A cutting system for removing an excess material along a length of a channel constructed using an additive manufacturing process is disclosed. In various embodiments, the cutting system includes a cutter head; a cutter blade attached to the cutter head; a drive cable configured to rotate the cutter head; and a cutter base attached to the cutter head and having a cutter base outer surface configured to contact an internal surface within the channel to guide the cutter blade against the excess material.
|
12. A cutting system for smoothing a down-facing surface of a channel constructed using an additive manufacturing process, comprising:
a cutter head;
a cutter blade attached to the cutter head;
a cutter base connected to the cutter head and having a cutter base outer surface configured to contact an up-facing surface within the channel to guide the cutter blade against the down-facing surface;
a drive cable rotatably connected to and configured to rotate the cutter head and the cutter base, wherein the cutter base outer surface has a substantially cylindrical shape and the cutter blade extends radially outward of the cutter base outer surface; and
a fulcrum having a central hollow portion configured to receive the drive cable along a length of the fulcrum.
1. A cutting system for removing an excess material along a length of a channel constructed using an additive manufacturing process, comprising:
a cutter head;
a cutter blade attached to the cutter head;
a cutter base connected to the cutter head and having a cutter base outer surface configured to contact an internal surface within the channel to guide the cutter blade against the excess material;
a drive cable rotatably connected to and configured to rotate the cutter head and the cutter base,
wherein the cutter base outer surface has a substantially cylindrical shape and the cutter blade extends radially outward of the cutter base outer surface; and
a fulcrum having a central hollow portion configured to receive the drive cable along a length of the fulcrum.
2. The cutting system of
3. The cutting system of
6. The cutting system of
7. The cutting system of
8. The cutting system of
11. The cutting system of
13. The cutting system of
14. The cutting system of
15. The cutting system of
16. The cutting system of
17. The cutting system of
|
The present disclosure relates generally to apparatus and methods used to finish internal portions of additively manufactured components and, more particularly, to apparatus and methods used to smooth down-facing surfaces of channels or passageways extending through additively manufactured components.
Additive manufacturing processes and techniques enable fabrication of components having geometries that are difficult or otherwise impossible to make using other fabrication techniques. For example, components in gas turbine engines may include complex arrays of internal channels for conveying coolants or lubricants that are difficult or impossible to fabricate using more conventional fabrication techniques, such as casting or molding techniques. Additive manufacturing techniques and related advances facilitate formation of such channels having complex geometries or high-aspect ratios (e.g., channels where the ratio of channel length to a characteristic cross sectional dimension is large). However, because of limitations inherent in the additive manufacturing process, and even in other fabrication processes, various internal surfaces of these channels may exhibit distortions or surface roughness following fabrication. For example, down-facing surfaces of circular or similarly shaped channels may include undesirable distortions or surface roughness resulting from material property variations in the vicinity of the weld pool that occur while generating the overhanging surface (i.e., the down-facing surface) of the channel. Left unimproved, these regions of undesirable distortion or surface roughness have the potential to interfere with fluid flow through the channels of the component when used in operation.
A cutting system for removing an excess material along a length of a channel constructed using an additive manufacturing process is disclosed. In various embodiments, the cutting system includes a cutter head; a cutter blade attached to the cutter head; a drive cable configured to rotate the cutter head; and a cutter base connected to the cutter head and having a cutter base outer surface configured to contact an internal surface within the channel to guide the cutter blade against the excess material. In various embodiments, the internal surface is an up-facing surface resulting from the additive manufacturing process. In various embodiments, the excess material is disposed on a down-facing surface resulting from the additive manufacturing process. In various embodiments, a fulcrum is disposed upstream of the cutter head. In various embodiments, the fulcrum is configured to rotate with the drive cable.
In various embodiments, a directional cable is configured to direct the cutter head through the channel. In various embodiments, the directional cable is configured to urge the cutter head toward the excess material. In various embodiments, the directional cable is configured to urge the cutter head away from an up-facing surface. In various embodiments, the directional cable is connected to the cutter base. In various embodiments, the directional cable is connected to a cutter pedestal. In various embodiments, the cutter base is configured to rotate relative to the cutter pedestal and the cutter pedestal is configured to remain stationary with respect to the drive cable.
A cutting system for smoothing a down-facing surface of a channel constructed using an additive manufacturing process is disclosed. In various embodiments, the cutting system includes a cutter head; a cutter blade attached to the cutter head; a drive cable configured to rotate the cutter head; and a cutter base connected to the cutter head and having a cutter base outer surface configured to contact an up-facing surface within the channel to guide the cutter blade against the down-facing surface.
In various embodiments, the cutter head is connected to the cutter base via a hinge connecting the cutter base to a cutter pedestal, the cutter head being rotatably connected to the cutter pedestal. In various embodiments, the drive cable is connected to the cutter head and the hinge is configured to transition the cutter head between a cutting configuration and a non-cutting configuration.
In various embodiments, a housing extends along the drive cable and has a first end configured to contact the cutter base while the cutting system assumes a cutting configuration. In various embodiments, an actuator is configured to apply an axial load on the drive cable while the cutting system assumes the cutting configuration. In various embodiments, the housing is configured to rotate with the drive cable.
A method of removing excess material along a down-facing surface of a channel constructed using an additive manufacturing process is disclosed. In various embodiments, the method includes the following steps: rotating a cutter blade within the channel; guiding the cutter blade along a length of the channel using an up-facing surface of the channel; urging the cutter blade toward the down-facing surface to remove the excess material; and urging the cutter blade away from the up-facing surface.
In various embodiments, the steps of urging the cutter blade toward the down-facing surface and urging the cutter blade away from the up-facing surface comprise applying a push-pull action against a directional cable coupled to the cutter blade. In various embodiments, the step of urging the cutter blade toward the down-facing surface comprises transitioning the cutter blade toward a cutter base via a hinge and the step of urging the cutter blade away from the up-facing surface comprises transitioning the cutter blade away from the cutter base via the hinge.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the following detailed description and claims in connection with the following drawings. While the drawings illustrate various embodiments employing the principles described herein, the drawings do not limit the scope of the claims.
The following detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that changes may be made without departing from the scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected, or the like may include permanent, removable, temporary, partial, full or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. It should also be understood that unless specifically stated otherwise, references to “a,” “an” or “the” may include one or more than one and that reference to an item in the singular may also include the item in the plural. Further, all ranges may include upper and lower values and all ranges and ratio limits disclosed herein may be combined.
Referring now to the drawings,
The gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A (with the arrow pointing in the aft direction) relative to an engine static structure 36 via several bearing systems 38. Various bearing systems at various locations may alternatively or additionally be provided and the location of the several bearing systems 38 may be varied as appropriate to the application. The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in this gas turbine engine 20 is illustrated as a fan drive gear system 48 configured to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and a high pressure turbine 54. A combustor 56 is arranged in the gas turbine engine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46 and may include airfoils 59 in the core flow path C for guiding the flow into the low pressure turbine 46. The mid-turbine frame 57 further supports the several bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via the several bearing systems 38 about the engine central longitudinal axis A, which is collinear with longitudinal axes of the inner shaft 40 and the outer shaft 50.
The air in the core flow path C is compressed by the low pressure compressor 44 and then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, and then expanded over the high pressure turbine 54 and the low pressure turbine 46. The low pressure turbine 46 and the high pressure turbine 54 rotationally drive the respective low speed spool 30 and the high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, the compressor section 24, the combustor section 26, the turbine section 28, and the fan drive gear system 48 may be varied. For example, the fan drive gear system 48 may be located aft of the combustor section 26 or even aft of the turbine section 28, and the fan section 22 may be positioned forward or aft of the location of the fan drive gear system 48.
Various components of the gas turbine engine 20 include conduits, channels or passageways extending through the component or a portion thereof. For example, components in the gas turbine engine 20 may include internal channels for conveying a coolant. Such components include, for example, the blades and the stators that comprise the compressor and turbine sections described above. Such components may also comprise internal channels for conveying bleed air from the compressor to other areas of the gas turbine engine 20 benefitting from a source of high-pressure cooling fluid. Other components comprising conduits, channels or passageways include the lubrication system, where lubricants are delivered from a pump to bearings and the like. Many of these various components are constructed using additive manufacturing techniques and include conduits, channels or passageways having curved or straight portions or combinations thereof with an internal surface having undesirable roughness or distortion, particularly along a length of a down-facing surface, following the additive manufacturing process.
Referring now to
In various embodiments, the channel 202 is curved at one or more portions along a length defined by an arc-length distance from the first end 204 to the second end 206. As illustrated, for example, the channel 202, in various embodiments, includes a first curved portion 210 downstream (or upstream) of the first end 204, followed by a substantially straight portion 212, and then followed by a second curved portion 214 upstream (or downstream) of the second end 206. In various embodiments, the first curved portion 210 may be characterized such that a line of sight does not exist between the location of the channel 202 where the first curved portion 210 commences and the location of the channel 202 where the first curved portion 210 terminates or where the substantially straight portion 212 commences. A similar characterization applies to the second curved portion 214 or any additional curved portions that may be present in a passageway. The disclosure that follows provides, among other things, apparatus and methods to reduce the surface roughness of the channel 202 within the component 200, or other components having a various numbers of curved or straight passageways. More particularly, the disclosure provides apparatus and methods useful in smoothing distortions or surface roughness along the down-facing surface 209 of the channel 202 using the up-facing surface 211 as a support surface or guide. While the disclosure contemplates smoothing distortions as described above, it is noted that the apparatus and methods described herein may, in various embodiments, be used as a precursor step to subsequent finishing steps that are not typically focused on preferential removal of material from relatively rough, down-facing surfaces. Accordingly, in various embodiments, such a precursor step may be necessary or prove beneficial to the application of subsequent finishing steps where a final channel geometry (including surface smoothness) is achieved with as little subsequent finishing as possible. Further, because subsequent finishing steps typically do not remove material preferentially, there exist certain geometries that require or at least greatly benefit from application of the apparatus and methods described herein as a precursor step to subsequent finishing steps.
Referring now to
Referring now to
Still referring to
Referring now to
In various embodiments, the cutting system 420 may include one or more directional cables 450 (or a directional cable), such as, for example, a first directional cable 451, a second directional cable 452 and a third directional cable 453. The one or more directional cables 450 are configured to direct the cutter head 424 through the channel and to focus the cutting action of the cutter head 424 on, for example, the excess material existing proximate a down-facing surface of the channel. In various embodiments, the rotary driver 430 is configured to impart a sinusoidal push-pull action against the one or more directional cables 450 such that the cutter blade 426 is urged against the down-facing surface and is urged away from the up-facing surface. For example, during the single rotary direction 432 mode of operation, the first directional cable 451 may be pulled toward the rotary driver 430 when proximate the down-facing surface, while the second directional cable 452 and the third directional cable 453 are pushed away from the rotary driver 430. Similarly, the first directional cable 451 may be pushed away from the rotary driver 430 while proximate the up-facing surface, while the second directional cable 452 and the third directional cable 453 are pulled toward the rotary driver 430. The push-pull action of the one or more directional cables 450 just described ensures only the region of excess material is removed, while leaving the relatively smooth up-facing surface undisturbed by the cutter blade 426. The sinusoidal push-pull action also ensures a smooth transition as the cutter blade 426 passes between the down-facing surface to the up-facing surface or between various rough surfaces requiring cutting and relatively smooth surfaces that do not benefit from cutting. Further, the sinusoidal push-pull action is applicable to either the single rotary direction 432 mode of operation or the dual rotary direction 434 mode of operation. Note that while the push-pull action described above is beneficial in cutting the down-facing surface while leaving the up-facing surface substantially uncut, the disclosure contemplates the push-pull action being configured, in various embodiments, to cut both the down-facing surface and at least some or all of the up-facing surface as well. Cutting some or all of the up-facing surface may prove beneficial in various situations, particularly where there exist large distortions of the component or where a portion of the channel is required to me moved to a specific location relative to a reference location following the additive manufacturing process.
Still referring to
Referring now to
In various embodiments, the cutting system 520 may include one or more directional cables 550 (or a directional cable), such as, for example, a first directional cable 551, a second directional cable 552 and a third directional cable 553. The one or more directional cables 550 are configured to direct the cutter head 524 through the channel and to focus the cutting action of the cutter head 524 on, for example, the excess material existing proximate a down-facing surface of the channel. In various embodiments, the rotary driver 530 is configured to impart a sinusoidal push-pull action against the one or more directional cables 550 such that the cutter blade 526 is urged against the down-facing surface and is urged away from the up-facing surface, in a manner similar to that described above with reference to
Still referring to
Referring more specifically to
Referring now to
In various embodiments, the first hinge 670 and the second hinge 671 are configured to move or transition the cutter head 624 between a cutting configuration (as illustrated in
Referring now to
In various embodiments, a housing 790 includes a first end 791 configured to provide a contact or support surface for the cutter base 722 while the cutting system 720 assumes a cutting configuration (as illustrated in
Referring now to
The foregoing disclosure provides apparatus and methods that enable greater design freedom in finishing internal passages or channels disposed within components made using additively manufacturing techniques. The apparatus and methods, in particular, facilitate enhanced uniformity and precision of the channels during finishing processes subsequent to initial fabrication of components via an additive manufacturing process.
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Different cross-hatching is used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
Systems, methods and apparatus are provided herein. In the detailed description herein, references to “one embodiment”, “an embodiment”, “various embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Finally, it should be understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although various embodiments have been disclosed and described, one of ordinary skill in this art would recognize that certain modifications would come within the scope of this disclosure. Accordingly, the description is not intended to be exhaustive or to limit the principles described or illustrated herein to any precise form. Many modifications and variations are possible in light of the above teaching.
Fisher, Brian A., Morganson, David W.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10220444, | Nov 20 2015 | RTX CORPORATION | Additive manufactured conglomerated powder removal from internal passages |
8393242, | Aug 12 2008 | NTN Corporation | Remote-controlled actuator |
8459373, | Jan 08 2010 | Modified power tool | |
9282976, | Mar 05 2010 | NTN Corporation | Remote-controlled actuator assembly |
9446455, | May 29 2014 | SANEXEN ENVIRONMENTAL SERVICES INC | Drilling apparatus |
20070093840, | |||
20160228975, | |||
20170197284, | |||
20170297156, | |||
20180117731, | |||
AT508891, | |||
EP2361563, | |||
EP2420194, | |||
EP2556802, | |||
GB2517490, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 06 2019 | RAYTHEON TECHNOLOGIES CORPORATION | (assignment on the face of the patent) | / | |||
Jun 06 2019 | FISHER, BRIAN A | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049396 | /0623 | |
Jun 06 2019 | MORGANSON, DAVID W | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049396 | /0623 | |
Apr 03 2020 | United Technologies Corporation | RAYTHEON TECHNOLOGIES CORPORATION | CORRECTIVE ASSIGNMENT TO CORRECT THE SPELLING ON THE ADDRESS 10 FARM SPRINGD ROAD FARMINGTONCONNECTICUT 06032 PREVIOUSLY RECORDED ON REEL 057190 FRAME 0719 ASSIGNOR S HEREBY CONFIRMS THE CORRECT SPELLING OF THE ADDRESS 10 FARM SPRINGS ROAD FARMINGTON CONNECTICUT 06032 | 057226 | /0390 | |
Apr 03 2020 | United Technologies Corporation | RAYTHEON TECHNOLOGIES CORPORATION | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 057190 | /0719 | |
Jul 14 2023 | RAYTHEON TECHNOLOGIES CORPORATION | RTX CORPORATION | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 064714 | /0001 |
Date | Maintenance Fee Events |
Jun 06 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Oct 18 2025 | 4 years fee payment window open |
Apr 18 2026 | 6 months grace period start (w surcharge) |
Oct 18 2026 | patent expiry (for year 4) |
Oct 18 2028 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 18 2029 | 8 years fee payment window open |
Apr 18 2030 | 6 months grace period start (w surcharge) |
Oct 18 2030 | patent expiry (for year 8) |
Oct 18 2032 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 18 2033 | 12 years fee payment window open |
Apr 18 2034 | 6 months grace period start (w surcharge) |
Oct 18 2034 | patent expiry (for year 12) |
Oct 18 2036 | 2 years to revive unintentionally abandoned end. (for year 12) |