A device includes a first nanostructure; a second nanostructure over the first nanostructure; a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nanostructure and a second portion on a bottom surface of the second nanostructure; and a gate electrode over the high-k gate dielectric. The gate electrode comprises: a first work function metal around the first nanostructure and the second nanostructure, the first work function metal filling a region between the first portion of the high-k gate dielectric and the second portion of the high-k gate dielectric; and a tungsten layer over the first work function metal, the tungsten layer being free of fluorine.
|
14. A method comprising:
depositing a gate dielectric around a first nanostructure and a second nanostructure, the first nanostructure is disposed over the second nanostructure;
depositing a work function metal over the gate dielectric;
depositing a barrier layer over the work function metal, wherein depositing the barrier layer comprises a first atomic layer deposition (ALD) process, and wherein the first ALD process does not use any fluorine-comprising precursors; and
depositing a fill metal over the barrier layer, wherein depositing the fill metal comprises using a fluorine-comprising precursor.
7. A transistor comprising:
a first nanostructure over a semiconductor substrate;
a second nanostructure over the first nanostructure;
a gate dielectric surrounding the first nanostructure and the second nanostructure; and
a gate electrode over the gate dielectric, wherein the gate electrode comprises:
a work function metal around the first nanostructure and the second nanostructure;
a barrier layer on the work function metal, wherein the barrier layer does not extend between the first nanostructure and the second nanostructure; and
a fill metal over the barrier layer, wherein the fill metal has a higher concentration of fluorine than the barrier layer.
1. A device comprising:
a first nanostructure;
a second nanostructure over the first nanostructure;
a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nanostructure and a second portion on a bottom surface of the second nanostructure; and
a gate electrode over the high-k gate dielectric, wherein the gate electrode comprises:
a first work function metal around the first nanostructure and the second nanostructure, the first work function metal completely filling a region from the first portion of the high-k gate dielectric to the second portion of the high-k gate dielectric; and
a tungsten layer over the first work function metal, the tungsten layer being free of fluorine.
2. The device of
6. The device of
8. The transistor of
9. The transistor of
13. The transistor of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
|
This application claims the benefit of U.S. Provisional Application No. 63/061,361, filed on Aug. 5, 2020, which application is hereby incorporated herein by reference.
Semiconductor devices are used in a variety of electronic applications, such as, for example, personal computers, cell phones, digital cameras, and other electronic equipment. Semiconductor devices are typically fabricated by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductor layers of material over a semiconductor substrate, and patterning the various material layers using lithography to form circuit components and elements thereon.
The semiconductor industry continues to improve the integration density of various electronic components (e.g., transistors, diodes, resistors, capacitors, etc.) by continual reductions in minimum feature size, which allow more components to be integrated into a given area. However, as the minimum features sizes are reduced, additional problems arise that should be addressed.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
In transistor gate stacks, a conductive material (e.g., tungsten) may be deposited as a fill metal with a chemical vapor deposition (CVD) process that uses a fluorine-comprising precursor. Depositing a fill metal in this manner may have advantages such as a relatively fast deposition process, which reduces manufacturing costs and increases yield. Various embodiments may further include a barrier layer between the fill metal and underlying work function metal (WFM) layers to prevent fluorine diffusion during deposition and/or the fill metal into the underlying WFM layers. For example, the barrier layer may comprise a tungsten layer that is deposited with fluorine free precursors. By preventing fluorine diffusion into the underlying layers, advantages maybe achieved. For example, by preventing fluorine diffusion into the underlying layers, uneven fluorine distribution in the WFM layers may be avoided in different areas of the gate stack, which results in improved threshold voltage (Vt) stability and control. Vt stability and control may be especially improved in nano-FETs, which are susceptible to uneven fluorine diffusion in regions of the WFM layers between nanosheets compared to other regions of the WFM layers.
Gate dielectrics 100 are over top surfaces of the fins 66 and along top surfaces, sidewalls, and bottom surfaces of the nano-structures 55. Gate electrodes 102 are over the gate dielectrics 100. Epitaxial source/drain regions 92 are disposed on the fins 66 on opposing sides of the gate dielectric layers 96 and the gate electrodes 98.
Some embodiments discussed herein are discussed in the context of nano-FETs formed using a gate-last process. In other embodiments, a gate-first process may be used. Also, some embodiments contemplate aspects used in planar devices, such as planar FETs or in fin field-effect transistors (FinFETs).
In
The substrate 50 has an n-type region 50N and a p-type region 50P. The n-type region 50N can be for forming n-type devices, such as NMOS transistors, e.g., n-type nano-FETs, and the p-type region 50P can be for forming p-type devices, such as PMOS transistors, e.g., p-type nano-FETs. The n-type region 50N may be physically separated from the p-type region 50P (as illustrated by divider 20), and any number of device features (e.g., other active devices, doped regions, isolation structures, etc.) may be disposed between the n-type region 50N and the p-type region 50P. Although one n-type region 50N and one p-type region 50P are illustrated, any number of n-type regions 50N and p-type regions 50P may be provided. In some embodiments, one or more wells and/or an anti-punch through (APT) layer may be formed in the substrate 50 through one or more suitable implantation steps.
Further in
In still other embodiments, the first semiconductor layers 51 may be removed and the second semiconductor layers 53 may be patterned to form channel regions of nano-FETS in both the n-type region 50N and the p-type region 50P. In other embodiments, the second semiconductor layers 53 may be removed and the first semiconductor layers 51 may be patterned to form channel regions of non-FETs in both the n-type region 50N and the p-type region 50P. In such embodiments, the channel regions in both the n-type region 50N and the p-type region 50P may have a same material composition (e.g., silicon, or the like) and be formed simultaneously.
The multi-layer stack 64 is illustrated as including three layers of each of the first semiconductor layers 51 and the second semiconductor layers 53 for illustrative purposes. In some embodiments, the multi-layer stack 64 may include any number of the first semiconductor layers 51 and the second semiconductor layers 53. Each of the layers of the multi-layer stack 64 may be epitaxially grown using a process such as chemical vapor deposition (CVD), atomic layer deposition (ALD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), or the like. In various embodiments, the first semiconductor layers 51 may be formed of a first semiconductor material suitable for p-type nano-FETs, such as silicon germanium, or the like, and the second semiconductor layers 53 may be formed of a second semiconductor material suitable for n-type nano-FETs, such as silicon, silicon carbon, or the like. The multi-layer stack 64 is illustrated as having a bottommost semiconductor layer suitable for p-type nano-FETs for illustrative purposes. In some embodiments, multi-layer stack 64 may be formed such that the bottommost layer is a semiconductor layer suitable for n-type nano-FETs.
The first semiconductor materials and the second semiconductor materials may be materials having a high-etch selectivity to one another. As such, the first semiconductor layers 51 of the first semiconductor material may be removed without significantly removing the second semiconductor layers 53 of the second semiconductor material in the n-type region 50N, thereby allowing the second semiconductor layers 53 to be patterned to form channel regions of n-type NSFETS. Similarly, the second semiconductor layers 53 of the second semiconductor material may be removed without significantly removing the first semiconductor layers 51 of the first semiconductor material in the p-type region 50P, thereby allowing the first semiconductor layers 51 to be patterned to form channel regions of p-type NSFETS. In other embodiments, the channel regions in the n-type region 50N and the p-type region 50P may be formed simultaneously and have a same material composition, such as silicon, silicon germanium, or the like.
Referring now to
The fins 66 and the nanostructures 55 may be patterned by any suitable method. For example, the fins 66 and the nanostructures 55 may be patterned using one or more photolithography processes, including double-patterning or multi-patterning processes. Generally, double-patterning or multi-patterning processes combine photolithography and self-aligned processes, allowing patterns to be created that have, for example, pitches smaller than what is otherwise obtainable using a single, direct photolithography process. For example, in one embodiment, a sacrificial layer is formed over a substrate and patterned using a photolithography process. Spacers are formed alongside the patterned sacrificial layer using a self-aligned process. The sacrificial layer is then removed, and the remaining spacers may then be used to pattern the fins 66.
In
A removal process is then applied to the insulation material to remove excess insulation material over the nanostructures 55. In some embodiments, a planarization process such as a chemical mechanical polish (CMP), an etch-back process, combinations thereof, or the like may be utilized. The planarization process exposes the nanostructures 55 such that top surfaces of the nanostructures 55 and the insulation material are level after the planarization process is complete.
The insulation material is then recessed to form the STI regions 68. The insulation material is recessed such that upper portions of fins 66 in the regions 50N and the region 50P protrude from between neighboring STI regions 68. Further, the top surfaces of the STI regions 68 may have a flat surface as illustrated, a convex surface, a concave surface (such as dishing), or a combination thereof. The top surfaces of the STI regions 68 may be formed flat, convex, and/or concave by an appropriate etch. The STI regions 68 may be recessed using an acceptable etching process, such as one that is selective to the material of the insulation material (e.g., etches the material of the insulation material at a faster rate than the material of the fins 66 and the nanostructures 55). For example, an oxide removal using, for example, dilute hydrofluoric (dHF) acid may be used.
The process described above with respect to
Additionally, the first semiconductor layers 51 (and resulting nanostructures 52) and the second semiconductor layers 53 (and resulting nanostructures 54) are illustrated and discussed herein as comprising the same materials in the p-type region 50P and the n-type region 50N for illustrative purposes only. As such, in some embodiments one or both of the first semiconductor layers 51 and the second semiconductor layers 53 may be different materials or formed in a different order in the p-type region 50P and the n-type region 50N.
Further in
Following or prior to the implanting of the p-type region 50P, a photoresist or other masks (not separately illustrated) is formed over the fins 66, the nanostructures 55, and the STI regions 68 in the p-type region 50P and the n-type region 50N. The photoresist is patterned to expose the n-type region 50N. The photoresist can be formed by using a spin-on technique and can be patterned using acceptable photolithography techniques. Once the photoresist is patterned, a p-type impurity implant may be performed in the n-type region 50N, and the photoresist may act as a mask to substantially prevent p-type impurities from being implanted into the p-type region 50P. The p-type impurities may be boron, boron fluoride, indium, or the like implanted in the region to a concentration in a range from about 1013 atoms/cm3 to about 1014 atoms/cm3. After the implant, the photoresist may be removed, such as by an acceptable ashing process.
After the implants of the n-type region 50N and the p-type region 50P, an anneal may be performed to repair implant damage and to activate the p-type and/or n-type impurities that were implanted. In some embodiments, the grown materials of epitaxial fins may be in situ doped during growth, which may obviate the implantations, although in situ and implantation doping may be used together.
In
In
After the first spacer layer 80 is formed and prior to forming the second spacer layer 82, implants for lightly doped source/drain (LDD) regions (not separately illustrated) may be performed. In embodiments with different device types, similar to the implants discussed above in
In
As illustrated in
It is noted that the above disclosure generally describes a process of forming spacers and LDD regions. Other processes and sequences may be used. For example, fewer or additional spacers may be utilized, different sequence of steps may be utilized (e.g., the first spacers 81 may be patterned prior to depositing the second spacer layer 82), additional spacers may be formed and removed, and/or the like. Furthermore, the n-type and p-type devices may be formed using different structures and steps.
In
In
In
The inner spacer layer may be deposited by a conformal deposition process, such as CVD, ALD, or the like. The inner spacer layer may comprise a material such as silicon nitride or silicon oxynitride, although any suitable material, such as low-dielectric constant (low-k) materials having a k-value less than about 3.5, may be utilized. The inner spacer layer may then be anisotropically etched to form the first inner spacers 90. Although outer sidewalls of the first inner spacers 90 are illustrated as being flush with sidewalls of the second nanostructures 54 in the n-type region 50N and flush with the sidewalls of the first nanostructures 52 in the p-type region 50P, the outer sidewalls of the first inner spacers 90 may extend beyond or be recessed from sidewalls of the second nanostructures 54 and/or the first nanostructures 52, respectively.
Moreover, although the outer sidewalls of the first inner spacers 90 are illustrated as being straight in
In
The epitaxial source/drain regions 92 in the n-type region 50N, e.g., the NMOS region, may be formed by masking the p-type region 50P, e.g., the PMOS region. Then, the epitaxial source/drain regions 92 are epitaxially grown in the first recesses 86 in the n-type region 50N. The epitaxial source/drain regions 92 may include any acceptable material appropriate for n-type nano-FETs. For example, if the second nanostructures 54 are silicon, the epitaxial source/drain regions 92 may include materials exerting a tensile strain on the second nanostructures 54, such as silicon, silicon carbide, phosphorous doped silicon carbide, silicon phosphide, or the like. The epitaxial source/drain regions 92 may have surfaces raised from respective upper surfaces of the nanostructures 55 and may have facets.
The epitaxial source/drain regions 92 in the p-type region 50P, e.g., the PMOS region, may be formed by masking the n-type region 50N, e.g., the NMOS region. Then, the epitaxial source/drain regions 92 are epitaxially grown in the first recesses 86 in the p-type region 50P. The epitaxial source/drain regions 92 may include any acceptable material appropriate for p-type nano-FETs. For example, if the first nanostructures 52 are silicon germanium, the epitaxial source/drain regions 92 may comprise materials exerting a compressive strain on the first nanostructures 52, such as silicon-germanium, boron doped silicon-germanium, germanium, germanium tin, or the like. The epitaxial source/drain regions 92 may also have surfaces raised from respective surfaces of the multi-layer stack 56 and may have facets.
The epitaxial source/drain regions 92, the first nanostructures 52, the second nanostructures 54, and/or the substrate 50 may be implanted with dopants to form source/drain regions, similar to the process previously discussed for forming lightly-doped source/drain regions, followed by an anneal. The source/drain regions may have an impurity concentration of between about 1×1019 atoms/cm3 and about 1×1021 atoms/cm3. The n-type and/or p-type impurities for source/drain regions may be any of the impurities previously discussed. In some embodiments, the epitaxial source/drain regions 92 may be in situ doped during growth.
As a result of the epitaxy processes used to form the epitaxial source/drain regions 92 in the n-type region 50N and the p-type region 50P, upper surfaces of the epitaxial source/drain regions 92 have facets which expand laterally outward beyond sidewalls of the nanostructures 55. In some embodiments, these facets cause adjacent epitaxial source/drain regions 92 of a same NSFET to merge as illustrated by
The epitaxial source/drain regions 92 may comprise one or more semiconductor material layers. For example, the epitaxial source/drain regions 92 may comprise a first semiconductor material layer 92A, a second semiconductor material layer 92B, and a third semiconductor material layer 92C. Any number of semiconductor material layers may be used for the epitaxial source/drain regions 92. Each of the first semiconductor material layer 92A, the second semiconductor material layer 92B, and the third semiconductor material layer 92C may be formed of different semiconductor materials and may be doped to different dopant concentrations. In some embodiments, the first semiconductor material layer 92A may have a dopant concentration less than the second semiconductor material layer 92B and greater than the third semiconductor material layer 92C. In embodiments in which the epitaxial source/drain regions 92 comprise three semiconductor material layers, the first semiconductor material layer 92A may be deposited, the second semiconductor material layer 92B may be deposited over the first semiconductor material layer 92A, and the third semiconductor material layer 92C may be deposited over the second semiconductor material layer 92B.
In
In
In
In
In other embodiments, the channel regions in the n-type region 50N and the p-type region 50P may be formed simultaneously, for example by removing the first nanostructures 52 in both the n-type region 50N and the p-type region 50P or by removing the second nanostructures 54 in both the n-type region 50N and the p-type region 50P. In such embodiments, channel regions of n-type NSFETs and p-type NSFETS may have a same material composition, such as silicon, silicon germanium, or the like.
In
The formation of the gate dielectrics in the n-type region 50N and the p-type region 50P may occur simultaneously such that the gate dielectrics in each region are formed from the same materials, and the formation of the gate electrodes may occur simultaneously such that the gate electrodes in each region are formed from the same materials. In some embodiments, the gate dielectrics in each region may be formed by distinct processes, such that the gate dielectrics may be different materials and/or have a different number of layers, and/or the gate electrodes in each region may be formed by distinct processes, such that the gate electrodes may be different materials and/or have a different number of layers. Various masking steps may be used to mask and expose appropriate regions when using distinct processes. In the following description, the gate electrodes of the n-type region 50N and the gate electrodes of the p-type region 50P are formed separately.
In
The structure of the gate dielectrics 100 may be the same or different in the n-type region 50N and the p-type region 50P. For example, the n-type region 50N may be masked or exposed while forming the gate dielectrics 100 in the p-type region 50P. In embodiments where the n-type region 50N is exposed, the gate dielectrics 100 may be simultaneously formed in the n-type regions 50N. The formation methods of the gate dielectrics 100 may include molecular-beam deposition (MBD), ALD, PECVD, and the like.
In
In
In
Further, the ALD process for the barrier layer 109 may include flowing one or more precursors into the deposition chamber, and the precursors used during the ALD process may be free of fluorine. For example, when the barrier layer 109 is a tungsten layer, the precursors used in the ALD process may be include a combination of WxCly and H2, where x and y are integers and 0<x<1 and 0<y<1. Because the ALD process does not use any fluorine-comprising precursors, the barrier layer 109 may be free of fluorine and prevents (or at least reduces) diffusion of fluorine from subsequently formed layers into the underlying adhesion layer 107 and the conductive material 105. The barrier layer 109 may be deposited to a thickness T1 in a range of 15 Å to 90 Å. It has been observed that a thickness T1 less than 15 Å may not sufficiently prevent diffusion of fluorine, thereby negatively affecting threshold voltage stability and control in the completed transistor. It has also been observed that a thickness T1 greater than 90 Å, manufacturing costs and/or time may be unacceptably high as ALD processes are more costly and time consuming than other deposition processes (e.g., CVD).
In
The fill metal 117 may comprise cobalt, ruthenium, aluminum, tungsten, combinations thereof, or the like. In some embodiments, the fill metal 117 is deposited using two different deposition processes. For example, a first portion 117A of fill metal layer 117 is deposited over the barrier layer 109 by an ALD process, and a second portion 117B of the fill metal layer 117 may then be deposited over the first portion 117A using a CVD process. It has been observed that the ALD process may allow for a more controlled deposition in areas around the nanostructures 52 while the CVD process provides a faster deposition rate for improved yield. In other embodiments, the fill metal 117 may be deposited using a single deposition process (e.g., CVD), and the first portion 117A that is deposited by the ALD process may be omitted. Accordingly, the first portion 117A is illustrated with dashed lines to indicate that it is optional.
Depositing the fill metal 117 may include using a fluorine-comprising precursor in the ALD and/or CVD processes, and a material composition of the fill metal 117 may be uniform throughout the fill metal 117 regardless of whether a single deposition or multiple depositions are performed. For example, in embodiments where the fill metal 117 comprises tungsten, WF6 may be used as a precursor in the ALD and/or CVD processes. Because a fluorine comprising precursor is used to deposit the fill metal 117, the fill metal 117 may also comprise fluorine. In various embodiments, a fluorine composition of the fill metal 117 may be higher than a fluorine composition of the barrier layer 109. For example, the barrier layer 109 may be substantially free of fluorine, and a fluorine concentration of the fill metal 117 may be in a range of 3.5% to 25%. Thus, the fill metal 117 may be distinguished from the barrier 109 by a fluorine composition analysis, such as XPS depth profile analysis.
Although the fill metal 117 comprises fluorine, the barrier layer 109 may prevent (or at least reduce) fluorine diffusion into the underlying adhesion layer 109 and conductive material 105, and an uneven distribution of fluorine in the different regions (e.g., within the regions 50I compared to outside of the regions 50I) of the conductive material 105 can be avoided. As a result, threshold voltage control and stability in the resulting transistor can be improved by including the barrier layer 109.
In the p-type region 50P, the gate dielectrics 100, the conductive material 105 may be formed on top surfaces, sidewalls, and bottom surfaces of the first nanostructures 52. The gate dielectrics 100, the gate dielectrics 100, the conductive material 105, the adhesion layer 107, the barrier layer 109, and the fill metal 117 may also be deposited on top surfaces and sidewalls of the first nanostructures 52 as well as the top surfaces of the first ILD 96, the CESL 94, the first spacers 81, and the STI regions 58. After the filling of the second recesses 98, a planarization process, such as a CMP, may be performed to remove the excess portions of the gate dielectrics 100, the conductive material 105, the adhesion layer 107, the barrier layer 109, and the fill metal 117 which excess portions are over the top surface of the first ILD 96. The remaining portions of material of the gate electrodes 102 and the gate dielectrics 100 thus form replacement gate structures of the resulting nano-FETs. The gate electrodes 102 and the gate dielectrics 100 may be collectively referred to as “gate structures.”
The gate stack is then formed over and around the second nanostructures 54 in the n-type region 50N. The gate stack includes the gate dielectrics 100 and gate electrodes 127. In some embodiments, the gate dielectrics 100 in the n-type region 50N and the p-type region 50P may be formed simultaneously. Further, at least portions of the gate electrodes 127 may be formed either before or after forming the gate electrodes 102 (see
After the filling of the second recesses 98, a planarization process, such as a CMP, may be performed to remove the excess portions of the gate dielectrics 100 and the gate electrodes 127, which excess portions are over the top surface of the first ILD 96. The remaining portions of material of the gate electrodes 127 and the gate dielectrics 100 thus form replacement gate structures of the resulting nano-FETs of the n-type region 50N. The CMP processes to remove excess materials of the gate electrodes 102 in the p-type region 50P and to remove excess materials of the gate electrodes 127 in the n-type region 50N may be performed concurrently or separately.
In
As further illustrated by
In
After the third recesses 108 are formed, silicide regions 110 are formed over the epitaxial source/drain regions 92. In some embodiments, the silicide regions 110 are formed by first depositing a metal (not shown) capable of reacting with the semiconductor materials of the underlying epitaxial source/drain regions 92 (e.g., silicon, silicon germanium, germanium) to form silicide or germanide regions, such as nickel, cobalt, titanium, tantalum, platinum, tungsten, other noble metals, other refractory metals, rare earth metals or their alloys, over the exposed portions of the epitaxial source/drain regions 92, then performing a thermal anneal process to form the silicide regions 110. The un-reacted portions of the deposited metal are then removed, e.g., by an etching process. Although silicide regions 110 are referred to as silicide regions, silicide regions 110 may also be germanide regions, or silicon germanide regions (e.g., regions comprising silicide and germanide). In an embodiment, the silicide region 110 comprises TiSi, and has a thickness in a range between about 2 nm and about 10 nm.
Next, in
Various embodiments provide transistor gate stacks where a conductive material (e.g., tungsten) is deposited as a fill metal. Various embodiments may further include a barrier layer between the fill metal and underlying work function metal (WFM) layers to prevent fluorine diffusion during deposition and/or the fill metal into the underlying WFM layers. For example, the barrier layer may comprise a tungsten layer that is deposited with fluorine free precursors. By preventing fluorine diffusion into the underlying layers, advantages maybe achieved. For example, by preventing fluorine diffusion into the underlying layers, uneven fluorine distribution in the WFM layers may be avoided in different areas of the gate stack, which results in improved threshold voltage (Vt) stability and control. Vt stability and control may be especially improved in nano-FETs, which are susceptible to uneven fluorine diffusion in regions of the WFM layers between nanosheets compared to other regions of the WFM layers.
In some embodiments, a device includes a first nanostructure; a second nanostructure over the first nanostructure; a high-k gate dielectric around the first nanostructure and the second nanostructure, the high-k gate dielectric having a first portion on a top surface of the first nanostructure and a second portion on a bottom surface of the second nanostructure; and a gate electrode over the high-k gate dielectric. The gate electrode comprises: a first work function metal around the first nanostructure and the second nanostructure, the first work function metal filling a region between the first portion of the high-k gate dielectric and the second portion of the high-k gate dielectric; and a tungsten layer over the first work function metal, the tungsten layer being free of fluorine. Optionally, in some embodiments, the gate electrode further comprises a fill material over the tungsten layer, the fill material having a higher concentration of fluorine than the tungsten layer. Optionally, in some embodiments, the fill material comprises tungsten. Optionally, in some embodiments, a thickness of tungsten layer is in a range of 15 Å to 90 Å. Optionally, in some embodiments, the first work function metal is free of fluorine. Optionally, in some embodiments, the gate electrode further comprises an adhesion layer between the tungsten layer and the first work function metal.
In some embodiments, a transistor includes a first nanostructure over a semiconductor substrate; a second nanostructure over the first nanostructure; a gate dielectric surrounding the first nanostructure and the second nanostructure; and a gate electrode over the gate dielectric. The gate electrode comprises: a work function metal around the first nanostructure and the second nanostructure; a barrier layer on the work function metal; and a fill metal over the barrier layer, wherein the fill metal has a higher concentration of fluorine than the barrier layer. Optionally, in some embodiments, the transistor further comprises an adhesion layer between the barrier layer and the fill metal. Optionally, in some embodiments, a thickness of the barrier layer is in a range of 15 Å to 90 Å. Optionally, in some embodiments, the barrier layer is free of fluorine. Optionally, in some embodiments, the work function metal is free of fluorine. Optionally, in some embodiments, the barrier layer and the fill metal each comprise tungsten. Optionally, in some embodiments, the transistor further comprises an interfacial layer under the gate dielectric, the interface layer surrounding the first nanostructure and the second nanostructure, and the gate dielectric comprises a high-k material.
In some embodiments, a method includes depositing a gate dielectric around a first nanostructure and a second nanostructure, the first nanostructure is disposed over the second nanostructure; depositing a work function metal over the gate dielectric; depositing a barrier layer over the work function metal, wherein depositing the barrier layer comprises a first atomic layer deposition (ALD) process, and wherein the first ALD process does not use any fluorine-comprising precursors; and depositing a fill metal over the barrier layer, wherein depositing the fill metal comprises using a fluorine-comprising precursor. Optionally, in some embodiments, the first ALD process comprises using a combination of WxCly and H2 as precursors. Optionally, in some embodiments, depositing the fill metal comprises a chemical vapor deposition (CVD) process, and wherein the fluorine-comprising precursor is WF6. Optionally, in some embodiments, depositing the fill metal further comprises a second ALD process performed before the CVD process. Optionally, in some embodiments, the ALD process comprises using WF6 as a precursor. Optionally, in some embodiments, the method further includes depositing an adhesion layer between the work function metal and the barrier layer. Optionally, in some embodiments, the barrier layer and the fill metal each comprise tungsten.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Chui, Chi On, Lee, Hsin-Yi, Hung, Cheng-Lung
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10700064, | Feb 15 2019 | International Business Machines Corporation | Multi-threshold voltage gate-all-around field-effect transistor devices with common gates |
9105490, | Sep 27 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | Contact structure of semiconductor device |
9236267, | Feb 09 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | Cut-mask patterning process for fin-like field effect transistor (FinFET) device |
9236300, | Nov 30 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | Contact plugs in SRAM cells and the method of forming the same |
9406804, | Apr 11 2014 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFETs with contact-all-around |
9443769, | Apr 21 2014 | Taiwan Semiconductor Manufacturing Company, Ltd | Wrap-around contact |
9520482, | Nov 13 2015 | Taiwan Semiconductor Manufacturing Company, Ltd | Method of cutting metal gate |
9548366, | Apr 04 2016 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self aligned contact scheme |
9576814, | Dec 19 2013 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of spacer patterning to form a target integrated circuit pattern |
9831183, | Aug 07 2014 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact structure and method of forming |
9859386, | Apr 04 2016 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self aligned contact scheme |
9935173, | Nov 29 2016 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Structure and formation method of semiconductor device structure |
20180151373, | |||
20190051542, | |||
20190096680, | |||
20190296128, | |||
20190305102, | |||
20200083221, | |||
20210013111, | |||
20210296439, | |||
20210366778, | |||
KR20190024569, | |||
KR20190037057, | |||
KR20200035837, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 05 2020 | LEE, HSIN-YI | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054152 | /0358 | |
Oct 05 2020 | HUNG, CHENG-LUNG | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054152 | /0358 | |
Oct 08 2020 | CHUI, CHI ON | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054152 | /0358 | |
Oct 23 2020 | Taiwan Semiconductor Manufacturing Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 23 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Sep 06 2025 | 4 years fee payment window open |
Mar 06 2026 | 6 months grace period start (w surcharge) |
Sep 06 2026 | patent expiry (for year 4) |
Sep 06 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 06 2029 | 8 years fee payment window open |
Mar 06 2030 | 6 months grace period start (w surcharge) |
Sep 06 2030 | patent expiry (for year 8) |
Sep 06 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 06 2033 | 12 years fee payment window open |
Mar 06 2034 | 6 months grace period start (w surcharge) |
Sep 06 2034 | patent expiry (for year 12) |
Sep 06 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |