An infrared bandpass filter structure is formed by alternately stacking a plurality of silicon aluminum hydride layers and a plurality of low-refractive-index layers. The plurality of low-refractive-index layers include oxide. The infrared bandpass filter structure has a pass band that at least partly overlaps the wavelength range of 800 nm-1600 nm. The pass band have a center wavelength, and the center wavelength has a magnitude of shift that is less than 11 nm when an incident angle changes from 0° to 30. An infrared bandpass filter includes the infrared bandpass filter structure formed on a first side surface of a substrate and an antireflection layer formed on a second side surface of the substrate that is at a side opposite to the first side surface.
|
1. An infrared bandpass filter structure, which is formed by alternately stacking a plurality of silicon aluminum hydride (SiAl:H) layers and a plurality of low-refractive-index layers, the plurality of low-refractive-index layers comprising oxide, the infrared bandpass filter structure having a pass band that at least partly overlaps a wavelength range of 800 nm-1600 nm, the pass band having a center wavelength, the center wavelength having a magnitude of shift that is less than 11 nm when an incident angle changes from 0° to 30°.
8. An infrared bandpass filter, comprising:
a substrate, which has a first side surface and a second side surface at one side opposite to the first side surface;
an infrared bandpass filter structure, which is formed on the first side surface of the substrate and is formed by alternately stacking a plurality of silicon aluminum hydride (SiAl:H) layers and a plurality of low-refractive-index layers, the plurality of low-refractive-index layers comprising oxide, the infrared bandpass filter structure having a pass band that at least partly overlaps a wavelength range of 800 nm-1600 nm, the pass band having a center wavelength, the center wavelength having a magnitude of shift that is less than 11 nm when an incident angle changes from 0° to 30°; and
an antireflection (AR) layer, which is formed on the second side surface of the substrate.
#11#
2. The infrared bandpass filter structure according to
3. The infrared bandpass filter structure according to
4. The infrared bandpass filter structure according to
5. The infrared bandpass filter structure according to
6. The infrared bandpass filter structure according to
7. The infrared bandpass filter structure according to
9. The infrared bandpass filter according to
10. The infrared bandpass filter according to
11. The infrared bandpass filter according to
12. The infrared bandpass filter according to
13. The infrared bandpass filter according to
14. The infrared bandpass filter according to
15. The infrared bandpass filter according to
16. The infrared bandpass filter according to
|
The present invention relates to a technical field concerning an infrared bandpass filter structure and a structure of a filter device, and more particularly to an infrared bandpass filter structure and an infrared bandpass filter using the structure that enhances sputtering efficiency and greatly lower fabrication costs, and helps reduce warpage of film layers so as to eliminate chipping occurring in a cutting operation carried out in a post-fabrication process.
Filters are commonly classified as bandpass filters, short-wave cutoff filters, and long-wave cutoff filters. A bandpass filter allows light within a predetermined band of wavelength to pass, while cuts off light outside the pass band, and is generally classified as narrow band devices and broad band devices according to band width. According to a ratio of the bandwidth to the center wavelength, those having a value hat is less than 5% is classified as a narrow band device, while those greater than 5% are considered a wide band device. To reduce interference caused by surrounding visible light, narrow-band interfering filters are commonly used. Traditional RGB visible light camera lens often adopts infrared cutoff filter to filter out unnecessary low-frequency near infrared light in order to avoid influences that the infrared light causes on the visible light portion to generate fake color or ripple patterns, and also to enhance effective resolution and color restoration. However, to avoid the interferences caused by the surrounding light, the infrared lenses must be used in combination with a narrow-band filter (namely an infrared bandpass filter) to allow only near infrared light of a specific band to pass.
A known infrared bandpass filter, such as those shown in Taiwan Patent Publications 1576617 and 1648561, which disclose optical filters and detection systems, is generally made by alternately stacking a plurality of silicon hydride layers and a plurality of low-refractive-index layers. Such an infrared bandpass filter structure has a pass band, which is at least partly overlapping a wavelength range of 800 nm-1600 nm. The pass band has a center wavelength, and the center wavelength shows a shift of magnitude in the range of 12.2-20 nm when an incident angle changes from 0° to 30°. The plurality of silicon hydride layers each have an refractive index that is greater than (close to) 3.5 in a wavelength range of 800-1100 nm, while the plurality of low-refractive-index layers are an oxide, which has a refractive index less than 2 in the wavelength range of 800 nm-110 nm and may comprise at least one of silicon dioxide (SiO2), aluminum(III) oxide (Al2O3), titanium dioxide (TiO2), niobium pentoxide (Nb2O5), tantalum pentoxide (Ta2O5), and a mixture thereof.
However, the known infrared bandpass filter suffers the following disadvantages in practical applications:
(1) The known infrared bandpass filter that is formed by alternately stacking a plurality of silicon hydride layers and a plurality of low-refractive-index layers has a pass band of which a center wavelength has a greater magnitude of shift (around 12.2-20 nm) when an incident angle changes from 0° to 30°, and consequently, issues of incapability of recognition or failure of recognition may occur in an application for formation of three-dimensional images in receiving light at relatively large angles.
(2) Film layers of the known infrared bandpass filter are made through sputtering with a pure silicon target. Such a pure silicon target is only applicable to sputtering operations that are carried with a power of 5-6 kW, and an excessively large power would cause a target cracking condition on the pure silicon target, making it impossible to use. Thus, it would take an extended period of time for sputtering the film layers, and the efficiency of sputtering is apparently very poor, leading to an increase of fabrication costs, such as electrical power expense and working hours.
(3) The film layers of the known infrared bandpass filter have a great thickness and this would result in a large amount of warpage for coating made on a glass substrate, and consequently, issues of severe corner chipping may occur in a cutting operation carried out in a subsequent process.
The primary objective of the present invention is to overcome the drawbacks of the known infrared bandpass filter concerning low efficiency of sputtering that results in a high fabrication cost and an amount of warpage of film layers that results in corner chipping in a cutting operation carried out in a post-fabrication process.
The present invention provides an infrared bandpass filter structure, which is formed by alternately stacking a plurality of silicon aluminum hydride layers and a plurality of low-refractive-index layers. The plurality of low-refractive-index layers comprises oxide. The infrared bandpass filter structure has a pass band that at least partly overlaps the wavelength range of 800 nm-1600 nm. The pass band has a center wavelength, and the center wavelength has a magnitude of shift that is less than 11 nm when an incident angle changes from 0° to 30°.
The infrared bandpass filter according to the present invention is generally such that the above infrared bandpass filter structure is formed on a first side surface of a substrate and an antireflection layer is formed on a second side surface of the substrate that is at one side opposite to the first side surface.
The infrared bandpass filter structure and the infrared bandpass filter using such a structure according to the present invention are such that the infrared bandpass filter structure that is formed by alternately stacking a plurality of silicon aluminum hydride layers and a plurality of low-refractive-index layers has a pass band of which a center wavelength exhibits a reduced magnitude of shift that is less than 11 nm when an incident angle changes from 0° to 30°, so that applications to three-dimensional image forming systems would make it hard to generate issues of being incapable of recognition or failure of recognition. Particularly, a silicon-aluminum target that is doped with an aluminum ingredient is adopted, which is more capable of bearing more than two times of power output (around 10-20 kw) than conventionally used pure silicon targets, so that the time required for coating films can be reduced at least by half and equivalently, the throughput for the same period of time could be more than double, and thus, costs of resources including production time consumed in the entire shop, human labor, and electrical power can be cut by half to thereby greatly improve the power of competition. Further, film layers of the infrared bandpass filter structure are made with a reduced thickness due to the property of excellent ductility of the aluminum ingredient involved, so that coating on a glass substrate may provide a reduced film thickness and thus a reduced internal stress and the reduced internal stress would help prevent occurrence of corner chipping in a subsequent cutting operation thereby enhancing yield rate of the cutting operation to thus achieve, equivalently, a purpose of lowering fabrication costs.
Referring to
the substrate 10, which is glass and also has a first side surface and a second side surface that is located on a side opposite to the first side surface.
The infrared bandpass filter structure 20 is formed on the first side surface of the substrate 10 and is formed by alternately stacking a plurality of silicon aluminum hydride (SiAl:H) layers 21 and a plurality of low-refractive-index layers 22, such that the infrared bandpass filter structure 20 has a pass band that at least partly overlaps the wavelength range of 800 nm-1600 nm. The pass band has a center wavelength, and the center wavelength center wavelength shows a magnitude of shift that is less than 11 nm (around 10.3-10.5 nm) when an incident angle changes from 0° to 30°. Further, the infrared bandpass filter structure 20 has a thickness that is 3000-5500 nm and has a high OD value in the wavelength range of 350 nm-1600 nm, and has a high transmission rate in the wavelength range of 800 nm-1600 nm, and a reflection rate lower than 20% at the site of Rx coordinate 0.2-0.5, Ry coordinate 0.2-0.5 on a color coordinate system within the visible light range. The plurality of silicon aluminum hydride layers 21 have a refractive index of 3.1-3.6 and an extinction coefficient of 1.e-4-1.e-6 in the wavelength range of 800 nm-1600 nm and an extinction coefficient greater than 0.005 in the wavelength range of 350 nm-700 nm. The low-refractive-index layers 22 are oxide, which comprises one of silicon aluminum dioxide (SiAl:O2), silicon aluminum nitride (SiAl:N), silicon nitride (SiN), silicon dioxide (SiO2), aluminum(III) oxide (Al2O3), titanium dioxide (TiO2), niobium pentoxide (Nb2O5), tantalum pentoxide (Ta2O5), and a mixture thereof. Further, the plurality of low-refractive-index layers 22 have a refractive index less than 1.8 and an extinction coefficient less than 0.0005 in the wavelength range of 800 nm-1600 nm and an extinction coefficient greater than 0.005 in the wavelength range of 350 nm-700 nm.
The antireflection layer 30 is formed on the second side surface of the substrate 10 and is formed by stacking a plurality of high-refractive-index materials of silicon aluminum hydride (SiAl:H) and a plurality of low-refractive-index materials. The low-refractive-index materials comprise at least one of silicon aluminum dioxide (SiAl:O2), silicon aluminum nitride (SiAl:N), silicon nitride (SiN), silicon dioxide (SiO2), aluminum(III) oxide (Al2O3), titanium dioxide (TiO2), niobium pentoxide (Bb2O5), tantalum pentoxide (Ta2O5), and a mixture thereof have a thickness of 3000 nm-6000 nm.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The infrared bandpass filter structure and the infrared bandpass filter using such a structure according to the present invention have the following advantages:
(1) The present invention provides an infrared bandpass filter structure that is formed by alternately stacking a plurality of silicon aluminum hydride layers 21 and a plurality of low-refractive-index layers 22 and has a pass band of which a center wavelength exhibits a reduced magnitude of shift (around 10.3-10.5 nm) that is less than 11 nm when an incident angle changes from 0° to 30°, so that applications thereof to three-dimensional image forming systems would make it hard to generate issues of being incapable of recognition or failure of recognition.
(2) The present invention adopts a silicon-aluminum target that is doped with an aluminum ingredient would be more capable of bearing more than two times of power output (around 10-20 kw) than conventionally used pure silicon targets, so that the time required for coating films can be reduced at least by half and equivalently, the throughput for the same period of time could be more than double, and thus, costs of resources including production time consumed in the entire shop, human labor, and electrical power can be cut by half to thereby greatly improve the power of competition.
(3) The present invention uses film layers that can be made with a reduced thickness due to the property of excellent ductility of the aluminum ingredient involved, so that coating on a glass substrate may provide a reduced film thickness and thus a reduced internal stress and the reduced internal stress would help prevent occurrence of corner chipping in a subsequent cutting operation thereby enhancing yield rate of the cutting operation to thus achieve, equivalently, a purpose of lowering fabrication costs.
Tsou, Cheng-Hsing, Cheng, Wei-Hao, Ni, Pei-Yuan
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7901870, | May 12 2004 | Cirrex Systems, LLC | Adjusting optical properties of optical thin films |
20140014838, | |||
20150091116, | |||
20160011350, | |||
20160238759, | |||
20170357033, | |||
20190352222, | |||
CN112462461, | |||
DE102019127139, | |||
FR3099956, | |||
GB2588135, | |||
JP2021056455, | |||
KR1020210030526, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 01 2019 | TSOU, CHENG-HSING | KINGRAY TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050659 | /0088 | |
Oct 01 2019 | CHENG, WEI-HAO | KINGRAY TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050659 | /0088 | |
Oct 01 2019 | NI, PEI-YUAN | KINGRAY TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050659 | /0088 | |
Oct 08 2019 | KINGRAY TECHNOLOGY CO., LTD. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 08 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 25 2019 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Nov 09 2024 | 4 years fee payment window open |
May 09 2025 | 6 months grace period start (w surcharge) |
Nov 09 2025 | patent expiry (for year 4) |
Nov 09 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 09 2028 | 8 years fee payment window open |
May 09 2029 | 6 months grace period start (w surcharge) |
Nov 09 2029 | patent expiry (for year 8) |
Nov 09 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 09 2032 | 12 years fee payment window open |
May 09 2033 | 6 months grace period start (w surcharge) |
Nov 09 2033 | patent expiry (for year 12) |
Nov 09 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |