A semiconductor package is manufactured by physically attaching a side emitting laser diode to a floor portion of a recessed flat no-leads (FNL) package having a wall extending from and surrounding a perimeter of a recessed floor portion. The attached side emitting laser diode is oriented to direct a laser beam toward an opposing portion of the wall. The FNL package is singulated into a first piece and a second piece along a singulation plane through the FNL package wall and floor portion between the side emitting laser diode and the opposing portion of the wall. After singulation the opposing portion of the wall is in the second piece and the side emitting laser diode is in the first piece.
|
14. An electronic circuit package, comprising:
a recessed flat no-leads (FNL) package comprising:
a wall extending in a direction normal from and partially surrounding a recessed floor portion, the wall further comprising a first walled portion section substantially parallel to a third wall portion, the first and third walled portions spanned by a second wall portion; and
an un-walled floor portion spanning between the first walled portion and the second walled portion substantially opposite the second walled portion;
a side facing emitting and/or sensing electronic component attached to the floor portion of the recessed FNL package via a bottom surface, wherein the electronic component is oriented to direct emission and/or detection toward the un-walled portion, wherein the electric component is electrically connected to at least one electrical contact in the recessed floor portion of the recessed FNL package.
1. A method for producing a semiconductor package, comprising the steps of:
physically attaching a first side emitting laser diode to a recessed floor portion of a recessed flat no-leads (FNL) package comprising a wall extending from and substantially surrounding a perimeter of the recessed floor portion, wherein the first side emitting laser diode is oriented to direct a laser beam toward an opposing portion of the wall;
determining a first singulation plane through the FNL package wall and floor portion between the first side emitting laser diode and the opposing portion of the wall; and
singulating the FNL package into a first piece and a second piece along the first singulation plane,
wherein after singulation the opposing portion of the wall is in the second piece and the first side emitting laser diode is in the first piece, and
wherein the side emitting laser diode is oriented so that the laser beam is emitted from an aperture in the laser diode in a direction toward the singulation plane.
20. A method for producing a semiconductor package, comprising the steps of:
physically attaching a first side sensing electronic component to a floor portion of a recessed flat no-leads (FNL) package comprising a wall extending from and substantially surrounding perimeter of a recessed floor portion, wherein first side sensing electronic component is positioned to orient a sensing and/or detection region parallel to the recessed floor portion toward an opposing portion of the wall;
determining a first singulation plane between the first side sensing electronic component and the opposing portion of the wall; and
singulating the FNL package into a first piece and a second piece along the first singulation plane,
wherein after singulation the opposing portion of the wall is in the second piece and the first side sensing electronic component is in the first piece, and
wherein the side emitting laser diode is oriented so that the laser beam is emitted from an aperture in the laser diode in a direction toward the singulation plane.
2. The method of
recessed quad flat no-leads (QFN) package.
3. The method of
4. The method of
5. The method of
6. The method of
arranging a mold portion aligned with a portion the singulation plane adjacent to a beam aperture of the first side emitting laser diode, and
with the mold portion, forming a smooth exit window of the transparent hardening resin apart from the singulation plane,
wherein the singulating does not singulate the smooth exit window.
7. The method of
8. The method of
determining a second singulation plane substantially parallel to the first singulation plane between the side emitting laser diode and the first portion of the wall; and
singulation the QFN package along the second singulation plane.
9. The method of
10. The method of
physically attaching a second side emitting laser diode to the floor portion of the recessed QFN package substantially opposite the first side emitting laser across the first singulation plane,
wherein after singulation the second side emitting laser diode is in a the second piece.
11. The method of
12. The method of
13. The method of
15. The electronic circuit package of
16. The electronic circuit package of
17. The electronic circuit package of
19. The electronic circuit package of
a transparent potting material covering the floor portion and the side facing emitting and/or sensing electronic component; and
a smooth exit window in the potting material along the un-walled floor portion.
|
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/754,176, filed Nov. 1, 2018, entitled “Method for Adapting a Quad Flat No-leads Package for Side Emitting Laser Diode,” which is incorporated by reference herein in its entirety.
The present invention relates to semiconductor packaging, and more particularly, is related to a laser diode package.
Laser diodes are available in various packaging arrangements, for example, in metal cans, plastic packages, and mounted on printed circuit boards (PCB). However, incorporating many of these packages into high performance circuits results in lead line lengths that may be problematic in some applications. Further, such packages may not be appropriate for deployment of laser diodes in certain environments due to size and/or thermal limitations. Unfortunately, providing a custom laser diode packaging to overcome these shortcomings may be cost prohibitive. Therefore, there is a need in the industry to overcome one or more of these shortcomings.
Embodiments of the present invention provide a quad flat no-leads package for a side emitting laser diode and a method for adapting a quad flat no-leads package for a side emitting laser diode. Briefly described, the present invention is directed to a semiconductor package manufactured by physically attaching a side emitting laser diode to a floor portion of a recessed flat no-leads (FNL) package having a wall extending from and surrounding a perimeter of a recessed floor portion. The attached side emitting laser diode is oriented to direct a laser beam toward an opposing portion of the wall. The FNL package is singulated into a first piece and a second piece along a singulation plane through the FNL package wall and floor portion between the side emitting laser diode and the opposing portion of the wall. After singulation the opposing portion of the wall is in the second piece and the side emitting laser diode is in the first piece.
Other systems, methods and features of the present invention will be or become apparent to one having ordinary skill in the art upon examining the following drawings and detailed description. It is intended that all such additional systems, methods, and features be included in this description, be within the scope of the present invention and protected by the accompanying claims.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principals of the invention.
The following definition is useful for interpreting terms applied to features of the embodiments disclosed herein. As used within this disclosure, “substantially” means “very nearly,” or generally within normal manufacturing tolerances.
As used within this disclosure, a flat no-leads package, for example, quad-flat no-leads (QFN) and dual-flat no-leads (DFN) provide physical and electrical connectivity to printed circuit boards (PCB) for electronic components, for example (but not limited to) integrated circuits. Flat no-leads, also known as micro leadframe (MLF) and SON (small-outline no leads), is a surface-mount technology, one of several package technologies that connect ICs to the surfaces of PCBs without through-holes. Flat no-lead is typically a near chip scale plastic encapsulated package made with a copper lead frame substrate. Perimeter lands on the package bottom provide electrical connections to the PCB. Flat no-lead packages may include an exposed thermal pad to improve heat transfer out of the electronic component (into the PCB). Heat transfer can be further facilitated by metal vias in the thermal pad. An open cavity QFN package is generally rectangular or square in profile with a wall extending upward from and surrounding a package floor. The floor is referred to as being recessed with respect to the surrounding wall. Herein, the terms “recessed floor” and “open cavity” may be used interchangeably.
As used within this disclosure, a “side emitting electronic device” refers to an electronic device configured to emit sonic or electromagnetic energy from a side surface that is substantially orthogonal to a bottom surface which may have one or more electrical contacts. With surface mount devices, the “bottom surface” generally refers to the part of the device that mounts and/or electrically connects to a mounting surface, while the “top surface” generally refers to a surface opposing (and generally parallel to) the bottom surface which also may have electrical contact. A “side surface” refers to any surface orthogonal to and generally spanning between the top surface and the bottom surface. Similarly, a “side sensing electronic device/component” refers to an electronic device configured to sense and/or receive sonic or electromagnetic energy from a side surface that is substantially orthogonal to the bottom surface.
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
This application is directed to semiconductor emitter or detector devices, for example, a side emitting semiconductor laser diode, or an array thereof, or an electromagnetic detector such as an optical detector, housed in a modified QFN (Quad Flat No-leads) package.
The package 100 may initially (before singulation, as described below) be generally rectangular in shape, with an (initially) encircling wall 110 generally with a wall inclined surface 140 surrounding the perimeter of a recessed floor 120. A plurality of QFN electrical contacts 130 are disposed on the floor 120 and/or the wall surface 140 which may be inclined up to 20 degrees from perpendicular to the floor, providing electrical connectivity to package contacts (not shown) on the exterior of the QFN package 100.
A laser diode array 225 mounted in the recessed region 150 of the QFN package 100 under a first exemplary embodiment is in electrical connection with the floor 120. The laser diode array 225 includes an array of one or more side emitting laser diodes 220. An electrical connection between each laser diode 220 in the laser diode array 225 may be made, for example, by one or more wire bonds 267 connecting to an electrical connection 268 (for example, a wire bond pad) on top of each respective laser diode 220 and a respective one of the QFN electrical contacts 130. It should be noted that in general electrical connection pads are omitted from the drawings for purposes of clarity. Depictions of the QFN package prior to singulation are labeled 100, while depictions of the QFN package after singulation are labeled 300.
The side emitting laser diodes 220 are oriented so that a laser beam 222 is emitted from an aperture 228 in each laser diode 220 of the laser diode array 225 in a direction toward a singulation plane 180, for example, a plane bisecting the QFN package 100 across the floor 120 and two opposing walls 110. The laser beam 222 is projected outward from each laser diode 220 of the laser diode array 225 substantially parallel to the floor 120 upon an opposite wall portion 242 of the wall inclined surface 140 that intersects with the laser beam 222.
As noted above, the walls 110 of the QFN package 100 obstruct the path(s) of laser beam(s) 222 from the laser diode(s) 220. The QFN package 100 may be singulated, for example, along a singulation plane 180 (hereafter referred to as a singulation plane 180), such that the laser beam(s) 222 may project outward from the laser diode(s) 220 unobstructed by the wall 110.
The singulation plane 180 is substantially normal to the recessed floor 120, so the singulated end portions 285 (
Like the first embodiment, the second embodiment has a walled portion 110 extending from and partially around a recessed floor portion further. The wall has a first walled portion section 281 substantially parallel to a third wall portion 283, spanned by a second wall portion 282 between the first wall portion 281 and the third wall portion 283. An un-walled singulated floor portion 280 extends between the first wall portion 281 and the third wall portion 283, such that there is no wall opposite the second wall portion 282, and the wall 110 may be characterized as being substantially U-shaped. The U-shaped wall 110 may be contrasted with an alternative package (not shown) having a walled recessed floor with a small opening or notch in the wall to accommodate passage of a light beam. For example, unlike a notched QFN package, the package 300 of the first and/or second embodiment may be singulated into two separate packages, as explained below regarding
Other embodiments may be based upon a similarly modified QFN package 100.
The floor 120 (
It should be noted that while
Singulation may be performed before or (preferably) after the laser diodes (and/or other components, if any) are mounted in the QFN package 100. As shown in
As shown in
The modified QFN packages 300 may be covered, for example, with a cover 810 as shown by
As shown by
The window 811, 812 is optically clear, preferably thin (for example, “Corning® Gorilla® Glass” or similar thin window materials used for smart phone screens and other applications) but may be, for example, but not limited to up to 3 mm thick, preferably in the range of 25 μm to 3 mm thick. The window 811 has a length and width large big enough so that it is larger than a size of the beam 222, for example a minimum of 500 μm by 25 μm.
The side window 811 or the cover and side window combination 812 is preferably formed of a material that will withstand a long term exposure to a temperature range up to greater than 150° C. created by the heat generated by the side emitting laser diode 220/225 and the adjacent environment, for example the material can be Lexan or soda lime glass. The side window 811 or the cover and side window combination 812 may be used instead of a transparent resin fill, or in combination with a transparent resin fill. Alternatively, the modified QFN package 300 may be made and/or used without a fill, cover, or side window.
In embodiments with capacitors, for example, the third embodiment shown in
Alternative embodiments may add more circuitry to the above package, such as a monitoring photodiode, an APD (Avalanche Photo Diode), etc. Component combinations inside the QFN package may be, for example, laser diode only, laser diode and capacitor array, laser diode and photodiode, laser diode and current sensor, etc. A preferred package assembly may have a monolithic capacitor or a monolithic capacitor array but discrete components may also be implemented.
A first singulation plane 180 is determined between the side emitting laser diode 225 and the opposing portion 242 of the wall 110, as shown by block 620. The QFN package 100 is singulated into a first piece and a second piece along the first singulation plane 180, so that after singulation the opposing portion of the wall 242 is in the second piece and the side emitting laser diode 220/225 is in the first piece, as shown by block 630.
A first singulation plane is determined between the side sensing electronic component and the opposing portion of the wall, as shown by block 720. The QFN package is singulated into a first piece and a second piece along the first singulation plane, so that after singulation the opposing portion of the wall is in the second piece and the side sensing electronic component is in the first piece, as shown by block 730.
In summary, it will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Patent | Priority | Assignee | Title |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 09 2018 | GODFREY, LAWRENCE | EXCELITAS CANADA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050851 | /0333 | |
Oct 29 2019 | Excelitas Canada, Inc. | (assignment on the face of the patent) | / | |||
Aug 12 2022 | EXCELITAS CANADA INC | GOLUB CAPITAL MARKETS LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 061161 | /0079 |
Date | Maintenance Fee Events |
Oct 29 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 01 2025 | 4 years fee payment window open |
Sep 01 2025 | 6 months grace period start (w surcharge) |
Mar 01 2026 | patent expiry (for year 4) |
Mar 01 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 01 2029 | 8 years fee payment window open |
Sep 01 2029 | 6 months grace period start (w surcharge) |
Mar 01 2030 | patent expiry (for year 8) |
Mar 01 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 01 2033 | 12 years fee payment window open |
Sep 01 2033 | 6 months grace period start (w surcharge) |
Mar 01 2034 | patent expiry (for year 12) |
Mar 01 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |