A system for retaining a flowable and curable building material to form a portion of a foundation includes side walls disposed in a predetermined configuration having a first side wall and a second side wall, and at least one component having an interior cavity disposed in one of the side walls. A bracket assembly includes an outwardly bounding reinforcement post for each of the side walls, a separator bar having a plurality of apertures sized to receive and retain each of the reinforcement posts at locations corresponding to nominal widths of the at least one component. A barrier is disposed between the outwardly bounding posts. The barrier and the component in the side wall is retained in the foundation after the building material cures. The barrier prevents backfill from filling a volume between the outwardly bounding posts.

Patent
   11008750
Priority
Jan 13 2014
Filed
May 04 2018
Issued
May 18 2021
Expiry
Sep 12 2035

TERM.DISCL.
Extension
242 days
Assg.orig
Entity
Small
1
73
window open
27. A drainage and ventilation system, the system comprising:
a conduit having an interior cavity;
a first drainage core having a first end, a second end, and a plurality of first passages extending therethrough;
a second drainage core having a first end, a second end, and a plurality of second passages extending therethrough;
a fabric wrapped around each of the conduit, the first drainage core and the second drainage core; and
a cavity formed by interconnecting the interior cavity of the conduit, the plurality of first passages of the first drainage core and the plurality of second passages of the second drainage core.
10. A foundation footing drainage and ventilation system, the system comprising:
a conduit;
a first drainage core having a first end, a second end, a first plurality of passages extending therethrough and a second plurality of passages extending therethrough substantially orthogonal to the first plurality of passages;
a second drainage core having a first end, a second end, a first plurality of passages extending therethrough and a second plurality of passages extending therethrough substantially orthogonal to the first plurality of passages;
a fabric wrapped around each of the conduit, the first drainage core and the second drainage core;
wherein the conduit is disposed proximate the first end of each of the first and second drainage cores, and the second end of each of the first and second drainage cores extends outwardly from the conduit.
9. A foundation footing drainage and ventilation system, the system comprising:
a conduit;
a first drainage core having a first end, a second end, and plurality of passages extending therethrough;
a second drainage core having a first end, a second end, and plurality of passages extending therethrough;
a fabric wrapped around each of the conduit, the first drainage core and the second drainage core; and
a drainage cavity bounded by the conduit and the first and second drainage cores;
wherein the second drainage core is disposed substantially vertically and proximate a first side of the conduit, the second end of the second drainage core being disposed proximate the second end of the first drainage core,
wherein the first end of the first drainage core is positioned upwardly from the second end of the first drainage core and proximate a second side of the conduit; and
wherein the conduit is disposed on the first end of each of the first and second drainage cores.
1. A system for retaining building material to form a portion of a foundation of at least a portion of a structure of interest, the system comprising:
side walls receiving and retaining a flowable and curable building material therebetween, the side walls disposed in a predetermined configuration suitable for a portion of the foundation, the side walls including a first side wall and a second side wall formed from components, at least one of the first side wall and the second side wall is comprised of at least one of the components having an interior cavity;
a bracket assembly retaining the side walls in the predetermined configuration, the bracket assembly including:
a first outwardly bounding reinforcement post disposed proximate the first side wall,
a second outwardly bounding reinforcement post disposed proximate the second side wall, and
a separator bar having a first end, a second end opposed from the first end, and a plurality of apertures disposed along a length of the separator bar, the plurality of apertures including apertures sized to receive and retain each of the reinforcement posts at locations corresponding to nominal widths of the components; and
a barrier disposed between the first and the second outwardly bounding reinforcement posts, the barrier defined by an inner layer wrapped by an outer layer, the barrier being permeable;
wherein the barrier and the components are retained in the foundation after the building material cures; and
wherein the barrier prevents backfill from filling a volume between the portion of the foundation and the first and the second outwardly bounding reinforcement posts.
2. The system of claim 1, the barrier inner layer comprising:
a first drainage core having a first end, a second end, and a plurality of passages extending therethrough; and
a second drainage core having a first end, a second end and a plurality passages extending of therethrough.
3. The system of claim 2, further comprising:
a drainage cavity bounded by the at least one component and the first and second drainage cores;
wherein the second drainage core is disposed substantially vertically and proximate at least one of the first and second outwardly bounding reinforcement posts, the second end of the second drainage core being disposed proximate the second end of the first drainage core, and
wherein the first end of the first drainage core is positioned upwardly from the second end of the first drainage core and inwardly from the at least one of the first and second outwardly bounding reinforcement posts; and
wherein the at least one component is disposed on the first end of each of the first and second drainage cores.
4. The system of claim 1, the barrier outer layer comprising a fabric.
5. The system of claim 1, the barrier outer layer comprising:
a geotextile exhibiting a grab tensile strength greater than 100 lbs. and an elongation that is greater than fifty percent (50%).
6. The system of claim 1, the barrier outer layer comprising:
a geotextile exhibiting a permittivity greater than 1s−1 and a permeability of at least 0.05 cm/s.
7. The system of claim 1, the barrier further comprising:
an adhesive disposed between the barrier inner layer and the barrier outer layer.
8. The system of claim 1, the at least one component comprising a perforated conduit.
11. The system of claim 9, the conduit being perforated.
12. The system of claim 9, the first and second drainage cores being permeable.
13. The system of claim 9, the fabric being permeable.
14. The system of claim 9, the fabric comprising:
a geotextile exhibiting a grab tensile strength greater than 100 lbs. and an elongation that is greater than fifty percent (50%).
15. The system of claim 9, the fabric comprising:
a geotextile exhibiting a permittivity greater than 1s−1 and a permeability of at least 0.05 cm/s.
16. The system of claim 9, further comprising:
an adhesive disposed between the fabric and the first and second drainage cores.
17. The system of claim 1, further comprising:
an air exchange unit in communication with at least one of the at least one of the components and the barrier.
18. The system of claim 17, wherein the air exchange unit provides at least one of a heated air flow and a cooled air flow.
19. The system of claim 1, further including an in-line forced air system coupled to at least one of the at least one of the components and the barrier to increase a volume of air flow therein.
20. The system of claim 1, further comprising:
one or more connectors, wherein the foundation is constructed by interconnecting two or more components forming at least one of the side walls via the one or more connectors and by retaining the two or more components with the bracket assembly and one or more additional bracket assemblies to form a cross section of the foundation.
21. The system of claim 20, wherein at least one of the two or more interconnected components of the side walls and the barrier includes an aperture, and the aperture at least one of receives an air flow from soil disposed about the foundation and provides an air flow to the soil disposed about the foundation.
22. The system of claim 9, further comprising:
an air exchange unit in communication with at least one of the conduit, the first drainage core and the second drainage core.
23. The system of claim 22, wherein the air exchange unit provides at least one of a heated air flow and a cooled air flow.
24. The system of claim 9, further including an in-line forced air system coupled to at least the conduit, the first drainage core and the second drainage core to increase a volume of air flow therein.
25. The system of claim 9, further comprising:
one or more connectors, wherein the foundation is constructed by interconnecting two or more conduits via the one or more connectors and by retaining the two or more conduits with one or more of the first and the second drainage cores to form a cross section of the foundation.
26. The system of claim 25, wherein at least one of the two or more interconnected conduits and the first and the second drainage cores includes an aperture, and the aperture at least one of receives an air flow from soil disposed about the foundation and provides an air flow to the soil disposed about the foundation.
28. The drainage and ventilation system of claim 27, wherein the fabric includes at least one sleeve to receive at least one of the conduit, the first drainage core and the second drainage core.
29. The drainage and ventilation system of claim 27, wherein the second drainage core is disposed substantially vertically and proximate a first side of the conduit, the second end of the second drainage core being disposed proximate the second end of the first drainage core,
wherein the first end of the first drainage core is positioned upwardly from the second end of the first drainage core and proximate a second side of the conduit; and
wherein the conduit is disposed on the first end of each of the first and second drainage cores.
30. The drainage and ventilation system of claim 27, wherein the first drainage core is positioned and extends horizontally outward from and proximate to a second side of the conduit; and wherein the second drainage core is positioned and extends horizontally outward from and proximate to a first side of the conduit.
31. The system of claim 27, further comprising:
an air exchange unit in communication with at least one of the conduit, the first drainage core and the second drainage core.
32. The system of claim 31, wherein the air exchange unit provides at least one of a heated air flow and a cooled air flow.
33. The system of claim 27, further including an in-line forced air system coupled to at least the conduit, the first drainage core and the second drainage core to increase a volume of air flow therein.

This application is a continuation application of International Patent Application No. PCT/US2016/000093, filed on Nov. 7, 2016, which claims the benefit of U.S. Provisional Patent Application Nos. 62/251,264, filed on Nov. 5, 2015, and 62/394,368, filed on Sep. 14, 2016. This application is also a continuation-in-part application of U.S. Non-Provisional patent application Ser. No. 15/479,871, filed on Apr. 5, 2017, which is a continuation application of U.S. Non-Provisional patent application Ser. No. 14/595,782, filed on Jan. 13, 2015, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/926,657, filed on Jan. 13, 2014. The disclosures of the aforementioned International and U.S. patent documents are incorporated herein by reference in their entirety.

This invention relates generally to a bracket assembly and a form system used to build structural components. In particular, this invention relates to a bracket assembly, a barrier and a form system used to build structural components such as, for example, a foundation for a building, from a volume of concrete and/or other at least partially liquid and curable building material. More specifically, this invention relates to a barrier and a form system for forming a foundation footing integrally formed with a drainage and ventilation system.

As noted in commonly owned U.S. Pat. No. 7,866,097, commonly owned U.S. Pat. No. 8,627,615, and commonly owned U.S. Pat. No. 9,228,365, conventional form systems are known to receive and to maintain a volume of concrete and/or other at least partially liquid building materials in place while the building materials cure over time. Once cured, the form system is typically removed from the cured building material to expose the formed structural component for use as, for example, a foundation or portion thereof, supporting a building or like structure of interest.

As is generally known in the art of building construction, an area is excavated and a form system is assembled therein to match dimensions of a desired foundation or footing. Conventional forms typically comprise panels constructed of steel, wooden boards, planks or sheet material (e.g., plywood) and the like, that are arranged in parallel side-by-side configurations to define side walls and a channel between the side walls along one or more lengths of the excavated area. The panels are staked or otherwise secured in place to prohibit deformation of the side walls as concrete is poured in the channel between the side walls. As can be appreciated, dimensions (e.g., height, thickness, length and shape) of foundations and footings (and thus the form system) vary depending on the structure being built as well as applicable building codes and standards of the industry.

Accordingly, while some aspects of conventional forms and components thereof can be standardized, some degree of customization is typically needed to meet the requirements of the structure being built and/or the building codes and standards employed at the particular job site. In addition, some building codes require that a drainage system be installed around the formed structural component. Typically, drainage tiles, gravel, crushed stone, perforated pipe or other systems or materials are installed at or below the formed structural component and discharge by gravity or mechanical means into an approved drainage system.

Radon is a cancer-causing natural radioactive gas and is a leading cause of lung cancer. The gas permeates the soil beneath the formed structural component and often enters the supported building or like structure of interest through foundation cracks. Radon is drawn into the building because the pressure inside the building is typically lower than the pressure in the soil around and beneath the foundation. Radon mitigation systems can be installed after construction; however, such systems are often costly, cumbersome and difficult to install.

In view thereof, the inventor has recognized that a need exists for a relatively inexpensive and easily configured bracket assembly and form system to build structural components such as, for example, a foundation for a building or portions thereof. The inventor has further recognized that a need exists for a similarly inexpensive and easily configured drainage and ventilation system installed around the formed structural component.

The present invention resides in one aspect in a system for retaining a flowable and curable building material to form a portion of a foundation of at least a portion of a structure of interest. The system includes side walls receiving and retaining the building materials therebetween. The side walls are disposed in a predetermined configuration suitable for the portion of the foundation and include a first side wall and a second side wall. At least one of the first side wall and the second side wall is comprised of at least one component having an interior cavity. A bracket assembly retains the side walls in the predetermined configuration. The bracket assembly includes a first outwardly bounding reinforcement post disposed proximate the first side wall, and a second outwardly bounding reinforcement post disposed proximate the second side wall. A separator bar includes a first end, a second end opposed from the first end, and a plurality of apertures disposed along a length of the separator bar. The plurality of apertures includes a first set of apertures disposed proximate the first end and a second set of apertures disposed proximate the second end. The first set apertures and the second set of apertures are sized to receive and retain each of the reinforcement posts at locations corresponding to nominal widths of the at least one component. A barrier is disposed between the outwardly bounding posts. The barrier is defined by an inner layer wrapped by an outer layer, and the barrier being permeable. The barrier and the at least one component is retained in the foundation after the building material cures, and the barrier prevents backfill from filling a volume between the portion of the foundation and the outwardly bounding posts.

The present invention resides in one aspect in a foundation footing drainage and ventilation system, the system comprising: a conduit; a first drainage core having a first end, a second end, and plurality of passages extending therethrough; a second drainage core having a first end, a second end, and plurality of passages extending therethrough; a fabric wrapped around each of the conduit, the first drainage core and the second drainage core; and a drainage cavity bounded by the conduit and the first and second drainage cores; wherein the second drainage core is disposed substantially vertically and proximate a first side of the conduit, the second end of the second drainage core being disposed proximate the second end of the first drainage core, wherein the first end of the first drainage core is positioned upwardly from the second end of the first drainage core and proximate a second side of the conduit; and wherein the at least one component is disposed on the first end of each of the first and second drainage cores.

The present invention resides in one aspect in a foundation footing drainage and ventilation system, the system comprising: a conduit; a first drainage core having a first end, a second end, a first plurality of passages extending therethrough and a second plurality of passages extending therethrough substantially orthogonal to the first plurality of passages; a second drainage core having a first end, a second end, a first plurality of passages extending therethrough and a second plurality of passages extending therethrough substantially orthogonal to the first plurality of passages; a fabric wrapped around each of the conduit, the first drainage core and the second drainage core; wherein the conduit is disposed proximate the first end of each of the first and second drainage cores, and the second end of each of the first and second drainage cores extends outwardly from the conduit.

FIG. 1A is a perspective view of an inventive form system in accordance with one embodiment of the present invention;

FIG. 1B is a perspective view of an inventive form system in accordance with another embodiment of the present invention;

FIG. 2 is a perspective view of components of the form system in accordance with one embodiment of the present invention;

FIG. 3 is a cross-sectional view of the components of FIG. 2, taken along line 3-3;

FIG. 4 is a perspective view of components of the form system in accordance with one embodiment of the present invention;

FIG. 5 is a cross-sectional view of the components of FIG. 4, taken along line 5-5;

FIG. 6 is a perspective view of components of the form system in accordance with one embodiment of the present invention;

FIG. 7 is a cross-sectional view of the components of FIG. 6, taken along line 7-7;

FIGS. 8A and 8B are a plan view and a side view of a separator bar in accordance with one embodiment of the present invention;

FIGS. 9A and 9B are a perspective view and a side view of a reinforcement post in accordance with one embodiment of the present invention;

FIGS. 10A to 10E illustrate components of the form system in accordance with one embodiment of the present invention;

FIGS. 11A to 11D depict uses of the form system of the present invention;

FIG. 12A is a partial plan view of components of the form system in accordance with one embodiment of the present invention;

FIG. 12B is a cross-sectional view of the components of FIG. 12A, taken along line 12B-12B;

FIG. 12C is partial cross-sectional views of the components of FIG. 12A in accordance with one embodiment of the invention;

FIG. 12D is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12E is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12F is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12G is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12H is a partial cross-sectional view of the components of the form system of FIG. 12D having a barrier installed therein in accordance with one embodiment of the present invention;

FIG. 12I is a partial cross-sectional view of the components of the form system of FIG. 12E having a barrier installed therein in accordance with one embodiment of the present invention;

FIG. 12J is a partial cross-sectional view of the components of the form system of FIG. 12F having a barrier installed therein in accordance with one embodiment of the present invention;

FIG. 12K is a partial cross-sectional view of the components of the form system of FIG. 12G having a barrier installed therein in accordance with one embodiment of the present invention;

FIG. 12L is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12M is a detail view of a component of the form system of FIG. 12L;

FIG. 12N is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12O is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 12P is a depiction of several components of the form system of FIG. 12N prior to assembly for installation in the form system;

FIG. 12Q is a sectional view of a drainage core of the form system of FIG. 12N;

FIG. 13 is a plan view of a separator bar in accordance with one embodiment of the present invention;

FIGS. 14A and 14B are an elevation view and a plan view of reinforcement posts in accordance with one embodiment of the present invention; and

FIG. 15A is a partial cross-sectional view of a form system having an integral ventilation system formed therein in accordance with one embodiment of the present invention form system in use.

FIGS. 15B and 15C are partial cross-sectional views of a form system having an integral ventilation system formed therein in accordance with one embodiment of the present invention form system in use.

FIGS. 15D and 15E are partial cross-sectional views of another embodiment of the form system of FIG. 15A;

FIG. 16 is a partial cross-sectional view of the components of the form system in accordance with one embodiment of the present invention;

FIG. 17 is a partial cross-sectional view of a foundation footing drainage and ventilation system in accordance with one embodiment of the present invention;

FIG. 18A is detail view of a component of the form system of FIG. 16 and the foundation footing drainage and ventilation system of FIG. 17;

FIG. 18B is a depiction of several components of the form system of FIG. 16 and the foundation footing drainage and ventilation system of FIG. 17 prior to assembly for installation in the form system;

FIG. 19 is a depiction of several methods of use of the form system of FIG. 16;

FIG. 20 is an elevation view of a conventional foundation footing and accompanying drainage components; and

FIG. 21 is an elevation view of a gravel-less foundation footing integrally formed with a drainage and ventilation system in accordance with one embodiment of the present invention.

In these figures like structures are assigned like reference numerals, but may not be referenced in the description of all figures.

As shown in FIGS. 1A, 1B and 2, in one embodiment of the present invention, an inventive form system 100 includes a bracket assembly 120 configured and operating to retain side walls 160, for example a first side wall 162 and a second side wall 164, in a spaced relation apart from one another over a predetermined configuration (e.g., height H1, width W1, length L1 and shape S1) within an excavated area 190. For example, the bracket assembly 120 retains the first side wall 162 at a configuration that includes a position parallel to and horizontally spaced apart from (e.g., distant from) the second side wall 164 along at least a portion of the length L1 of and/or partially within the excavated area 190. As shown in FIG. 1A, the bracket assembly 120 and side walls 160 cooperate to define a channel 192 that receives and retains a flowable and at least partially liquid building material 196 such as, for example, concrete, poured into the channel 192. As described herein, the channel 192 is configured to be of a predetermined configuration (e.g., height H1, width W1, length L1 and shape S1) suitable for a footing and/or wall of a foundation supporting a structure of interest, or portion thereof.

It should be appreciated that while FIGS. 1A and 1B illustrate only one bracket assembly 120 retaining the side walls 160, it is within the scope of the present invention to employ one or more bracket assemblies 120 at varying intervals along the length L1 of and/or the configuration within the excavated area 190 to keep the side walls 160 from moving (e.g., being displaced) by pressure exerted thereon by the flowing concrete 196 introduced to the channel 192. It should also be appreciated that the side walls 160 may be constructed from one single, or two or more stacked components as needed to form the predetermined configuration. The components include a section or sections (e.g., pieces) of elongated building materials such as, for example, wooden boards, planks or sheet materials such as plywood, tubular members such as round drain or drainage pipe, square or rectangular pipe or conduit, and the like, and combinations thereof.

For example, FIGS. 2 and 3 illustrate two bracket assemblies 120A and 120B disposed at opposite ends and coupling components of the two side walls 162 and 164 within the configuration, or portion thereof. As shown in FIGS. 2 and 3, two stacked sections of elongated building material, for example, drain pipe 162A and 162B, comprising the first side wall 162, are retained in a vertically stacked orientation and a horizontally distant relation from two stacked sections of drain pipes 164A and 164B, comprising the second wall 164 of the configuration. FIGS. 4 and 5 illustrate two bracket assemblies 120A and 120B disposed at opposite ends and retaining pieces of elongated wooden planks 162C and 164C, comprising the first side wall 162 and the second side wall 164, in a vertical orientation and horizontally distant relation. FIGS. 6, 7 and 12G illustrate two bracket assemblies 120A and 120B disposed at opposite ends and retaining two pieces of elongated rectangular conduit 162D and 162E of the first side wall 162 in a vertically stacked orientation and a horizontally distant relation from two pieces of elongated rectangular conduit 164D and 164E of the second wall 164.

Referring again to FIG. 2, in one embodiment, the bracket assembly 120 (e.g., each of bracket assemblies 120A and 120B) includes one or more separator bars 130 and two or more reinforcement posts 140, illustrated in greater detail at FIGS. 8A, 8B, 9A and 9B, respectively. The separator bars 130 and the reinforcement posts 140 cooperate to retain the side walls 160, and components thereof, in the vertical orientation and the horizontally spaced apart (e.g., distant) relation of the predetermined configuration or portion thereof. As shown in FIGS. 1-7, the separator bars 130 and a first pair of reinforcement posts 140 cooperate to retain a portion of the first side wall 162 in the substantially vertical orientation and the horizontally distant relation from the second side wall 164 retained by the separator bars 130 and a second pair of the reinforcement posts 140.

As illustrated in FIGS. 8A and 8B, each of the one or more separator bars 130 include a plurality of apertures 132 and 134 disposed at predetermined locations along a length L2 of the separator bar 130. In one embodiment, the apertures 132 are disposed at opposing ends 136 and 138 of each of the separator bars 130 and are sized to receive a stake or post 158 (FIG. 1A) for securing the bracket assembly 120 at a location within the excavated area 190. The apertures 134 are disposed (as described below) at predetermined locations along the length L2 of the separator bar 130 and are sized to receive the reinforcement posts 140. As illustrated in FIGS. 9A and 9B, in one embodiment each of the reinforcement posts 140 includes serrations 144 disposed along at least a portion of a length L3 of sides 142 of the reinforcement post 140. The plurality of apertures 134 of the separator bars 130 and the serrations 144 of the reinforcement posts 140 are sized to frictionally engage one another whereby placement of a reinforcement bar 140 within an aperture 134 provides frictional engagement between the serrations 144 and the separator bar 130 to prevent displacement. In one embodiment, the reinforcement posts 140 include apertures 146 through the sides 142 of the posts. The apertures 146 provide means whereby a length of line (e.g., a level line) can be inserted through one or more reinforcement posts 140 and additional articles (e.g., rebar, the separator bars 130) can be tethered to and/or supported by the reinforcement post 140. In one embodiment, wire, pins, fasteners may be disposed within the apertures 146 to support the separator bar 130 in a vertical orientation between the reinforcement posts 140. In one embodiment, the separator bar 130 is otherwise clamped, fastened or secured in the vertical orientation between the reinforcement posts 140. In one embodiment, the separator bar 130 may include a plurality of tabs that are selectively extendable into the apertures 134 to lock the reinforcement post 140 to the separator 130.

In one aspect of the invention, the predetermined locations of the apertures 134 of the separator bars 130 correspond to nominal widths of elongated building material required, recommended or preferred, for use as components to construct the side walls 160. For example, when a first pair of the reinforcement posts 140 are placed within corresponding ones of the apertures 134 proximate end 136 of the separator bar 130 the first side wall 162 is retained in place between the first pair of posts 140, and when a second pair of the reinforcement posts 140 are placed within corresponding ones of the apertures 134 proximate the opposing end 138 of the separator bar 130 the second side wall 164 is retained in place between the second pair of posts 140. As shown in FIG. 8, in one embodiment, the separator bar 130 is stamped, labeled or otherwise marked with indicia, shown generally at 135, to identify nominal widths of typical building materials, required, recommended or preferred, for use as components to construct the side walls 160. For example, the separator bar 130 includes such indicia 135 proximate its ends 136 and 138 to correspond to locations to construct each of the side walls. In one embodiment, a first set of indicia 135A proximate the end 136 corresponds to the location for constructing the first side wall 162 and a second set of indicia 135B proximate the end 138 corresponds to the location for constructing the second side wall 164.

During construction of the first side wall, for example, a first post 140A of the first pair of reinforcement posts 140 is placed within an aperture 134 proximate the end 136 of the separator bar 130 such that the first reinforcement post 140A is disposed externally with respect to the channel 192 (e.g., disposed at a location shown generally at 192A), and a second post 140B of the first pair of reinforcement posts 140 is placed within an aperture 134 inwardly from the end 136 such that the second reinforcement post 140B is disposed internally with respect to the channel 192 (e.g., disposed at a location shown generally at 192B) to externally and internally bound the components used to construct the first side wall 162 between the first pair of reinforcement posts 140A and 140B. Similarly, during construction of the second side wall a first post 140C of the second pair of reinforcement posts 140 is placed within an aperture 134 proximate the end 138 of the separator bar 130 such that the reinforcement post 140C is disposed externally with respect to the channel 192 (e.g., disposed at a location shown generally at 192C), and a second post 140D of the second pair of reinforcement posts 140 is placed within an aperture 134 inwardly from the end 138 such that the reinforcement post 140D is disposed internally with respect to the channel 192 (e.g., disposed at about location 192B), to externally and internally bound the components used to construct the second side wall 164 between the second pair of reinforcement posts 140C and 140D.

In one embodiment, the indicia 135 are comprised of a coding system such as, for example, a numeric coding system. For example, a first one of the apertures 134 proximate each of the ends 136 and 138 of the separator bar 130 is identified by a “1” marking and a second one of the apertures 134 disposed inwardly from the first aperture is identified by a “2” marking, where the first and second apertures are disposed at locations that correspond to a nominal width of a wooden board (e.g., stock “two-by” board materials having a nominal width of about one and one half inch (1.5 in.)); the first aperture (marked “1”) and a third one of the apertures 134 inwardly from the second aperture (marked “2”) is identified by a “3” marking, where the first and third apertures are disposed at locations that correspond to a nominal width of a rectangular conduit (e.g., a stock rectangular conduit having a nominal with of about two inches (2 in.)); and the first aperture (marked “1”) and a fourth one of the apertures 134 inwardly from the third aperture (marked “3”) is identified by a “4” marking, where the first and fourth apertures are disposed at locations that correspond to a nominal width or diameter of a round drain pipe (e.g., a stock drain pipe having a nominal diameter of about four inches (4.0 in.), six inches (6.0 in.) or other dimensions as would be required, recommended or preferred by one skilled in the art). While the present invention expressly discloses a numeric coding system for the apertures 134, it should be appreciated that it is within the scope of the present invention to employ other coding systems including, for example, a scale illustrating measurements in English (fraction or inch based), Metric (decimal based) and other measurement systems as would be used in the art. While not shown, it should be appreciated that spacers or shims may be used to increase or decrease the distance between two or more of the apertures 134 for securing building materials of nonstandard widths between corresponding pairs of reinforcement posts 140.

In one embodiment, shown in FIG. 10A, a conduit 170 is illustrated for use as a component to construct the side walls 160. The conduit 170 includes a corrugated-shaped wall 172 defining an interior cavity 174. As shown in FIG. 10A, in one embodiment the conduit 170 includes a male end 176 and a female end 178. The male end 176 and the female end 178 are configured to permit an end-to-end coupling of a plurality of the conduits 170. In one embodiment, underground utilities may be carried within the interior cavity 174. In another embodiment, plumbing may be carried within the interior cavity 174. As shown in FIGS. 10B and 10C, in one embodiment, one or both of a plurality of straps 150 and spreaders 155 may be positioned about the side walls 160 and cooperate with the bracket assembly 120 to assist in retaining the components of the side walls 160 in place as the concrete is received and cures within the inventive form system 100. Another embodiment of the separator bar 130 is shown in FIG. 10D, and another embodiment of the reinforcement posts 140 is shown in FIG. 10E.

As illustrated in FIGS. 11A to 11D, the inventive form system 100 receives and retains concrete 196 being cured for use in constructing a foundation 200 including a footing 202 and walls 204 for a structure of interest such as, for example, a residential or commercial building or portion thereof. For example, a plurality of the bracket assemblies 120 may be operated to retain a plurality of the side walls 160 in the predetermined configuration, including the height H1 (extending in a plane vertically out of the drawing sheet), width W1, length L1 (including legs L1A, L1B, L1C, etc.) and shape S1 within the excavated area 190, to receive the concrete 196 to form one or both of the footing 202 and walls 204 of the foundation 200 for the structure of interest. As shown in FIG. 11B, components of the side walls 160 (e.g., sections of elongated building materials such as wooden boards, planks or sheet materials, tubular members such as round drain or drainage pipe, square or rectangular pipe or conduit, and the like) are assembled, interconnected or interlocked in end-to-end fashion by, for example, one or more connectors 210, to form walls for retaining the concrete or other building materials.

As described in further detail below, when the side walls 160 are comprised of tubular, square or rectangular members having an interior cavity 166, such as pipe or conduit (as shown in FIGS. 2, 3, 6 and 7), the assembled, interconnected or interlocked side wall components are integrally formed within the structure and cooperate to define one or more passages 180 within the side walls 160 for air flow around at least an exterior (e.g., within area 192A) and interior (e.g., within area 192C) of the formed footing 202 and the walls 204, and/or for air flow within the footing 202 or walls 204 themselves (e.g., with area 192B). For example, the inventor has found that when accessed after construction, the one or more passages 180 of the side walls are conducive to providing ventilation for effective and efficient transfer (e.g., removal and/or remediation) of radon or other unwanted gas from the structure constructed.

In one embodiment, the transfer of gas may be aided by an additional volume of air flow introduced by, for example, an in-line force air system. In one embodiment, illustrated in FIGS. 1B, 11C and 11D, the inventor has found that the one or more passages 180 of the side walls may be used to provide heated or cooled air from an air exchange unit 184, such as for example a heating and/or cooling unit 184A, via passages 186 in communication with at least one of the passages 180, to the interior and/or exterior areas about and/or within the footing 202 and walls, e.g., the aforementioned areas 192A, 192B and 192C, to remove moisture, condensation, humidity or the like in the areas, to aid cure time during construction, to permit construction in unfavorable weather and/or air or soil conditions (e.g., heat the building material and/or surrounding soil to permit construction in cold temperatures by permitting a passive flow and/or cure without freezing, and/or vice versa, to cool the building material and/or the surrounding soil to permit construction and stable curing during hot weather conditions), and to remove moisture that may lead to mold and/or other hazards. It should be appreciated that the passage 180 may be continuous, for example, provide for air flow about substantially all of an exterior perimeter, interior perimeter or both the exterior and interior perimeter of the formed footing 202 and the walls 204 (e.g., areas 192A, 192B and/or 192C). Alternatively, one or more portions of the exterior and interior perimeter of the formed footing 202 and the walls 204 may include the integrally formed side walls that provide one or more of the passages 180 that can be accessed to transfer, e.g., remove and/or remediate radon or other unwanted gas, moisture or the like, and/or introduce heated or cooled air, from the areas (e.g., areas 192A, 192B, and/or 192C) proximate the building constructed.

As noted above, the inventive form system 100 may be used to construct the foundation 200 including one or both of the footing 202 and the walls 204 for the structure of interest. For example, a plurality of the bracket assemblies 120 and 220 may be operated to retain a plurality of the side walls 160 and 260, and components thereof, in the predetermined configuration to receive the concrete 196 to form one or both of the footing 202 and walls 204 of the foundation 200 for the structure of interest. When the components used to construct the side walls 160 and 260 are comprised of tubular, square or rectangular members having the interior cavity 166 and 174, the interior cavities 166 and 174 of the interconnected components cooperate to define one or more of the passages 180 within the side walls 160 and 260 for air flow around at least a portion of an exterior perimeter (e.g., within area 192A) and/or interior perimeter (e.g., within area 192C) of the formed footing 202 and the walls 204. The inventor has found that when accessed after construction, the one or more passages 180 are conducive to providing ventilation for effective and efficient transfer (e.g., removal and/or remediation) of radon or other unwanted gas from exterior or interior portions of the structure constructed.

Turning now to FIGS. 12A and 12B, in one embodiment the inventive form system 100 includes one or more bracket assemblies 220 disposed at varying intervals along the length L1 of the predetermined configuration within the excavated area 190 (similar to bracket assemblies 120) to keep side walls 260 from moving (e.g., being displaced) by pressure exerted thereon by the flowing concrete 196 introduced to the channel 192 formed between the side walls 260. In one embodiment, each of the one or more bracket assemblies 220 includes one or more separator bars 230 and two or more reinforcement posts 240, illustrated in greater detail at FIGS. 13, 14A and 14B, respectively. As with the separator bars 130 and the reinforcement posts 140 described above, the separator bars 230 and the reinforcement posts 240 cooperate to retain the side walls 260, and components thereof (e.g., the aforementioned single or stacked components of elongated building materials such as, for example, wooden boards, planks or sheet materials, tubular members such as round drain or drainage pipe, square or rectangular pipe or conduit, and combinations thereof), in the vertical orientations and the horizontally spaced apart (e.g., distant) relation of the predetermined configuration. As illustrated in FIG. 13, each of the one or more separator bars 230 include a plurality of apertures 232 and 234 disposed at predetermined locations along a length L4 of the separator bar 230. In one embodiment, the apertures 232 are disposed at opposing ends 236 and 238 of each of the separator bars 230 and are sized to receive the stake or post 158 (FIG. 1A) for securing the bracket assembly 220 at a location within the excavated area 190. The apertures 234 are disposed (as described below) at predetermined locations along the length L4 of the separator bar 230 and are sized to receive one or more of the reinforcement posts 240. In one embodiment, the apertures 234 may be used to support structure members such as, for example, rebar supports 157.

As illustrated in FIGS. 14A and 14B, in one embodiment each of the reinforcement posts 240 includes protrusions or serrations 244 disposed along at least a portion of a length L5 of one or more sides 242 of the reinforcement post 240. The sides 242 terminate at an end 246. In one embodiment, the end 246 is comprised of a foot extending outwardly from the sides 242. In one embodiment, the foot may include an aperture for receiving a stake to retain the reinforcement post 240 in position within the excavated area 190. Alternatively, the end 246 is tapered to conclude at a point or edge to retain the reinforcement post 240 in position. The plurality of apertures 234 of the separator bars 230 and the protrusions or serrations 244 of the reinforcement posts 240 are sized to frictionally engage one another whereby placement of a reinforcement bar 240 within an aperture 234 provides frictional engagement between the protrusions or serrations 244 and the separator bar 230 to prevent displacement. In one embodiment, the separator bar 230 may include a plurality of tabs that are selectively extendable into the apertures 234 to lock the reinforcement post 240 to the separator 230.

In one embodiment, the reinforcement posts 240 are comprised of U-shaped or rectangular tubular members (e.g., polymer U-channel or tubing) having a wall of a thickness to provide a relatively rigid structure (e.g., about 0.125 in thickness). In one embodiment, the reinforcement posts 240 are of uniform sizes and thus, are selectively interchangeable with and nestable within one another. For example, as shown in FIG. 14B, two posts 240A and 240B of the reinforcement posts 240 may be nested such that the reinforcement post 240A is vertically adjustable over a height H2 within the reinforcement post 240B. As can be appreciated by one skilled in the art, this vertical adjustment over the height H2 of the nested reinforcement posts 240A and 240B provides a leveling feature when the grade of at least a portion of the excavated area 190 is uneven. It should also be appreciated that nested ones of reinforcement posts 240 provide for a selectively adjustable height as needed to retain the separator bars 230 and/or components of the side walls 260 (described below) within the predetermined configuration, as the configuration is being constructed. In one embodiment, the nested reinforcement posts 240A and 240B include means for securing a relative vertical relation between them such as, for example, apertures for receiving a fastener or pin, a hook and/or ratchet arrangement, or like coupling mechanism.

In one aspect of the invention, the predetermined locations of the apertures 234 of the separator bars 230 correspond to nominal widths of elongated building material required, recommended or preferred, for use as components to construct the side walls 260 as well as widths of side walls 260 to be constructed. For example, as with the bracket assembly 120, when a first pair of the reinforcement posts 240 of the bracket assembly 220 are placed within corresponding ones of the apertures 234 proximate end 236 of the separator bar 230 a first side wall 262, and components thereof, are retained in place between the first pair of posts 240, and when a second pair of the reinforcement posts 240 are placed within corresponding ones of the apertures 234 proximate the opposing end 238 of the separator bar 230 a second side wall 264, and components thereof, are retained in place between the second pair of posts 240. Similar to the separator bar 130, as shown in FIG. 13, in one embodiment the separator bar 230 is stamped, labeled or otherwise marked with indicia, shown generally at 235, to identify nominal widths of typical building materials, required, recommended or preferred, for use as components to construct the side walls 260 and/or of the side walls 260 themselves. For example, the separator bar 230 includes such indicia 235 proximate its ends 236 and 238 to correspond to locations to construct each of the side walls 160 and 260. For example, a first set of indicia 235A proximate the end 236 corresponds to the location for constructing the first side wall 162 or the first side wall 262, and a second set of indicia 235B proximate the end 238 corresponds to the location for constructing the second side wall 164 or the second side wall 264.

In one aspect of the invention, the bracket assembly 220 permits construction of footings 202 and walls 204 of the foundation 200 having the substantially vertical side walls 162 and 164 of a generally rectangular or square cross-section (e.g., as shown in FIGS. 3 and 6), as well as the side walls 262 and 264 of a generally trapezoidal cross-section, and/or of combinations and variations thereof such as, for example, a footing or wall having a first side wall (e.g., the walls 262) approximating a leg of a trapezoid (e.g., a trapezoidal cross-section with an angular incline of less than ninety degrees (90°)) and a second side wall (e.g., the walls 164) approximating a leg of a rectangle (e.g., a rectangular cross-section with an angular incline of ninety degrees (90°)) as shown in, e.g., FIGS. 12B and 12C. In one embodiment, the bracket assembly 220 includes one or more spacers 280 that mount over or are coupleable to the reinforcement posts 240 at a desired vertical location about the post 240 to permit an offset in the configuration (e.g., a horizontal offset HOF1 and a vertical offset VOF1) of one or more components used to construct the side walls 260 configured to approximate a leg of a trapezoid (FIG. 12B). As shown in FIG. 12D, the one or more components used to construct the sidewalls 260 themselves may be configured to approximate a leg of a trapezoid by, for example, stacking a larger diameter component above a smaller diameter component.

As shown in FIGS. 12A and 12B, during construction of a first side wall 262, the first reinforcement post 240A is nested within the second reinforcement post 240B and the nested posts are disposed within an aperture 234 proximate the end 236 of the separator bar 230 such that the nested reinforcement posts 240A and 240B are disposed externally with respect to the channel 192 (e.g., disposed at about location 192A). A third post 240C is then placed within another aperture 234 inwardly from the end 236 such that the third reinforcement post 240C is disposed internally with respect to the channel 192 (e.g., disposed at about location 192B) to externally and internally bound a first component 262A and a second component 262B (e.g., tubular members) used to construct the first side wall 262 between the nested, externally disposed reinforcement posts 240A and 240B and the internally disposed reinforcement post 240C. As shown in FIG. 12B, a spacer 280A is disposed over the nested, externally disposed reinforcement posts 240A and 240B and cooperates with a fourth reinforcement post 240D to maintain an offset relation between the first component 262A and the second component 262B of the first side wall 262, for example, the horizontal offset HOF1 and the vertical offset VOF1. Similarly, during construction of the second side wall 264, a fifth reinforcement post 240E is nested within a sixth reinforcement post 240F and the nested posts are disposed within an aperture 234 proximate the end 238 of the separator bar 230 such that the nested reinforcement posts 240E and 240F are disposed externally with respect to the channel 192 (e.g., disposed at about location 192C). A seventh reinforcement post 240G is then placed within an aperture 234 inwardly from the end 238 such that the seventh reinforcement post 240G is disposed internally with respect to the channel 192 (e.g., disposed at about location 192B) to inwardly bound a first component 264A and a second component 264B (e.g., tubular members) used to construct the second side wall 264 between the nested, externally disposed reinforcement posts 240E and 240F and the internally disposed reinforcement post 240G. As shown in FIG. 12B, a spacer 280B is disposed over the nested, externally disposed reinforcement posts 240E and 240F and cooperates with an eighth reinforcement post 240H to maintain an offset relation between the first component 264A and the second component 264B of the second side wall 264, for example, the horizontal offset HOF1 and the vertical offset VOF1. One skilled in the art, when viewing FIGS. 12A, 12B and 12D, would appreciate that the illustrated configuration of the bracket assembly 220 permits construction of side walls 262 and 264 forming a footing or foundation having generally trapezoidal cross-section.

It should be appreciated that a plurality of spacers 280 having varying lengths (distance as measured from its coupling with a reinforcement post) and a plurality of reinforcement posts 240 having varying heights may be employed to form footings and/or walls of a predetermined height and a generally trapezoidal cross-section over at least a portion of the predetermined height. For example, as shown in FIG. 12C, a partial cross-sectional view, a spacer 280C is disposed over the nested, externally disposed reinforcement posts 240A and 240B and cooperates with a ninth reinforcement post 240I to maintain an offset relation between the first component 262A, the second component 262B and a third component 262C of the first side wall 262, for example, the horizontal offset HOF1 and the vertical offset VOF1 between the first component 262A and the second component 262B, and a horizontal offset HOF2 between the first component 262A and the third component 262C and a vertical offset VOF2 between the second component 262B and the third component 262C. In one embodiment, a plurality of spacers of similar length as the spacer 280C (e.g., spacers 280C1 and 280C2) may be employed to maintain a common offset as fourth and fifth components 262D and 262E are added to increase the height of the first side wall 262. Accordingly, the first side wall 262 of FIG. 12C includes a lower portion having a generally trapezoidal cross-section, and an upper portion having a generally rectangular cross-section.

While FIGS. 12A to 12C illustrate for clarity, relatively similar vertical and horizontal offsets (e.g., HOF1, HOF2, VOF1, VOF2) between components (e.g., 262A, 262B, 262C, 264A, 264B, 264C) of the side walls 260, it is within the scope of the present invention to vary one or more such offsets as may be required, recommend or preferred to achieve side walls of various configurations. As such, the recited offset relation between components of the side walls 260 should be considered broadly to include various horizontal and vertical spacing of the components of the side walls 260. For example, while not illustrated in FIGS. 12A to 12C, it is also within the scope of the present invention to dispose one or more of the spacers 280 over one or more of the internally positioned (with respect to the channel 192) reinforcement posts 240 such as, for example, the reinforcement post 240C, that inwardly bounds the components of the side wall 260 (e.g., the second component 262B). In one embodiment, the spacers 280 may both internally and externally offset the components such that a cross section of the side walls 260 is configured to approximate a ribbed or corrugated side wall. It should be appreciated that the inventor recognizes that the ribbed or corrugated configuration of the side walls 260 can assist in the flow of water around the side walls 260 and the structure constructed thereon and, as such, may be an integral part of a drainage system or other water remediation system for the structure.

It should also be appreciated that as the height H1 of the side walls 162, 164, 262 and 264 increases, two or more of the bracket assemblies 120 and 220 may be stacked and coupled together. For example, apertures 134 and 234 may be used to receive posts or ties for coupling two or more stacked bracket assemblies 120 and 220. In addition, one or more of the reinforcement posts 140 and 240 may be coupled, interconnected or nested, to support the stacked arrangement.

It should also be appreciated that while the vertical and horizontal offsets (e.g., HOF1, HOF2, VOF1, VOF2) between components (e.g., 262A, 262B, 262C, 264A, 264B, 264C) of the side walls 260 are described above as being achieved with one or more of a plurality of spacers 280 coupled to reinforcement posts 240 and having varying lengths, in one embodiment, the components themselves may provide one or more of the desired vertical and horizontal offsets. For example, as shown in FIG. 12D, large diameter conduits 462B and 464B (e.g., a six inch (6″) O.D. pipe) are stacked on top of smaller diameter conduits 462A and 464A (e.g., a four inch (4″) O.D. pipe), the conduits being held in place between outwardly bounding and inwardly bounding reinforcement posts 440A, 440B, 440C and 440D. In one embodiment, mating pairs of the reinforcement posts (e.g., outwardly bounding post 440A and inwardly bounding post 440B, and outwardly bounding post 440C and inwardly bounding post 440D) are coupled by respective feet portions, and retained in place by separator bars 430. Alternatively, the pairs of reinforcement posts may be formed of a one-piece construction. In still another embodiment, illustrated in FIG. 12E, the plurality of spacers 280 are replaced with conventional building materials 450 such as, for example, lumber, plastics, and the like, to provide one or more of the desired vertical and/or horizontal offsets between one or more components, such as the conduits 562A and 564A.

In still another embodiment, illustrated in FIG. 12F, a barrier 510 is disposed between the outwardly bounding and inwardly bounding posts, e.g., 440A and 440B, and 440C and 440D, to support the conduits 462A, 462B, 464A and 464B. For example, in one embodiment shown in FIG. 12F, the barrier 510 may be comprised of a foam insulation board 510A such as a Styrofoam™ brand foam or other polystyrene foam board, or any other suitably rigid synthetic or organic material. As shown in FIG. 12H, the barrier 510 may be comprised of a fabric or sheet material 510B such as a landscape fabric. In one embodiment, the fabric 510B is secured to the soil via, for example, stakes 512. In the embodiment shown in FIG. 12H, the fabric 510 is wrapped around large diameter conduits 462B and 464B and proximate smaller diameter conduits 462A and 464A thereby forming the channel 192. In the embodiment shown in FIG. 12I, the fabric 510B is wrapped around large diameter conduits 462B and 464B and proximate building materials 450. In one embodiment as shown in FIG. 12J, the foam board 510A and the sheet material 510B cooperate to form a first layer and a second layer of the barrier 510 wherein the fabric 510B is wrapped around conduits 462A and 462B and proximate the foam board 510A. In one embodiment as shown in FIG. 12K, the fabric 510B is wrapped around conduits 162D and 162E.

It should be appreciated that the barrier 510 functions to prevent backfill, e.g., gravel, from inadvertently filling the channel 192, as well as increases an air flow and/or drainage area in a volume 520 about the conduits 462A, 462B, 464A and 464B (FIG. 12H). For example, the barrier 510 prevents backfill from entering the volume 520 between the outwardly bounding post (e.g., 140A, 440A) and the inwardly bounding post (e.g., 140B, 440B). In one embodiment, the barrier 510 surrounds or envelops the conduits 462A, 462B, 464A and 464B to prevent backfill from entering the volume 520. In one embodiment, illustrated in FIGS. 12L and 12M, one or more of the conduits 462A, 462B, 464A and 464B may be comprised in a gravel-less conduit configuration 652 wherein an outside diameter of the conduit has protrusions 654 extending therefrom.

As shown in FIGS. 15A and 15B, sectional views of embodiments of the inventive form 100 are illustrated for use in forming elements of the foundation 200, namely, a footing 202A having a generally rectangular cross-section and a footing 202B having a generally trapezoidal cross-section. The side walls 160 of the footing 202A are formed of the spaced apart conduits 170 having the corrugated walls 172 and the interior cavity 174, and the side walls 260 of the footing 202B are formed of the stacked, offset conduits (e.g., components 162A, 162B, 164A, 164B, 262A, 262B, 264A and 264B) having the interior cavity 166. One or more of the plurality of straps 150 and spreaders 155 are disposed about the side walls 160 and 260 to prevent a spreading apart of connected conduits as the concrete 196 is being poured. Once the concrete 196 cures, the straps 150 and the spreaders 155 also assist in maintaining the integrally formed footing 202 and, components thereof, in position. For example, once cured, the straps 150 and the spreader 155 can be used in a permanent installation for example, to support rebar supports 157 placed in the channel 192 prior to pouring the cement.

As noted above, the interior cavity 174 of interconnected conduits 170 and the interior cavity 166 of the interconnected components 262A, 262B, 264A and 264B cooperate to provide the passage 180 for air flow around the interior and exterior of the footings 202 when the passage is accessed by means of, for example, another pipe or other conduit 310 either exteriorly or interiorly (e.g., through a floor or slab 206) after the structure has been completed and unacceptable levels of radon or other gases are detected to vent the radon laden air or other unwanted gas into the atmosphere. In one embodiment, one or both of the conduit 170 and components 262A, 262B, 264A and 264B include means for receiving gases from the soil 194 within the areas 192A and 192C external and internal to footing 202 and under the slab 206. For example, the corrugated walls 172 of the conduit 170 include apertures or slots 175 to receive gases permeating from soil 194 within the areas 192A and 192C external and internal to footing 202 and under the slab 206. Similarly, one or more of the stacked components 262A, 262B, 264A, 264B include apertures or slots 168 to receive the gases permeating from the soil 194 within the areas 192A and 192C proximate the footing 202 and under the slab 206.

As shown in FIGS. 15A to 15E, one or more cross-venting pipes or conduits 320 may be installed during construction communicating between the two corrugated conduits 170 and/or components 262A, 262B, 264A, 264B of the footing 202 to provide air flow communication between the corresponding conduits 170 and/or components 262A, 262B, 264A, 264B to facilitate venting and/or removal of gases, moisture and the like (FIGS. 15A to 15C) and/or the addition of heated or cooled air (FIGS. 11C, 15D). Thus, the cross-venting pipes or conduits 320 provide for a reverse air flow. Such reverse air flow provides for directing outside air to an area under a slab or similar foundation base. As a result, the temperature can be equalized to substantially reduce or eliminate condensation and moisture from forming in the area under a slab or similar foundation base. Accordingly, mold and other harmful microorganisms are prevented from forming. In one embodiment, an in-line force air system 330 is coupled to the pipe 310 to increase the volume of air flow within the passage 180 and facilitate remediation of the unwanted gases and/or the addition of desirable air (e.g., heated or cooled air).

As seen in FIGS. 20 and 21, a conventional foundation footing system 1000 including accompanying drainage components is compared to a gravel-less foundation footing system 10 integrally formed with a drainage and ventilation system in accordance with one embodiment of the present invention. In the conventional system 1000 shown in FIG. 20, conventional forms are installed and a foundation footing 1012 is formed to support a wall 1013 and slab 1014 of a building. After the footing 1012 is formed, gravel 1016 is used to backfill the excavated area proximate the footing 1012. Gravel is conventionally used to promote drainage of water away from the foundation. Typically, a pipe 1018 is installed proximate to and inwardly from the footing 1012 beneath the slab 1014 to mitigate radon from entering the building. Typically, a drainage pipe 1020 is installed proximate to and outwardly from the footing 1012 to drain water away from the building. Additional gravel 1016 is used as backfill around the drainage pipe 1020 and over the footing 1012 to further promote drainage of water away from the foundation. In some cases, a fabric is positioned over the gravel 1016 and pipe 1020 to prevent silt and debris from entering and blocking passages through the gravel 1016. As can be appreciated, installing the conventional foundation footing system 1000 including the accompanying drainage components is a multi-step time-consuming process that requires a variety of building materials, both of which increases the cost of construction.

Alternatively and as shown in FIG. 21, the foundation footing system 10 integrally formed with a drainage and ventilation system enables the formation of a footing 12 to support a wall 13 and slab 14 of a building without the need to backfill or gravel beneath the slab 14 or around the footing 12. The foundation footing system 10 is a gravel-less foundation footing system and includes a first form assembly 16A and a second form assembly 16B that form sidewalls forming the footing 12, for example the sidewalls 260 of FIGS. 12A and 12B, while integrally forming a drainage system 18 and a ventilation system 20 as further described herein below.

One embodiment of a gravel-less form system 500 according to the present invention is shown in FIGS. 12N and 12O and includes a first form assembly 502 and a second form assembly 504 that form sidewalls, for example the sidewalls 260 of FIGS. 12A and 12B. Referring first to FIG. 12N, the barrier 510 includes the sheet material 510B disposed around a first drainage core 550, a second drainage core 560, and a conduit such as for example conduits 562A and 564A. In one embodiment, conduits 562A and 564A are perforated conduits. In one embodiment, the sheet material 510B is formed into a sleeve or pocket 563 thereby eliminating the need for a conduit wrapped by a barrier material. Alternatively, conduits 562A and 564A extend through the sleeve 563. An open volume or drainage cavity 570 is thereby formed bounded by the first drainage core 550, the second drainage core 560, and the respective conduit 562A and 564A. In one embodiment, the first drainage core 550 is a single-drainage core 550A and the second drainage core 560 is a dual-drainage core 560A. Thus, a passageway is created through the dual-drainage core 560A in the direction indicated by the arrows X1 at a penetration point in the foundation wherein the footing intersects the wall to advantageously create a flow away from the penetration point into the drainage cavity 570. As a result, groundwater can enter the drainage cavity 570 via the respective fabric-wrapped conduit 562A and 564A and the respective dual-drainage core 560A. In one embodiment, the first drainage core 550 and the second drainage core 560 are in fluid communication, or are joined at a connection point 555, so that water may pass from one drainage core to the other. Water that enters the drainage cavity 570 may pass to the first drainage core 550 in the direction indicated by arrows X2 and to the second drainage core 560 in the direction indicated by arrows X3 and thereby equalize the volume of water in the first and second drainage cores 550 and 560 and in the drainage cavity 570. In one embodiment, the second drainage core 560 provides a passageway for seeping air and other gases, such as for example radon, as well as water.

In one embodiment and as shown in FIG. 12O, the first drainage core 550 is an extended first drainage core 550B extending to an upper point 550X proximate the top of the respective conduit 562A or 564A. In one embodiment, the second drainage core 560 is an extended second drainage core 560B extending to an upper point 560X proximate the top of the respective conduit 562A or 564A. In one embodiment, both the extended first drainage core 550B and the extended second drainage core 560B are employed.

The bottom portion of the illustrated form system defines an overall length L. A first length L1 is defined by the combined thicknesses of each of the first drainage core 550 and the second drainage core 560. A second length L2 is defined by the horizontal distance traversed by the first drainage core 550. A third length L3 is defined by the distance between drainage cores assemblies, or from one second length L2 defined by one first drainage core 550 to another second length L2 defined by another first drainage core 550. Thus, as shown in FIG. 12O, the overall length L is a summation of L1, L2, L3, L2 and L1. In one embodiment, the overall length L is up to about thirty-six (36) inches. In one embodiment, the overall length L is about twenty-eight (28) inches. In one embodiment, each of the first drainage core 550 and the second drainage core 560 define a thickness T1 of about one (1) inch; thus, the first length L1 is about two (2) inches. In one embodiment, the second length L2 is about six (6) inches. In one embodiment, the third length L3 is about twelve (12) inches.

The configuration of the first drainage core 550, the second drainage core 560, and the respective conduit 562A and 564A form a channel 592 and provide for the elimination of a dual-post configuration. As shown in FIGS. 12N and 12O, such a configuration includes only outwardly bounding posts 440A and 440D and does not require respectively corresponding inwardly bounding posts 440B and 440C. However, the use of respectively corresponding inwardly bounding posts 440B and 440C with the configuration of the first drainage core 550, the second drainage core 560, and the respective conduit 562A and 564A is another embodiment of said configuration and is considered within the scope of the present invention.

The configuration of the first drainage core 550, the second drainage core 560, and the respective conduit 562A and 564A further provide for installing said configuration at varying height/depth and having varying width/conduit diameter. Thus, effective gravel-less drainage can be configured for a wide variety of drainage applications.

As shown in FIG. 12P, one embodiment of the first drainage core 550, the second drainage core 560 and the conduit 564A includes individually wrapping the components with the barrier 510 or a sheet material 510C of the fabric 510B and setting the components in relation to one another as shown in FIG. 12P, namely, the first drainage core 550 and the second drainage core 560 disposed proximate to one another and substantially flat in one plane (e.g., horizontally or vertically), and the conduit 564A disposed proximate to the second drainage core 560 on the opposite side of the position of the first drainage core 550. The wrapped first drainage core 550 is rotated in the direction indicated by the arrow R from a first position R1 to a second position R2. The wrapped conduit 564A is moved toward the first and second drainage cores 550 and 560 in the direction indicated by the arrow Q from a first position Q1 to a second position Q2.

One embodiment of a drainage core 580 for use as the first and/or second drainage cores 550 and 560 is shown in FIG. 12Q. The drainage core 580 includes a base 582 and protrusions 584 extending outwardly from at least one side thereof. In one embodiment, the protrusions 584 extend outwardly from both sides thereof. In one embodiment, the base 582 is permeable and defines one or more apertures 583 extending therethrough for increased drainage through the core 580. In one embodiment, one or more of the protrusions 584 defines an aperture 585 extending therethrough for increased drainage through the core 580. In one embodiment, the aperture 585 is in fluid communication with one of the apertures 583 for increased drainage through the core 580.

In one embodiment, the core 580 is fabricated from a polyethylene thermoplastic. In one embodiment, the core 580 is a structural foam polyethylene. In one embodiment, the core 580 is a dimpled polymeric core. In one embodiment, the core 580 is a dimpled high impact polystyrene core. In one embodiment, the wrapped first and second drainage cores 550 and 560 are formed using geocomposite materials such as for example a geotextile-geonet composite, a geotextile-geomembrane composite, a geomembrane-geogrid composite, and a geotextile-polymer core composite. In one embodiment, the wrapped first and second drainage cores 550 and 560 are formed using a polystyrene core wrapped by polypropylene filter fabric.

One embodiment of a gravel-less form system 600 according to the present invention is shown in FIG. 16 and includes a first form assembly 602 and a second form assembly 604 that form sidewalls, for example the sidewalls 260 of FIGS. 12A and 12B. A barrier 610 includes an inner layer 611A wrapped by an outer layer 611B. In one embodiment, the inner layer 611A includes a first drainage core 650 and a second drainage core 660. In one embodiment, the outer layer 611B is a fabric 610B. The fabric 610B is wrapped around the first drainage core 650, the second drainage core 660, and a conduit such as for example conduits 662A and 664A. In one embodiment, conduits 662A and 664A are perforated conduits. In one embodiment, the fabric 610B is formed into a sleeve or pocket 663 through which the conduits 662A and 664A extend. An open volume or drainage cavity 670 is thereby formed bounded by the first drainage core 650, the second drainage core 660, and the respective conduit 662A and 664A.

One embodiment of a gravel-less foundation footing drainage and ventilation system 700 according to the present invention is shown in FIG. 17. A barrier 710 includes an inner layer 711A wrapped by an outer layer 711B. In one embodiment, the inner layer 711A includes a first drainage core 750 and a second drainage core 760. In one embodiment, the outer layer 711B is a fabric 710B. The fabric 710B is wrapped around the first drainage core 750, the second drainage core 760, and a conduit 762. In one embodiment, conduit 762 is a perforated conduit. In one embodiment, the fabric 710B is formed into a sleeve or pocket 763 through which the conduit 762 extends. An open volume or drainage cavity 770 is thereby formed bounded by the first drainage core 750, the second drainage core 760 and the conduit 762.

In one embodiment and as shown in FIGS. 16 and 17, one or both of the first and second drainage cores 650, 660 and/or 750, 760 include a plurality of surface elevations and/or depressions therein that form a plurality of respective passages 655 and 755 extending through the respective core. As a result, groundwater and seeping air and other gases can enter the drainage cavity 670, 770 via the respective fabric-wrapped drainage core 650 and/or 660, and 750 and/or 760. In one embodiment, one or both of the first and second drainage cores 650, 660 and/or 750, 760 include one or more apertures extending therethrough for increased drainage through the core as shown with respect to the core 580 in FIG. 12Q. As shown in FIG. 18A, one embodiment of a drainage core 850 for use with any of the systems described herein above, the core 850 is a sheet 852 having a plurality of dimples 854 formed therein, for example by stamping, punching or molding. The dimples 854 form a first plurality of passages 855A extending in a first direction through the core 850, and a second plurality of passages 855B extending in a second direction through the core 850 in a substantially orthogonal orientation to the first plurality of passages 855A.

As shown in FIG. 18B, one embodiment of forming system the boundary 610, 710 includes providing a sheet 610C of the fabric 610B integrally formed with the sleeve 663 extending between portions 610D and 610E of fabric sheet 610C wherein such portions respectively envelope or wrap the respective drainage core, for example first drainage core. In one embodiment, one of the conduits, for example conduit 662A, is disposed within the sleeve 663. In one embodiment, the fabric 610B is a thermally bonded nonwoven geotextile that exhibits a high grab tensile strength and elongation as set forth in ASTM D4632, Grab Breaking Load and Elongation of Geotextiles. In one embodiment, the fabric 610B exhibits a grab tensile strength greater than 100 lbs. and an elongation that is greater than fifty percent (50%). In one embodiment, the fabric 610B provides for hydraulic conductivity therethrough as set forth in ASTM D4491, Standard Test Methods for Water Permeability of Geotextiles by Permittivity. In one embodiment, the fabric 610B exhibits a permittivity greater than 1 s−1 and a permeability of at least 0.05 cm/s. In one embodiment, the fabric 610A is Typar® SF geotextile commercially available from E. I. du Pont de Nemours and Company. (Typar® is a registered trademark owned by E. I. du Pont de Nemours and Company).

In one embodiment, the drainage core 550, 560 is fabricated by: (i) continuous thermal forming of the core; (ii) perforating the core; (iii) cutting the core to a desired width; and (iv) laminating the fabric 610B or fabric sheet 610C to the core in the desired configuration. In one embodiment, an adhesive 673 is disposed on one or both outer surfaces 672 and 674 of the respective drainage core 650, 660 prior to applying the fabric 610B or fabric sheet 610C. In one embodiment, the adhesive 673 is compliant with the composition requirements set forth in 21 C.F.R. § 175.105 (“Indirect Food Additives: Adhesives and Components of Coatings; Adhesives”). In one embodiment, the adhesive 673 exhibits an open time (i.e., the time after the adhesive is applied during which a serviceable bond is made) of greater than thirty (30) seconds. In one embodiment, the adhesive 673 is Hot Melt 1066 commercially available from Tailored Chemical Products, Inc.

FIG. 19 shows a number of methods of use of forming system 600 and drainage and ventilation system 700. As described hereinabove, construction of a building or other structure of interest includes forming a foundation footing 2 to support foundation walls 4 and a slab 6 extending therebetween. In one embodiment, forming system 600 and drainage and ventilation system 700 are employed to form a new foundation footing 2A having an integrally formed drainage and ventilation system therein as described hereinabove. In one embodiment, one form assembly 602A and configured similarly to system 700 to further provide drainage and ventilation capacity beneath the slab 6. In one embodiment, one form assembly 602B is configured such that first and second cores 750 extend substantially horizontally outwardly from conduit 762 to further provide drainage and ventilation capacity beneath the slab 6. In one embodiment, the form assemblies of the present invention are employed to provide drainage and ventilation capacity around an existing foundation footing 2B. In one such embodiment, one form assembly 602C is positioned on an inward side 2C of footing 2B; and a second form assembly 602D is positioned on an outward side 2D of footing 2B. In one embodiment, first drainage core 650 and second drainage core 660 can be positioned proximate the existing foundation footing 2B. While FIG. 19 shows a number of methods of use of forming system 600 and drainage and ventilation system 700, it should be appreciated that all of the embodiments of a forming system in accordance with the present invention can be employed as shown in FIG. 19.

As described herein, the present invention provides a concrete forming system for building foundations, and portions thereof, wherein walls of the foundation are constructed using building material sections that interlock end-to-end to form a passage (e.g., the passage 180). The passage is conducive to provide ventilation for effective and efficient radon or other unwanted gas mitigation or remediation from the structure being constructed. The inventive forming system permits construction of footings and walls of the foundation that may have substantially vertical side walls of a generally rectangular or square cross-section, side walls of a generally trapezoidal cross-section, and/or combinations and variations thereof. The inventor has recognized that the forming system permits construction of, for example, a sub-slab depressurization system with a minimum of about fifty percent (50%) more mitigation than is seen with prior art systems.

In one aspect of the present invention, when installing footing forms that need to be leveled, the present invention (e.g., the bracket assembly 220) provides a relatively easy leveling feature to minimize labor needed to level the form prior to use.

In yet another aspect of the present invention, once concrete has cured, there is no need to remove components of the forms as the components are integrally formed within the footings or walls to provide additional structural support. In one embodiment, self-leveling reinforcement posts act as a vertical brace if material is needed to block concrete from flowing out from under form.

In yet another aspect, components of the inventive form system are vertically stackable and horizontally expandable to accommodate footings and/or walls of various heights and widths.

Some perceived benefits of constructing footings and/or walls having a trapezoidal cross section include, for example:

A. Increases bearing with standard footing sizes.

B. Decrease amount of material used with standard footing sizes.

C. The standard footing sizes are reduced, but a same bearing is achieved.

D. Decreasing amount of material in reduced size achieving same bearing.

For example, a typical rectangular footing of dimensions of about twenty four inches (24 in.) in width, twelve inches (12 in.) in height and ten feet (10 ft.) in length provides a cubic volume of twenty cubic feet (20 cu. ft.), while a trapezoidal footing may be constructed to carry the same bearing by have dimensions of about sixteen inches (16 in.) in upper width and twenty four inches (24 in.) in lower width, twelve inches (12 in.) in height and ten feet (10 ft.) in length provides a cubic volume of sixteen cubic feet (16 cu. ft.).

The barrier and a form system for forming a foundation footing integrally formed with a drainage and ventilation system according to the present invention provides for retaining a flowable and curable building material to form a portion of a foundation of at least a portion of a structure of interest. The system includes side walls receiving and retaining the building materials therebetween. The side walls are disposed in a predetermined configuration suitable for the portion of the foundation and include a first side wall and a second side wall. At least one of the first side wall and the second side wall is comprised of at least one component having an interior cavity. A bracket assembly retains the side walls in the predetermined configuration. The bracket assembly includes a first outwardly bounding reinforcement post disposed proximate the first side wall, and a second outwardly bounding reinforcement post disposed proximate the second side wall. A separator bar includes a first end, a second end opposed from the first end, and a plurality of apertures disposed along a length of the separator bar. The plurality of apertures includes a first set of apertures disposed proximate the first end and a second set of apertures disposed proximate the second end. The first set apertures and the second set of apertures are sized to receive and retain each of the reinforcement posts at locations corresponding to nominal widths of the at least one component. A barrier is disposed between the outwardly bounding posts. The barrier is defined by an inner layer wrapped by an outer layer, and the barrier being permeable. The barrier and the at least one component is retained in the foundation after the building material cures, and the barrier prevents backfill from filling a volume between the portion of the foundation and the outwardly bounding posts.

In one embodiment, the barrier inner layer includes a first drainage core having a first end, a second end, and a plurality of passages extending therethrough; and a second drainage core having a first end, a second end, and a plurality of passages extending therethrough. In one embodiment, the system includes a drainage cavity bounded by the at least one component and the first and second drainage cores wherein the second drainage core is disposed substantially vertically and proximate at least one of the first and second outwardly bounding reinforcement posts, the second end of the second drainage core being disposed proximate the second end of the first drainage core, and the first end of the first drainage core is positioned upwardly from the second end of the first drainage core and inwardly from the at least one of the first and second outwardly bounding reinforcement posts, and wherein the at least one component is disposed on the first end of each of the first and second drainage cores.

In one embodiment, the barrier outer layer is a fabric. In one embodiment, the barrier outer layer is a geotextile exhibiting a grab tensile strength greater than 100 lbs. and an elongation that is greater than fifty percent (50%). In one embodiment, the barrier outer layer is a geotextile exhibiting a permittivity greater than 1 s−1 and a permeability of at least 0.05 cm/s. In one embodiment, the barrier further comprises an adhesive disposed between the barrier inner layer and the barrier outer layer. In one embodiment, the at least one component is a perforated conduit.

A foundation footing drainage and ventilation system in accordance with the present invention includes a conduit, a first drainage core having a first end, a second end, and plurality of passages extending therethrough; and a second drainage core having a first end, a second end, and plurality of passages extending therethrough. A is fabric wrapped around each of the conduit, the first drainage core and the second drainage core. A drainage cavity is bounded by the conduit and the first and second drainage cores wherein the second drainage core is disposed substantially vertically and proximate a first side of the conduit, the second end of the second drainage core being disposed proximate the second end of the first drainage core, wherein the first end of the first drainage core is positioned upwardly from the second end of the first drainage core and proximate a second side of the conduit; and wherein the at least one component is disposed on the first end of each of the first and second drainage cores.

A foundation footing drainage and ventilation system, includes a conduit; a first drainage core having a first end, a second end, a first plurality of passages extending therethrough and a second plurality of passages extending therethrough substantially orthogonal to the first plurality of passages; a second drainage core having a first end, a second end, a first plurality of passages extending therethrough and a second plurality of passages extending therethrough substantially orthogonal to the first plurality of passages; a fabric wrapped around each of the conduit, the first drainage core and the second drainage core; wherein the conduit is disposed proximate the first end of each of the first and second drainage cores, and the second end of each of the first and second drainage cores extends outwardly from the conduit.

In one embodiment, the conduit is perforated. In one embodiment, the first and second drainage cores are permeable. In one embodiment, the fabric is permeable. In one embodiment, the fabric comprises a geotextile exhibiting a grab tensile strength greater than 100 lbs. and an elongation that is greater than fifty percent (50%). In one embodiment, the fabric comprises a geotextile exhibiting a permittivity greater than 1 s−1 and a permeability of at least 0.05 cm/s. In one embodiment, an adhesive is disposed between the fabric and the first and second drainage cores.

The terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. In addition, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Although the invention has been described with reference to particular embodiments thereof, it will be understood by one of ordinary skill in the art, upon a reading and understanding of the foregoing disclosure, that numerous variations and alterations to the disclosed embodiments will fall within the spirit and scope of this invention and of the appended claims.

Moyher, Charles S.

Patent Priority Assignee Title
11913231, Mar 22 2021 DALEY DESIGN + BUILD, LLC Device and associated method for downspout alignment
Patent Priority Assignee Title
1527551,
1564982,
1702671,
1729807,
1755960,
1800802,
1891934,
1924631,
2289819,
3374984,
3391507,
3578777,
3613323,
3722849,
3778019,
4124963, Feb 08 1977 Method for forming a continuous footing
4186160, Jan 19 1977 Method and apparatus for forming building foundations
4202145, Nov 20 1978 Leav-Er-Rite Mfg. Co. Incorporated Cast-in-place concrete slab pouring form
4333281, Feb 14 1980 Scarfone Construction Limited Basement wall draining molding
4381630, Dec 01 1980 Foundation vent structure
4528787, Mar 24 1983 Base plate system
4830543, Nov 04 1985 Foundation support for a building
4865362, Jul 29 1988 FLUID ROUTING SOLUTIONS, INC Connectible flexible convoluted tubing
4903450, May 02 1989 Adams Products Company Concrete footer block and foundation system formed therefrom
5004376, Jun 03 1988 SOCIETE CIVILE DES BREVETS DE HENRI VIDAL, TOUR HORIZON, A FRENCH COMPANY Facing system
5015117, Feb 06 1987 Construction materials with end connectors
5120162, Oct 03 1990 Building foundation form with integral drain
5174083, Mar 28 1991 Concrete slab forming system
5224799, Oct 03 1990 Permanently installed building foundation form
5277003, Jul 30 1991 Method and means for maintaining a dry and radon-free basement
5399050, Jul 06 1993 Plastic concrete form for footers
5406758, Nov 23 1992 Combined form and drian title, and method of using same
5444950, Dec 28 1992 Drainage sysatem for building foundations
5466092, Oct 25 1993 NORTH AMERICAN SPECIALTY PRODUCTS LLC Form-drain filter
5474400, Nov 23 1993 NORTH AMERICAN SPECIALTY PRODUCTS LLC Radon remediation in form-drain apparatus
5475950, Aug 25 1993 Foundation footing form assembly
5535556, Apr 18 1994 Basement wall construction
5564235, Aug 29 1994 Foundation and floor construction means
5586416, Mar 22 1995 HESS BROS , L L C Concrete form with integral drain
5634741, Sep 27 1995 Form-drain filter clamp
5694723, May 10 1995 Apparatus and method for water drainage and radon removal
5740638, Feb 21 1997 Shepherd Excavating, Inc. Combination drainage system and radon gas venting system for a structure foundation
5771643, May 10 1995 Concrete slab-wall spacer with water and radon removal features
5836716, Feb 05 1997 JOHNSON, WILLIAM RALPH Drainage pipe
5884439, May 29 1997 HESS BROS , L L C Concrete form with integral drain and adjustable stake therefor
5953864, Apr 23 1997 Rapid Wall Systems; RAPID WALL SYSTEMS, INC Prefabricated modular concrete foundation wall systems and methods of constructing prefabricated modular concrete foundation wall systems
6123745, May 29 1997 Hess Bros, L.L.C. Concrete form with integral drain and reinforcing bar support bracket therefor
6223777, Mar 07 1996 OMNIMAX INTERNATIONAL, INC Repositionable, flexible, and extendible connector
6321498, Sep 02 1997 Formwork for building walls
6619001, Jan 02 2002 Methods of use of a basement water drainage conduit
6629681, Feb 18 2000 Metal Forms Corporation Flexible form assembly
6634144, Nov 02 2001 EVERDRY MARKETING & MANAGEMENT, INC Home waterproofing system
6669404, Jun 11 2001 NEC Corporation Foundation drain system
6706096, Jan 11 2002 Geosyntec Consultants, Inc. Method and system for protecting buildings from subsurface gases
6742758, Jun 01 2001 Light-weight reinforced, tubular plastic footing form members and assemblies
7017614, Jan 20 2004 EURAMAX CANADA, INC Downspout extension
7832156, Sep 19 2003 Condensation inhibition system for structural waterproofing
7866097, Sep 27 2003 DRFF LLC Radon venting concrete forms
7886774, Jul 28 2008 PRINSCO, INC Corrugated foundation drain
7918628, Sep 21 2004 HERITAGE BLOCK, INC Landscaping blocks for forming retaining walls and method of producing landscaping blocks
8627615, Jan 10 2012 DRFF LLC Bracket assembly and forming system for structural foundation footings
9228365, Jan 10 2012 DRFF LLC Bracket assembly and form side walls for forming concrete structural components
20030059258,
20030101670,
20030146365,
20030200707,
20060188336,
20070045491,
20090000682,
20110299942,
20160201286,
D443344, Aug 26 1996 DIXIE SEPTIC TANK, INC OF ORANGE CITY Drainfield pipe
WO9900565,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 17 2017MOYHER, CHARLES S DRFF, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0532570070 pdf
May 04 2018DRFF, LLC(assignment on the face of the patent)
Date Maintenance Fee Events
May 04 2018BIG: Entity status set to Undiscounted (note the period is included in the code).
May 29 2018SMAL: Entity status set to Small.


Date Maintenance Schedule
May 18 20244 years fee payment window open
Nov 18 20246 months grace period start (w surcharge)
May 18 2025patent expiry (for year 4)
May 18 20272 years to revive unintentionally abandoned end. (for year 4)
May 18 20288 years fee payment window open
Nov 18 20286 months grace period start (w surcharge)
May 18 2029patent expiry (for year 8)
May 18 20312 years to revive unintentionally abandoned end. (for year 8)
May 18 203212 years fee payment window open
Nov 18 20326 months grace period start (w surcharge)
May 18 2033patent expiry (for year 12)
May 18 20352 years to revive unintentionally abandoned end. (for year 12)