A photoplethysmography (ppg) device includes an equipment module which includes a photodetector and first and second light emitting diodes (led's) adapted to emit light of first and second wavelengths, respectively. The ppg device also includes a mask covering the patient facing extremity of the equipment module so that when the device is applied to a patient the mask is situated between the patient and the patient facing extremity. A processor is adapted to control drive current and/or operating time of the second led to achieve an elevated localized body tissue temperature of a patient to which the ppg device is applied.
|
11. A photoplethysmography (ppg) device comprising:
a first light emitting diode (led) adapted to emit light of a first wavelength;
a second led adapted to emit light of a second wavelength;
a photodetector;
a processor adapted to control a drive current and/or an operating time of the second led to achieve an elevated localized body tissue temperature of a patient to which the ppg device is applied, and
a mask, wherein the mask comprises a plate-like member having a first window that registers with both the first led and the second led without receiving the first and second led's therein and having a second window spaced from the first window that registers with the photodetector without receiving the photodetector therein, wherein the plate-like member comprises a unitary aluminum foil layer through which the first and second windows extend.
1. A photoplethysmography (ppg) device comprising:
an equipment module which includes:
a first light emitting diode (led) adapted to emit light of a first wavelength from a patient facing extremity of the equipment module;
a second led adapted to emit light of a second wavelength from the patient facing extremity of the equipment module; and
a photodetector; and
a mask covering the patient facing extremity of the equipment module so that when the ppg device is applied to a patient the mask is situated between the patient and the patient facing extremity, wherein the mask comprises a plate-like member having a first window that registers with both the first led and the second led and having a second window spaced from the first window that registers with the photodetector, wherein the plate-like member comprises a unitary aluminum foil layer through which the first and second windows extend.
15. A method for conducting a photoplethsymographic (ppg) procedure on a person, the method comprising:
illuminating, through a first window of a plate-like mask, a tissue sample of the person with radiation of a first wavelength emitted from a first light emitting diode (led) and radiation of a second wavelength emitted from a second led;
trapping radiation in the tissue sample;
detecting, through a second window of the plate-like mask, at least a portion of tissue-reflected first wavelength radiation and tissue-reflected second wavelength radiation, wherein the second window is spaced from the first window, wherein the plate-like mask comprises a unitary aluminum foil layer, wherein the first and second windows comprise respective openings extending through the unitary aluminum foil layer, and wherein the mask further comprises a transparent material that fills the openings; and
analyzing the tissue-reflected first wavelength radiation and a detected non-reintroduced second wavelength radiation to determine a parameter of interest, wherein the parameter of interest includes one or more of the following: blood oxygen saturation, blood pressure, heart rate, respiration, and arterial compliance of the person.
18. A method for conducting a photoplethsymographic (ppg) procedure on a person, the method comprising:
warming a tissue sample of the person with radiation of a second wavelength emitted from a second light emitting diode (led);
illuminating the tissue sample with radiation of a first wavelength emitted from a first led and radiation of the second wavelength emitted from the second led, wherein the first led and the second led are in registry with a first window of a plate-like mask;
detecting, through a second window of the plate-like mask, tissue-reflected first wavelength radiation and tissue-reflected second wavelength radiation, wherein the second window is spaced from the first window, wherein the plate-like mask comprises a unitary aluminum foil layer through which the first and second windows extend, wherein the first and second windows comprise respective openings extending through the unitary aluminum foil layer, and wherein the mask further comprises a transparent material that fills the openings; and
analyzing the tissue-reflected first wavelength radiation and the tissue-reflected second wavelength radiation to determine a parameter of interest, wherein the parameter of interest includes one or more of the following: blood oxygen saturation, blood pressure, heart rate, respiration, and arterial compliance of the person.
5. The ppg device of
6. The ppg device of
7. The ppg device of
8. The ppg device of
9. The ppg device of
10. The ppg device of
12. The ppg device of
13. The ppg device of
14. The ppg device of
16. The method of
17. The method of
|
The present disclosure claims the benefit, under 35 U.S.C. 119(e), of U.S. Provisional Application No. 62/854,502, filed May 30, 2019, and U.S. Provisional Application No. 62/860,862, filed Jun. 13, 2019, each of which is hereby incorporated by reference herein in its entirety.
The subject matter described herein relates to photoplethsymography, and particularly to a photoplethsymography (PPG) device having thermal trapping and/or warming capability and associated methods of using the device.
Photoplethysmography (PPG) is a simple, low cost, optical technique used to detect volumetric changes in biological tissue. Applications of PPG include monitoring blood oxygen saturation, blood pressure, heart rate, respiration, and arterial compliance to name just a few (Photoplethysmography (PPG), https://www.news-medical.net/health/Photoplethysmography-(PPG).aspx, Susha Cheriyedath, M. Sc.).
In operation a conventional photoplethysmography device illuminates a tissue site alternately with light of first and second wavelengths, typically red (approximately 650 nm) and infrared (approximately 950 nm). Light which is not absorbed or otherwise dissipated penetrates through the tissue (transmittance PPG device) or is reflected back (reflectance PPG device). Either way the light arrives at a photodetector such as a photodiode. Taking blood oxygen saturation (SpO2) as an example application, a processor estimates the SpO2 value in a well-known manner as a function of the intensity of light received at the photodetector in response to the red illumination and the infrared illumination during both pulsatile and nonpulsatile phases of the patient's heart cycle.
One challenge associated with PPG devices is that the signal received at the photodetector contains both a static component and a fluctuating component (often referred to as DC and AC components). The DC component is attributable to things other than pulsatile arterial blood (e.g. flesh, bone) and is not typically of interest. The AC component is attributable to pulsating arterial blood flow and contains the information of interest. However the AC component is quite small in comparison to the DC component (on the order of 1% of the DC component). As a result, the signal may be difficult to detect and its information content may be difficult to extract.
Therefore, what is needed is a PPG device and associated methods that cause the AC component of the signal to be less difficult to detect and its information content easier to extract.
An apparatus, system, or method may comprise one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:
According to a first aspect of the present disclosure, a photoplethysmography (PPG) device may include an equipment module which, in turn, may include a first light emitting diode (LED) that may be adapted to emit light of a first wavelength from a patient facing extremity of the equipment module, a second LED that may be adapted to emit light of a second wavelength from the patient facing extremity of the equipment module, and a photodetector. The PPG device of the first aspect may also include a mask that may cover the patient facing extremity of the equipment module so that when the PPG device is applied to a patient the mask may be situated between the patient and the patient facing extremity.
In some embodiments of the PPG device of the first aspect, the mask may include a reflective mask. Optionally, the PPG device of the first aspect may be non-enveloping when applied to the patient. Further optionally, the photodetector of the first aspect may include a photodiode. If desired, the photodetector of the first aspect may include an array of two or more photodetectors. Alternatively or additionally, the photodetector may include a ring of photodetectors that may circumscribe the first and second LED's.
It is contemplated by the present disclosure that the PPG device of the first aspect may further include a processor that may be adapted to control a drive current and an operating time of the second LED to achieve an elevated body tissue temperature of a patient to which the PPG device may be applied. If desired, the PPG device of the first aspect may further have a temperature sensor that may be adapted to detect the elevated body tissue temperature. As such, the processor of the first aspect may be adapted to control the drive current and the operating time of the second LED to achieve and maintain the detected elevated body tissue temperature at a specified value. Optionally, the first wavelength may be from a visible portion of an electromagnetic spectrum and the second wavelength may be from an infrared portion of the electromagnetic spectrum.
According to a second aspect of the present disclosure, a photoplethysmography (PPG) device may include a first light emitting diode (LED) that may be adapted to emit light of a first wavelength, a second LED that may be adapted to emit light of a second wavelength, and a photodetector. The PPG device of the second aspect may also include a processor that may be adapted to control a drive current and/or an operating time of the second LED to achieve an elevated localized body tissue temperature of a patient to which the PPG device may be applied.
In some embodiments, the PPG device of the second aspect may further include a temperature sensor that may be adapted to detect the elevated localized body tissue temperature. If desired, the processor of the second aspect may be adapted to control the drive current and/or the operating time of the second LED to achieve and maintain the elevated localized body tissue temperature at a specified value. With regard to the second aspect, the first wavelength may be from a visible portion of an electromagnetic spectrum and the second wavelength may be from an infrared portion of the electromagnetic spectrum.
According to a third aspect of the present disclosure, a method for conducting a photoplethsymographic (PPG) procedure may include illuminating a tissue sample with radiation of a first wavelength and radiation of a second wavelength, trapping radiation in the tissue sample, detecting at least a portion of tissue-reflected first wavelength radiation and tissue-reflected second wavelength radiation, and analyzing the tissue-reflected first wavelength radiation and a detected non-reintroduced second wavelength radiation to determine a parameter of interest.
In some embodiments, the method of the third aspect may further include warming the tissue sample with radiation of the second wavelength prior to detecting the at least a portion of tissue-reflected first wavelength radiation and the tissue-reflected second wavelength radiation. Optionally, the method of the third aspect may also include warming the tissue sample with radiation of the second wavelength prior to illuminating the tissue sample with radiation of the first wavelength and radiation of the second wavelength.
According to a fourth aspect of the present disclosure, a method for conducting a photoplethsymographic (PPG) procedure may include warming a tissue sample with radiation of a second wavelength, illuminating the tissue sample with radiation of a first wavelength and radiation of the second wavelength, detecting tissue-reflected first wavelength radiation and tissue-reflected second wavelength radiation, and analyzing the tissue-reflected first wavelength radiation and the tissue-reflected second wavelength radiation to determine a parameter of interest.
Additional features, which alone or in combination with any other feature(s), such as those listed above and those listed in the claims, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of various embodiments exemplifying the best mode of carrying out the embodiments as presently perceived.
The foregoing and other features of the various embodiments of the PPG device described herein will become more apparent from the following detailed description and the accompanying drawings in which:
The present invention may comprise one or more of the features recited in the appended claims and/or one or more of the following features or combinations thereof.
In this specification and drawings, features similar to or the same as features already described may be identified by reference characters or numerals which are the same as or similar to those previously used. Similar elements may be identified by a common reference character or numeral, with suffixes being used to refer to specific occurrences of the element.
Referring to
The equipment module 12 includes a first light emitting diode (LED) 20 adapted to emit light of a first wavelength λ1 from the patient facing extremity 14 of the equipment module 12. In one embodiment the first wavelength is from the visible portion of the electromagnetic spectrum, for example about 650 nm which corresponds to visible red light. The equipment module 12 also includes a second light emitting diode 22 adapted to emit light of a second wavelength λ2 from the patient facing extremity 14 of the equipment module 12. The second wavelength is from the infrared portion of the electromagnetic spectrum, for example about 950 nm. As is evident from the foregoing, the word “light,” as used in this specification, is not limited to emissions in the visible portion of the electromagnetic spectrum.
The PPG device 10 of
The equipment module 12 also includes a photodetector 24 such as a photodiode. Photodiodes are used as the example of the photodetector in the balance of this specification. The illustrated embodiment includes an array of six photodiodes 24 arranged in a ring that circumscribes the first and second LED's 20, 22.
Wires 26 extend from opposite side 16 of the PPG device 10 to connect the device 10 to an electrical power source and, if necessary, to provide an information or data communication pathway. In other embodiments the device 10 may be powered by an on-board battery and/or the communication may be by wireless communication.
The PPG 10 device also includes a mask 40 having a module facing side 42 and a patient facing side 44. In one embodiment the mask 40 includes an aluminum foil layer that reflects radiation back into the tissue. Such a reflective mask 40 may reflect radiation across a broad spectrum of wavelengths or may be tailored to reflect radiation of only a selected wavelength band. In another embodiment, the mask 40 is an insulating mask which is not necessarily reflective.
Mask 40 includes a center window 50 and a set of six peripheral windows 52. As seen best in
Window 50 is transparent to the wavelengths of light emitted by LED's 20, 22. Taking 650 nm and 950 nm as an example, in one embodiment, the entire center window 50 is transparent to at least 650 nm and 950 nm light. In another embodiment, center window 50 has a first segment which overlies first LED 20 and is transparent to 650 nm light, and a second segment which overlies second LED 22 and is transparent to 950 nm light. Yet another embodiment includes two separate windows, one overlying the 650 nm first LED and transparent to 650 nm light, and the other overlying the 950 nm first LED and transparent to 950 nm light. Window or windows 50 may be openings, or may be a material having the requisite transparency.
In order for the photodiodes 24 to receive light reflected from the patient's tissue at both the first and second wavelengths, peripheral windows 52 are transparent to those wavelengths. Windows 52 may be openings, or may be a material having the requisite transparency.
In operation, the device 10 is applied to the patient as seen best in
As seen in
A method for conducting a photoplethsymographic (PPG) procedure in accordance with the embodiments described above includes illuminating a tissue sample with radiation of a first wavelength and radiation of a second wavelength, and trapping radiation in the tissue sample. The method includes detecting at least a portion of tissue-reflected first wavelength radiation and tissue-reflected second wavelength radiation (i.e. the radiation that was not trapped in the tissue). The method also includes analyzing the detected first wavelength radiation and the detected second wavelength radiation to determine a parameter of interest. Such parameter of interest may include blood oxygen saturation, to name just one of many that will occur to those skilled in the art.
Referring to
Processor 64 is adapted to control the drive current output from second LED driver 62 and/or the operating time of the second LED 22 in order to achieve an elevated localized body tissue temperature of the patient to which the PPG device 10 is applied. Elevated temperature means a temperature higher than that which would result if the drive current and/or LED operating time were not controlled in a way intended to achieve a tissue temperature high enough to boost the AC portion of the signal received at the photodetector 24 as seen in
The PPG may also include a temperature sensor adapted to detect the body tissue temperature. In
A method for conducting a photoplethsymographic (PPG) procedure in accordance with the embodiments described above includes warming a tissue sample with radiation of a second wavelength and illuminating the tissue sample with radiation of a first wavelength and radiation of the second wavelength. The method also includes detecting tissue-reflected first wavelength radiation and tissue-reflected second wavelength radiation. The method also includes analyzing the detected first wavelength radiation and the detected second wavelength radiation to determine a parameter of interest.
A method for conducting a photoplethsymographic (PPG) procedure in accordance with the combined embodiments described above includes warming a tissue sample with radiation of a second wavelength and trapping heat energy in the tissue sample. The method also includes illuminating the tissue sample with radiation of a first wavelength and radiation of the second wavelength. The method also includes detecting at least a portion of tissue-reflected first wavelength radiation and at least a portion of tissue-reflected second wavelength radiation (i.e. the tissue reflected first and second wavelength radiation that was not trapped in the tissue). The method also includes analyzing the detected first wavelength radiation and the detected second wavelength radiation to determine a parameter of interest.
Although this disclosure refers to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the subject matter set forth in the accompanying claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10149628, | May 20 2014 | Samsung Electronics Co., Ltd.; THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY (IAC) | Signal processing method and apparatus |
10506944, | Mar 16 2013 | EMPATICA SRL | Apparatus for electrodermal activity measurement with current compensation |
4259963, | Jul 03 1979 | Multi-purpose transducer for transcutaneous blood measurements | |
4714080, | Oct 06 1986 | COLIN ELECTRONICS CO , LTD | Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation |
4723554, | Apr 27 1984 | Massachusetts Institute of Technology | Skin pallor and blush monitor |
4926867, | May 27 1986 | Sumitomo Electric Industries, Ltd. | Light-reflecting and heating type oximeter |
5007423, | Oct 04 1989 | OMRON HEALTHCARE CO , LTD | Oximeter sensor temperature control |
5158082, | Aug 23 1990 | SpaceLabs, Inc. | Apparatus for heating tissue with a photoplethysmograph sensor |
5560652, | Jun 21 1994 | Note pad with single hole or pair of slits and writing instrument combination | |
5766127, | Sep 30 1996 | Datex-Ohmeda, Inc | Method and apparatus for improved photoplethysmographic perfusion-index monitoring |
9775528, | Jun 30 2014 | KONINKLIJKE PHILIPS N V | Photoplethysmography sensor apparatus and method |
9999397, | Dec 29 2014 | Samsung Electronics Co., Ltd. | Biosignal processing method and apparatus |
20070185393, | |||
20110054336, | |||
20120253156, | |||
20130158372, | |||
20140005557, | |||
20140275890, | |||
20150190063, | |||
20160007929, | |||
20160361004, | |||
20170209055, | |||
20180028077, | |||
20190380586, | |||
20200229767, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 15 2020 | Welch Allyn, Inc. | (assignment on the face of the patent) | / | |||
Sep 06 2020 | BREMER, EDWARD C | Welch Allyn, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053784 | /0925 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | Hill-Rom Services, Inc | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | ALLEN MEDICAL SYSTEMS, INC | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | Welch Allyn, Inc | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | BREATHE TECHNOLOGIES, INC | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | VOALTE, INC | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | BARDY DIAGNOSTICS, INC | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | HILL-ROM HOLDINGS, INC | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 | |
Dec 13 2021 | JPMORGAN CHASE BANK, N A | Hill-Rom, Inc | RELEASE OF SECURITY INTEREST AT REEL FRAME 050260 0644 | 058517 | /0001 |
Date | Maintenance Fee Events |
May 15 2020 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Mar 21 2026 | 4 years fee payment window open |
Sep 21 2026 | 6 months grace period start (w surcharge) |
Mar 21 2027 | patent expiry (for year 4) |
Mar 21 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 21 2030 | 8 years fee payment window open |
Sep 21 2030 | 6 months grace period start (w surcharge) |
Mar 21 2031 | patent expiry (for year 8) |
Mar 21 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 21 2034 | 12 years fee payment window open |
Sep 21 2034 | 6 months grace period start (w surcharge) |
Mar 21 2035 | patent expiry (for year 12) |
Mar 21 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |