A system for capturing the energy of fluid currents, using axial turbines with one free end and the other end fastened to a mechanical element or electric generator, characterized in that the turbines include coil springs, helically twisted plates or crossbeams, complete helical turbines with their shafts or just their blades, which capture the energy of wind or water, with their shaft or fastened end actuating an electric generator or mechanical system. In all cases the blades around the rotation axis of the turbines have an inclination such that they generate a torque in the same direction and the turbines are automatically oriented by the water or air currents, like weather vanes.
|
1. A fluid current energy capture system for capturing energy from a fluid comprising:
an axial turbine having an axis of rotation, said turbine having a free end, and a fixation end opposite said free end, said turbine having a helical blade for being driven by the fluid, said turbine having the helical blade has aerodynamic profiles having the dimensions of the turbines configured such that their blades are greater towards the free end;
said blade having two types of inclination for generating a torque and rotating said turbine about said axis of rotation, wherein first inclination comprises an inclination of a section of the helical blade with respect to said axis of rotation, wherein second inclination comprises an inclination of a section of the helical blade with respect to a plane perpendicular to the axis of rotation, wherein the first inclination is between 25° and 55° angles, and wherein the second inclination is between 0° and 45° angles;
a generator affixed to said fixation end, said generator generating power by rotation of said turbine driven by the fluid;
a mast, said generator being rotatably mounted to said mast for orientating said turbine in a flow stream of the fluid, said generator having a collar rotatably securing said turbine to said mast about a longitudinal axis of said mast, said generator rotatably mounted on a ring to the collar.
3. The system according to
4. The system according to
5. The system according to
6. The system according to
11. The system according to
13. The system according to
|
This application claims the benefit of PCT/ES2017/000101, filed Aug. 30, 2017, which claims the benefit of Spanish patent application number U201700535, filed Jun. 23, 2017, Spanish patent application number P201700136, filed Feb. 15, 2017, and Spanish patent application number P201600696, filed Aug. 9, 2016 the disclosure of which is incorporated herein by reference in their entirety.
Wind, river and sea energy collectors consisting of both mini and mega-systems which function to generate large amounts of electricity. Also for housing, agriculture, seawater desalination, water pumping, supplying power to the electricity network, obtaining hydrogen by electrolysis of the water and storage of pressurized air in bags in the sea at great depth.
Water current energy harnessing systems in the sea need complex technologies and demand high expenditure to achieve optimum performance. They are hard to control, complex, need to be positioned in the direction of the currents and their energy is difficult to store.
Regarding wind systems, they need the latest technologies which are costly and the structures must be placed at high altitudes to take advantage of strong winds in order to achieve maximum efficiency. These are also intricate and difficult to manage and must be pointed towards the wind currents. As well as this, they have a negative visual impact on the landscape, produce radio interference, are prone to be struck by lightning which can result in birds being killed. As a result, this cost of this form of energy is more expensive than with conventional systems.
My invention attempts to eliminate the problems described above by providing a simple, useful and economical system through the use of axial blades, helical turbines and the like.
The objectives of the invention and its advantages are:
To harness energy from sea and river currents, which, unlike solar and wind do not have large periods of calm, particularly in vast sea areas such as the Gulf Stream or Kuroshio, in straits, capes and around many islands, where large quantities of water flow at a rapid speed from one area to another.
To be able to use simple, low cost (can be between ten and thirty times cheaper) turbines which are high powered, high performance and have a minimal cost per kWh.
To facilitate the use of the smallest amount of parts i.e. single part, without shaft, without bearings, without supports, or to be anchored to the ground not needing masts where a nail or ballast is sufficient.
Emphasis on clean energy: Does not accumulate dirt, no need for covers or casing, useable in large and small dimensions or large length or in groups.
They can be inflatable and extendable, operate in line with or inclined towards the current, can be implemented for both air and water, does not harm wildlife, protects the ozone layer and the environment, is self-directing towards the wind or water currents without the need for electrical mechanisms.
Can be used submerged so as not to be affected by destructive waves, and through using constant currents, cutting out the need to have to store energy with this only being necessary in small amounts.
These qualities are unique to this system. No other current technology offers these features, the most useful and simple of which are the fact that it can be used free of shafts, blades, twisted beams or flat stocks.
Renewable energy is not yet efficient enough to use in large quantities, it is not constant, it causes environmental pollution, and, because of interruptions in the energy source, it needs to be stored. With the proposed system, large amounts of constant energy can be harnessed from seas and rivers without the need for storage, and can be placed where it does not harm or contaminate the environment either electrically, visually or audibly. With regard to wind power, it allows the harnessing of energy at high altitudes. Each turbine can use one or more helical threads or blades on its axis.
The system to harness wave energy consists of axial turbines which have one end free and the other held on its axis to a mechanical element which enables movement. Alternatively, this can also be attached to an electric generator, either directly or through an rpm multiplier.
The holding mechanism consists of a pair of links, an angular ball joint, a rod, a joint or a hinge. Generators and mechanical elements that are moveable are held by nails, anchors, concrete blocks, mesh bags filled with stones, posts, trees, towers, street lamps, buildings, mounds, or a cable or chain supported between two points of the aforementioned, which enable the turbines to rotate, orient themselves in the direction of the current and take advantage of the flow of the current. All this is possible because the turbines are comprised of helical springs, helically twisted beams or flat stocks, complete helical turbines with their shafts or only their blades, which can harness the energy of wind or water by driving its shaft or through a holding end connected to an electric generator system or a mechanical system or to a compressor or water pump, whose regulated flows drive motors or turbines that drive the generators.
In all cases, the blades around the axis of rotation of the turbines are always inclined to the wind, which generates a torque in the same direction. The generators only have a small angle of rotation or inclination. In one variant, turbines are formed by blade wheels connected in series.
All of the turbines can be cylindrical or conical in shape, and may use one or more blades or threads. The conical shape gives them more stability.
The turbines can have the same density as the current in which they move, or they may have different densities, whereby they may assume some inclination with respect to the fluidic current.
Turbines, their axes or blades besides being hollow and filled with helium or air, can be made of plastic polymer foam such as PVC, polyurethane, polyethylene, etc., with a strong and protective cover, and can act as kites. The axes or blades can also be made of rubber or plastic. They can be inflatable and flexible. In general, as they are in contact with water and with elements that can be abrasive, it is essential to use resistant and low density materials, polymers, and carbon or glass fibers with resins. When using metallic materials, like steel, they must have a protective layer of zinc. The plastic used can be reinforced with graphene and very resistant synthetic fibers such as Kevlar, glass, carbon, etc.
The turbine can be fixed to the collar, universal joint, ball socket, etc. In this case the shaft of the generator or the mechanical device is connected to the rotating end of the turbine by a pair of gears.
The turbines, when they do not have a shaft, consist exclusively of helical blades, helical springs, preferably in semi-circular or plane thread, or helically twisted beams or flat stocks. The helical flat thread springs match or are the same as the helical coils of turbines used without a shaft. The turbines, blades, helical plates or flat stocks have a performance proportional to their front or cross-section, to the angle it forms with the axis of rotation in each point and its length.
Angles between 25° and 55° can be used. Unlike turbines of this kind that move inside a conduit these can greatly increase its power by raising its length.
The blades can have two types of inclination:
Maximum performance is obtained at roughly 42° angles.
Especially in the air, the cables can be replaced by a long and simple helical turbine.
The electric generators can be synchronous, consisting entirely of permanent magnets. Especially rare earth materials such as samarium-cobalt or neodymium-iron-boron.
As mechanical elements, motor pumps are used to raise water or to drive electric generators, or air can be pressurized and stored in bags in the sea at great depth.
The turbines should preferably be axial to receive the flow of water or air parallel to their axes enabling changes of direction similar to that of weather vanes, but they may also have an inclination to the horizontal, which depends on the difference between the weight of the turbines, including the contiguous installation, generator, and the weight of the fluid that is displaced. When both factors are the same they remain horizontal in the fluidic current. Any type of turbine, with or without a shaft, may be used, especially those which are extended longitudinally and with inclined or helically arranged tilted blades. In order to increase their stability, their aerodynamic profiles have the dimensions of the turbines, their shafts and/or their blades are greater at or towards the free end.
An axial turbine variant utilizes, with or without shaft, two (or more) inclined blades that can be symmetrical to each other, which create a rotation torque about this shaft.
With the turbines inclined in the direction of the current, the efficiency can be enhanced as the section of the affected surface is much larger than with the frontal current. As well as this, the turbines, when they receive the current parallel to their axis, because they are not covered by a tube, also experience an increase in performance with the resultant power multiplied with respect to their length as downstream the turbine absorbs or captures laterally the energy of the water stream.
The rotation of several of these turbines can be applied to a shaft supported and driven through the inside of a mast which can then drive a pump drawing water from wells.
It is also possible for the turbines to have the free end attached to a balloon or to a buoy.
The turbines can act partially as balloons or floats. In all cases, the turbines, cables, chains, generators or retainer bars have a density equal to or similar to the medium in which they move. They may have a density between 70% and 130% of that of the fluid, although this is not limited.
The hollow and flexible turbines, shafts or blades can be made of canvas, plastic or very dense mesh, which act as bags and can be kept inflated with the air or water stream in which they are immersed. For this purpose the end of the turbine, which is fastened, carries a fluid inlet mouth delimited by a ring, which is held to the generator rotor shaft by means of cords.
The turbines can be placed in an orderly way, in rows and columns, so that they can utilize common electrical or water installations over a large area.
The blades can be rigid or flexible. Tilting the flexible blades and reducing their impact area helps to increase their speed.
Some turbines anchored at the sea floor can be turned and raised for repair or maintenance. It may be necessary to vary the degree of flotation through remote control to enable them to rise to the surface. This is achieved with the help of an air chamber, which expands for ascent and compresses for descent.
In the sea, the turbines can be placed semi-submerged to take advantage of the currents of the water and the wind.
To transport the current you can use a single conductor cable, the positive or phase of it is alternating and the opposite for the negative, using the water that is conductive.
The turbines can carry a floating rope, which is used to raise the system for repair or maintenance. A certain color is used to make it distinctive in the sea.
On land and in water the posts or buoys which use red or amber stroboscopic LED lights are supplied with energy generated from the system.
Particularly in high-altitude wind turbines, one or multiple turbines can be used in series instead of the holding cable.
Small-sized turbines spin very quickly and do not need multipliers. The mechanical energy obtained can be used to draw water on land where it is stored and subsequently used to drive a turbine that moves an electric generator.
The generator is held to a support point by a bar and a joint and a collar that allows it to tilt slightly vertically and horizontally, but not to rotate around its axis. This is also achieved with a pair of links.
Radial blades help prevent oscillations caused by turbulence or gusting winds.
Generators can supply heating resistors, power mobile phones, etc. resulting in a simple and very economical system.
A control, warning and security system informs about the status of each of the devices.
The weight of the turbine and moving parts is balanced with the upward displacement of the water or air being discharged keeping the turbine horizontally positioned, except when the stream of water or air has a certain vertical inclination. However, if we want it to be tilted upwards by having its supports on the ground, or tilted downwards when they are near the surface, the weight of the turbine must be altered to achieve this. You can use turbines which are more or less the same density as the fluid, resulting in inclination which has minimal effect on the very high performance level. This may be necessary in order to avoid disrupting the navigation of ships, airplanes, etc.
It is accordingly an object of the invention to harness wave and wind energy having at least one axial turbine with a density of between 70% and 130% of that of the current in which it is moving with one end of the turbine free, and the other end attached to a mechanical element to drive the turbines in order to harness the energy of the wind or water. In all cases the blades around the axis of rotation of the turbines have such an inclination that they generate a torque in the same direction. The generators only have a small angle of inclination and the turbines are automatically redirected in the direction of the water flow or air currents in a similar fashion to that of a weather-vane. A means to hold the generator to fixing elements, which allow the turbines to rotate and redirect themselves in the same direction as the current whilst harnessing and taking advantage of the current. The possibility to be controlled remotely with devices. Poles protruding from the water or buoys which are used as safety devices emitting red or amber LED strobe lights which are powered by the system. A means to transport electric power.
In accordance with another feature of the invention, the turbines are flat or semi-circular thread coil springs.
In accordance with an added feature of the invention, the turbines are helically twisted beams (12c, 12v).
In accordance with an additional feature of the invention, the turbines are complete helical turbines (1, 1a, 1b, 1d, 1m, 1p).
In accordance with another mode of the invention, the turbines are complete helical turbines with their shafts (13, 13c, 13v).
In accordance with an additional further mode of the invention, the turbines are only their blades or vanes (3a, 3b, 3c, 3v).
In accordance with yet an additional feature of the invention, the element to drive is an electrical generator (4).
In accordance with still another feature of the invention the element to drive is a mechanical system, compressor and water pump, whose flow regulated, drive engines and turbines which in turn drive the generators.
In accordance with another mode of the invention, the turbines are hollow and filled with foam of plastic polymers, polyurethane, polyethylene or PVC, coated with a protective and resistant layer.
In accordance with another added feature of the invention, the turbines have the free end attached to a balloon or a float.
In accordance with an additional feature of the invention low-density materials are used, based on steel, zinc, concrete, polymers, carbon fibers, glass or kevlar with resins, steel with a protective layer of zinc, reinforced with graphene and synthetic fibers.
In accordance with another feature of the invention, the turbines, their shafts, blades or vanes, are hollow and made of canvas, and are kept inflated with the air or water stream in which they are immersed, for which the end of the turbine, which is secured, carries an inlet of the fluid delimited with a ring (88), which is held to the generator rotor.
In accordance with another mode of the invention, the turbines, their shafts and the helical blades are flexible.
In accordance with yet an additional feature of the invention, the blades of the flexible turbines are inclined and reduce their impact surface with increasing wind or water velocity.
In accordance with still another feature of the invention a portion of the blades (3v) forms an angle (α) with respect to the axis of rotation of between 25° and 55°.
In accordance with another mode of the invention, a portion of the blades (3v) forms an angle (β) of between 0 and 45° with respect to a plane perpendicular to the axis of rotation.
In accordance with yet an additional feature of the invention, the turbines take a cylindrical outer shape.
In another feature of the invention, a fluid current energy capture system utilizing axial turbines having a density between 70% and 130% of that of the fluid in which it is moving, having one free end, and the other or its axis, is attached to the mechanical element to be moved or to an electric generator, directly or through a rpm multiplier, these in turn are held by a pair of links, an angular pivot, a rod or a hinge to elements of holding nails, anchors, concrete blocks, mesh bags filled with stones, posts, trees, towers, street lamps, buildings, mounds, or a cable or chain supported between two points of the aforementioned, which allow the turbines to rotate, orienting itself in the fluid stream and capturing and taking advantage of the flow of the stream, having control, warning and safety devices, characterized in that the turbines comprise coil springs (10c), helically twisted beams (12c, 12v), complete helical turbines (1, 1a, 1b, 1d, 1m, 1p) with their shafts (13, 13c, 13v) or only their blades or vanes (3a, 3b, 3c, 3v), which capture the energy of the wind or water, driving its axis or holding end to an electrical generator system (4), to a mechanical system, compressor or water pump, whose flows regulated, of the latter two, drive to some engines or turbines that drive the generators, in all cases, the blades around the axis of rotation of the turbines, have such an inclination, that they generate a torque in the same direction, the generators only have a small angle of rotation or inclination, the turbines are automatically oriented with the flow of water or air currents like a weather-vane.
In accordance with another feature the coil springs have the blade or flat thread and do not have a shaft.
In accordance with yet another feature the coil springs are formed by a half-cane blade (90c), with the concavity towards the front zone.
In accordance with still another feature the axial turbines are of radial vanes and consist of several wheels of vanes.
In accordance with another mode the turbines (50) are formed by pairs of inclined triangular blades (51) distributed about their axis of rotation (52).
In accordance with still another mode the turbines (53) are formed by pairs of inclined triangular blades (54) distributed around their axis of rotation of shaft (55) and secured to their vertices with cables (56).
In accordance with yet another mode the turbines (60) are formed by two inclined blades (61) one on each side of the axis of rotation (62), being secured between two crank-shaped part (63 and 63a) one at each end, one of them being attached by cables or cords to the generator or to a metal element.
In accordance with another feature the shaft of the turbines 13 is solid.
In accordance with still another feature the shaft of the turbines is hollow and filled with helium or air.
In accordance with yet another feature the shaft of the turbine is hollow and is filled with foam of plastic polymers, polyurethane, polyethylene or PVC coated with a protective and resistant layer, acting as comets.
In accordance with still another mode the blades or turbines are flexible.
In accordance with another feature the blades or turbines are rigid.
In accordance with yet another feature the vanes, blades or shafts of the turbines are inflatable.
In accordance with still another feature the turbines are placed in orderly rows and columns.
In accordance with yet another mode the turbines have the free end attached to a balloon or to a float.
In accordance with another feature the turbines serve as warning or safety devices, posts protruding from the water or buoys are used, and red or amber strobes, preferably from LEDs, are applied.
Further the turbines are formed by multiple turbines in series or one of great length.
Additionally, low-density materials are used, based on steel, zinc, concrete, polymers, carbon fibers, glass or Kevlar® a registered trademark of Dupont, with resins, steel with a protective layer of zinc, reinforced with graphene and synthetic fibers.
In accordance with another feature, the rotational movement is applied to the electric generators to which they are attached or through multipliers of rpm.
In accordance with yet another feature generators of multiple pole pairs are used.
In accordance with still another feature the turbines, their shafts, blades or vanes, hollow, flexible, are made of canvas, and are kept inflated with the air or water stream in which they are immersed, for which the end of the turbine, which is secured, carries an inlet of the fluid delimited with a ring (88), which is held to the generator rotor or cable by means of cords (89).
In accordance with another mode the vanes or blades of the flexible turbines are inclined and reduce their impact surface with increasing wind or water velocity.
In accordance with yet another mode, motor pumps are used as mechanical elements to raise water.
In accordance with still another feature the turbines, their shafts or the helical blades are hollow inflatable and flexible.
In accordance with still another mode the helically twisted flanges, beams or flanges (126) act simultaneously as turbines and as holding cables.
In accordance with yet another mode the helically twisted blades or beams (126a) acting simultaneously as turbines and as holding cables, drive pumps inside a cylindrical shells 76, for which it has its lower end supported by bearings 75, raising the water during its rotation and exiting through an elbow conduit 78.
In accordance with still another feature the electric generators are synchronous and totally permanent magnets, mainly of rare earths of samarium-cobalt or neodymium-iron-boron.
In accordance with still another feature the turbines take a cylindrical outer shape.
In accordance with still another feature the turbines assume a conical external shape.
In accordance with still another feature the turbines have the same density as the fluid in which they move.
In accordance with yet another feature the turbines have densities different from that of the fluid.
In accordance with another feature the turbine is attached to a ball socket (6r), and the axis of the generator or mechanical device is connected to the rotating end of the turbine by a pair of gears (49r).
In accordance with yet another feature the electric generators are connected to a mobile telephone.
In accordance with still another feature the electric generators are connected to electric heating resistors.
It is further accordingly an object of the invention to provide a fluid current energy capture system for capturing energy from a fluid having an axial turbine having an axis of rotation, the turbine having a free end, and a fixation end opposite the free end, the turbine having a helical blade for being driven by the fluid, the blade having an inclination for generating a torque and rotating the turbine about the axis of rotation, a generator affixed to the fixation end, the generator generating power by rotation of the turbine driven by the fluid, and a base, the generator being rotatably mounted to the base for orientating the turbine in a flow stream of the fluid.
The turbines of
The drawings show turbines, which through a changing the fluid used and densities can be valid for use in both water and air.
In all cases the size of the turbines are depicted proportionally relative to ships or whales to give an approximation as to their measurements. The thick arrow shows the direction of the currents.
Patent | Priority | Assignee | Title |
11549479, | Oct 26 2021 | TI YANG CO., LTD. | Miniature hydroelectric apparatus |
11840999, | Jun 06 2018 | Rotor |
Patent | Priority | Assignee | Title |
10378505, | Mar 21 2014 | Flumill AS | Hydrokinetic energy conversion system and use thereof |
4708592, | Apr 15 1985 | Wind Production Company | Helicoidal structures, useful as wind turbines |
4850798, | Nov 28 1988 | Modified helicoidal wind responsive device | |
7633174, | Feb 27 2007 | Floating water turbine for a power plant | |
8961131, | Jul 04 2011 | Flumill AS | Arrangement for extracting energy from flowing liquid |
20060233635, | |||
20060257241, | |||
20070041823, | |||
20120243994, | |||
20130071244, | |||
20130147199, | |||
20150021917, | |||
20150063910, | |||
20150337794, | |||
GB2524331, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Feb 11 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Feb 21 2019 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Jul 20 2024 | 4 years fee payment window open |
Jan 20 2025 | 6 months grace period start (w surcharge) |
Jul 20 2025 | patent expiry (for year 4) |
Jul 20 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 20 2028 | 8 years fee payment window open |
Jan 20 2029 | 6 months grace period start (w surcharge) |
Jul 20 2029 | patent expiry (for year 8) |
Jul 20 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 20 2032 | 12 years fee payment window open |
Jan 20 2033 | 6 months grace period start (w surcharge) |
Jul 20 2033 | patent expiry (for year 12) |
Jul 20 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |