 to ensure sufficient alignment with the pair of tilt hydraulic cylinders 205, but the horizontal portion 425 need not be centered with respect to the work machine 100. It is possible for the guide 400 to be integrated with the frame 110 so as to form a single member. However, it is convenient for the guide 400 to be detachably coupled to the frame 110 for a streamline surface. Furthermore, removing the guide 400 enables the work tool 320 to be removed from the work machine 100 when not needed to enable the work machine to engage with various types of other load engaging work tools 320 (e.g. blade 322, box blade, or fork 700) and other attachments 105.
In the first embodiment 275, the pair of hydraulic cylinders comprises of the pair of tilt hydraulic cylinders 205 integrated with the work machine (i.e. part of the boom assembly 170). The first section 445 of the pair of tilt hydraulic cylinders 205 is pivotally coupled to the frame 110 and the second section 450 of the pair of tilt hydraulic cylinders 205 is pivotally coupled to the movable member 485. In the embodiment shown in
In a second embodiment 390, shown in
Similar to the first embodiment 273, the guide 400 of the second embodiment comprises a horizontal portion 425 coupled to a fore-section 120 (shown in
The attachment of either the first embodiment 375 and the second embodiment 390 may further comprise of auxiliary hydraulic cylinders 215, wherein actuating the auxiliary hydraulic cylinders 215 performs one or more of tilting the work tool relative to the work machine in a direction of roll about the forward portion of the boom assembly, and angling the work tool relative to the work machine in a direction of yaw about the forward portion of the boom assembly.
The boom arms 190 remain locked in a lowered position when the attachment 105 of the embodiments disclosed herein are coupled to the work machine 100. Locked in the lowered position may include one or more of a hydraulic lock and a mechanical lock. Keeping the boom arms 190 in a lowered position advantageously provides improved visibility for the operator of the blade 322, wherein visibility is expanded to side views (i.e. on a left and a right side of the work machine 100) when the boom arms 190 remain in the lowered position.
Because of the attachment's ability to raise and lower the work tool along a true vertical direction 305, appropriate work tools may include a blade 322, a fork 700. Movement of the work tool 320 to move in a true vertical direction 305 advantageously provides improved precision control for grading operations, improved control of a blade 322 angle during the raising and lowering of the blade 322, and the attachment configuration may increase its versality in use to extend to other work tools 320, such as a fork 700.
The work tool 320 of the present embodiments are a blade 322. The work tool 320 is an attachment which may engage the ground or material to move or shape it. Work tool 320 may be used to move material from one location to another and to create features on the ground, including flat area, grades, hills, roads, or more complexly shaped features. In the embodiment shown, the work tool 320 may be referred to as a six-way blade 322, six-way adjustable blade, or pitch-angle-tilt (PAT) blade. Work tool 320 may be hydraulically actuated to pitch upwards or downwards in the direction of pitch 145, roll left or roll right in the direction of roll 130 (which may be referred to tilt left and tilt right), and angle left or angle right in the direction of yaw 140 (which may be referred to as blade angle, or yaw left or yaw right). Alternative embodiments may utilize a work tool 320 with fewer hydraulically controlled degrees of freedom, such as a 4-way blade that may not be angled, or actuated in the direction of yaw 140.
The terminology used herein is for the purpose of describing particular embodiments or implementations and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the any use of the terms “has,” “have,” “having,” “include,” “includes,” “including,” “comprise,” “comprises,” “comprising,” or the like, in this specification, identifies the presence of stated features, integers, steps, operations, elements, and/or components, but does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The references “A” and “B” used with reference numerals herein are merely for clarification when describing multiple implementations of an apparatus.
One or more of the steps or operations in any of the methods, processes, or systems discussed herein may be omitted, repeated, or re-ordered and are within the scope of the present disclosure.
While the above describes example embodiments of the present disclosure, these descriptions should not be viewed in a restrictive or limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope of the appended claims.
Kumbhar, Nilesh T., Graham, Brett
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10533300, | Aug 04 2018 | Automatic grader stabilizer | |
2109392, | |||
2421472, | |||
2634519, | |||
2702952, | |||
4405019, | Sep 04 1981 | J. I. Case Company | Adjustment and stabilizer mechanism for dozer blade |
5010961, | Feb 20 1990 | Case Corporation | Angle-tilt-pitch mechanism for dozer blade |
5484250, | Jul 27 1992 | GILMORE TRANSPORTATION SERVICES, INC | Coupling for heavy-duty machine |
5829337, | Aug 28 1997 | Caterpillar Inc. | Method and apparatus for coupling a fluid-powered implement to a work machine |
6477964, | Oct 15 1999 | Tygard Machine and Manufacturing Company | Guide system for a forklift |
7204656, | May 04 2000 | INDEXATOR ROTOTILT SYSTEMS AB | Arrangement pertaining to an implement attachment |
8118111, | Jan 20 2008 | Grader stabilizer | |
9643826, | Sep 18 2014 | Komatsu Ltd | Forklift and method for controlling forklift |
9656840, | Oct 08 2014 | Komatsu Ltd | Work vehicle and control method for work vehicle |
20170145654, | |||
20170369295, | |||
20180179735, | |||
GB2037848, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 07 2018 | Deere & Company | (assignment on the face of the patent) | / | |||
Dec 11 2018 | KUMBHAR, NILESH | Deere & Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048225 | /0642 | |
Dec 11 2018 | GRAHAM, BRETT | Deere & Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048225 | /0642 |
Date | Maintenance Fee Events |
Dec 07 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Mar 01 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 01 2023 | 4 years fee payment window open |
Mar 01 2024 | 6 months grace period start (w surcharge) |
Sep 01 2024 | patent expiry (for year 4) |
Sep 01 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 01 2027 | 8 years fee payment window open |
Mar 01 2028 | 6 months grace period start (w surcharge) |
Sep 01 2028 | patent expiry (for year 8) |
Sep 01 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 01 2031 | 12 years fee payment window open |
Mar 01 2032 | 6 months grace period start (w surcharge) |
Sep 01 2032 | patent expiry (for year 12) |
Sep 01 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |