A saddle-riding type vehicle includes: a vehicle body frame; a swing arm supported in a swingable manner with respect to a pivot frame of the vehicle body frame; and a rear suspension in which a link arm supported by the swing arm and the pivot frame are coupled, and damping is controlled by a hydraulic oil. In addition, the saddle-riding type vehicle includes: a sub-tank provided in the rear suspension and storing the hydraulic oil; and a detection sensor that detects behavior of a vehicle body while traveling. Moreover, in a top view of the saddle-riding type vehicle viewed from above, the sub-tank and the detection sensor are disposed so as to overlap with each other.
|
1. A saddle-riding vehicle comprising: a vehicle body frame; a suspension in which a swing arm supported in a swingable manner with respect to the vehicle body frame and the vehicle body frame are coupled, and damping is controlled by a hydraulic oil; a tank unit provided in the suspension and storing the hydraulic oil; and a sensor that detects behavior of a vehicle body while traveling,
wherein, in a top view of the saddle-riding vehicle, the tank unit and the sensor are disposed so as to overlap with each other, and
the sensor is disposed above an upper end of the tank unit.
6. A saddle-riding vehicle comprising: a vehicle body frame; a suspension in which a swing arm supported in a swingable manner with respect to the vehicle body frame and the vehicle body frame are coupled, and damping is controlled by a hydraulic oil; a tank unit provided in the suspension and storing the hydraulic oil; and a sensor that detects behavior of a vehicle body when traveling,
wherein, in a top view of the saddle-riding vehicle, the tank unit and the sensor are disposed so as to overlap with each other,
the saddle-riding vehicle further comprises a fuel tank fixed to the vehicle body frame and storing a fuel,
wherein the sensor is provided below the fuel tank.
2. The saddle-riding vehicle according to
3. The saddle-riding vehicle according to
wherein the sensor is disposed between the seat and the tank unit.
4. The saddle-riding vehicle according to
|
This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2020-048311 filed on Mar. 18, 2020, the contents of which are incorporated herein by reference.
The present invention relates to a saddle-riding type vehicle having a sensor that detects behavior of a vehicle body and performing control of a suspension based on a detection signal of the sensor.
There is known from the past a saddle-riding type vehicle installed with a vehicle body behavior sensor for detecting behavior of a vehicle body while traveling (refer to Japanese Patent No. 6613092, for example). This saddle-riding type vehicle includes: a front wheel and a rear wheel; an engine disposed between the front wheel and the rear wheel; a fuel tank disposed above the engine; and an air cleaner box disposed between the engine and the fuel tank, wherein the vehicle body behavior sensor is housed in a recess provided in an upper wall surface of the air cleaner box facing the fuel tank.
Such a vehicle body behavior sensor, which is provided for detecting vehicle body behavior such as inclination or acceleration of the vehicle body while traveling, is generally capable of detecting more highly accurate behavior by being disposed in a position close to a center-of-gravity of the vehicle body, hence it is desirable for the vehicle body behavior sensor to be disposed in a position closer to the center-of-gravity.
A general object of the present invention is to provide a saddle-riding type vehicle that enables a sensor to be disposed in a position closer to a center-of-gravity of a vehicle body and behavior of the vehicle body to be more highly accurately detected.
An aspect of the present invention is a saddle-riding type vehicle including: a vehicle body frame; a suspension in which a swing arm supported in a swingable manner with respect to the vehicle body frame and the vehicle body frame are coupled, and damping is controlled by a hydraulic oil; a tank unit provided in the suspension and storing the hydraulic oil; and a sensor that detects behavior of a vehicle body while traveling, wherein, in a top view of the saddle-riding type vehicle, the tank unit and the sensor are disposed so as to overlap with each other.
Due to the present invention, a saddle-riding type vehicle includes a suspension in which a swing arm supported in a swingable manner with respect to a vehicle body frame and the vehicle body frame are coupled, and damping is controlled by a hydraulic oil, wherein a tank unit provided in the suspension and storing the hydraulic oil, and a sensor that detects behavior of a vehicle body while traveling, are disposed so as to overlap with each other in a top view of the saddle-riding type vehicle.
Thus, by the sensor being disposed coming close to the suspension which is provided in a vicinity of a center-of-gravity of the saddle-riding type vehicle, and, moreover, by the sensor being disposed so as to overlap with the tank unit which stores the hydraulic oil and has an increased weight, the sensor can be disposed closer to the center-of-gravity. As a result, it becomes possible for behavior of the vehicle body to be more highly accurately detected by the sensor disposed closer to the center-of-gravity of the saddle-riding type vehicle.
The above and other objects, features, and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings, in which a preferred embodiment of the present invention is shown by way of illustrative example.
As shown in
As shown in
Moreover, the main frame 32 extends branching in a two-pronged fork-shape manner in the vehicle width direction, rearwardly from the head pipe 30. A fuel tank 40 is disposed between its branches, and stores a fuel to be supplied to the engine 18. The fuel tank 40, which is formed in a shape of a box having a certain capacity inside, is provided extending in the front-rear direction at a position of a lower portion of the seat 38.
Furthermore, a lower portion of the main frame 32 is provided with a pair of lower frames 42 branching rearwardly in a two-pronged fork-shape manner in the vehicle width direction, which hold the engine 18. The rear ends of the lower frames 42 are connected to the pivot frame 34.
The pivot frame 34 has its front end branching in a two-pronged fork-shape manner in the up-down direction, has the main frame 32 connected to its upper portion side, and has the lower frames 42 connected to its lower portion side. Moreover, a rear end of the pivot frame 34 has a front end of the swing arm 22 axially supported thereby, in a swingable manner upwardly/downwardly, by a pivot shaft 44, and has coupled thereto at a position upward of the pivot shaft 44 a later-mentioned one end portion 24a of the rear suspension 24.
The swing arm 22, which is a cantilever structure that extends rearwardly from the pivot shaft 44 and is supported in a swingable manner by the pivot shaft 44 alone, has the rear wheel 20 supported in a freely rotating manner by its rear end, and has a link arm 46 connected thereto at a position between its front end and its rear end.
As shown in
As a result, the link arm 46 is connected in a freely revolving manner with respect to the pivot frame 34 and the link rod 47, and its rear end side is enabled to swing with its front end supported by the pivot frame 34 as a fulcrum, by the rear suspension 24 being expanded/contracted, due to swinging of the swing arm 22.
The rear suspension 24, which is a hydraulic (oil pressure) control type suspension enabling damping to be freely controlled by hydraulic pressure, for example, includes: a coil spring 48 and a hydraulic damper 50; a solenoid valve 52 that controls a flow rate of a hydraulic oil of the hydraulic damper 50; and a sub-tank (a tank unit) 54 that stores in advance a certain amount of the hydraulic oil. The coil spring 48 is provided surrounding an outer peripheral side of the hydraulic damper 50.
The hydraulic damper 50 has on its inside a cylinder chamber (not illustrated) filled with the hydraulic oil, and is provided with a piston rod joined to a piston provided in a free-stroke manner in an axial direction along the cylinder chamber, the piston rod being provided exposed to outside. Moreover, one end portion of the hydraulic damper 50 is coupled at a position upward of the pivot shaft 44 to the pivot frame 34, and its other end portion being an end portion of the unillustrated piston rod is coupled, disposed downwardly rearwards, to the link arm 46.
That is, the rear suspension 24 including the hydraulic damper 50 is coupled to the vehicle body frame 16 in a forwardly inclined state of being inclined at a certain angle in such a manner that its one end portion 24a will be directed upwardly forwards, and its another end portion 24b will be directed downwardly rearwards.
Moreover, as shown in
Furthermore, as shown in
The sub-tank 54, which is formed extending in the vehicle width direction with a circular-shaped cross section, for example, is disposed further to a forward side and more downwardly than the solenoid valve 52, and is connected to the cylinder chamber (not illustrated) of the hydraulic damper 50 via unillustrated hydraulic piping.
Moreover, by the solenoid valve 52 being inputted with a control signal from the unillustrated controller, the solenoid valve 52 opens/closes, and the flow rate of the hydraulic oil in the cylinder chamber of the hydraulic damper 50 is controlled.
In the above-mentioned rear suspension 24, as shown in
The detection sensor 26, which is a gyro sensor capable of detecting behavior of the vehicle body while traveling, for example, is configured capable of detecting movement amount or acceleration around the axis with respect to a front-rear axis, an up-down axis, and a left-right axis, and of outputting the detected movement amount or acceleration to the controller as a detection signal.
As shown in
Moreover, the detection sensor 26 is disposed or extends even more to the forward side than the sub-tank 54 which is positioned on the most forward side in the rear suspension 24. By the detection sensor 26 being thus disposed at a position on a forward side of the forwardly inclined rear suspension 24 and below the seat 38 and fuel tank 40, it results in the detection sensor 26 being disposed at a position closer to the center-of-gravity of the saddle-riding type vehicle 10.
In other words, as shown in
Moreover, during traveling of the saddle-riding type vehicle 10, each of detection values of the likes of the movement amount or acceleration around each of the axes detected by the detection sensor 26 are outputted to the controller (not illustrated) as the detection signal. As a result, current behavior (vehicle body attitude) in the saddle-riding type vehicle 10 is calculated, and the solenoid valve 52 is opened/closed based on the behavior (each of the detection values), whereby the flow rate of the hydraulic oil in the hydraulic damper 50 is controlled. As a result, damping of the hydraulic damper 50 is adjusted according to behavior of the vehicle body, and the shock or vibration inputted to the swing arm 22 from the rear wheel 20 is suitably absorbed.
As indicated above, in the present embodiment, the saddle-riding type vehicle 10 is provided with: the vehicle body frame 16; the swing arm 22 supported in a swingable manner with respect to the pivot frame 34 of the vehicle body frame 16; the rear suspension 24 coupled to the link arm 46 and the pivot frame 34, which are connected to the swing arm 22; and the detection sensor 26 that detects behavior of the vehicle body during traveling of the saddle-riding type vehicle 10, wherein, in a top view of the saddle-riding type vehicle 10 viewed from above, the detection sensor 26 is disposed so as to overlap with the sub-tank 54 of the rear suspension 24.
Thus, by the detection sensor 26 being disposed close to the rear suspension 24 which is provided in a vicinity of the center-of-gravity of the saddle-riding type vehicle 10, and, moreover, by the detection sensor 26 being disposed close also to the sub-tank 54 that stores the hydraulic oil and has an increased weight, the detection sensor 26 can be disposed at a position closer to the center-of-gravity. Therefore, it becomes possible for behavior of the vehicle body to be more highly accurately detected by the detection sensor 26.
Moreover, the rear suspension 24 is fitted in a state of being forwardly inclined such that the one end portion 24a on its upper side will be on a front side, and the other end portion 24b on its lower side will be on a rear side, and, furthermore, the sub-tank 54 is provided so as to be on a forward side of the rear suspension 24. Hence, by configuring as a frontward side a one end portion 24a side of the rear suspension 24 whose weight is increased by being provided with the sub-tank 54 storing the hydraulic oil, the center-of-gravity of the saddle-riding type vehicle 10 can be configured on a frontward side, and, moreover, by the sub-tank 54 being disposed downwardly with respect to the rear suspension 24, a center-of-gravity position of the saddle-riding type vehicle 10 can be further lowered to increase stability and a touching-the-ground sensation.
Furthermore, by the detection sensor 26 being disposed between the seat 38 mounted on the seat frame 36 of the vehicle body frame 16, and the sub-tank 54 of the rear suspension 24, it becomes possible for it to be prevented that flying stones or the like thrown up from the road surface end up contacting the detection sensor 26, and for the detection sensor 26 to be suitably protected, during traveling of the saddle-riding type vehicle 10, for example.
Further still, by the detection sensor 26 being disposed more downwardly than the fuel tank 40 fixed to the vehicle body frame 16, the detection sensor 26 can be brought closer to the center-of-gravity position below the fuel tank 40 whose weight is increased by storing the fuel. Moreover, it can be prevented that flying stones or the like thrown up from the road surface end up contacting the detection sensor 26, and the detection sensor 26 can be suitably protected, during traveling of the saddle-riding type vehicle 10, for example.
Moreover, by the detection sensor 26 being disposed forward of the pivot shaft 44, the detection sensor 26 is less easily affected by a swinging operation of the swing arm 22 supported by the pivot shaft 44, and it becomes possible for behavior of the vehicle body to be stably and highly accurately detected by the detection sensor 26.
Note that the saddle-riding type vehicle 10 according to the present invention is not limited to the above-mentioned embodiment, and it goes without saying that a variety of configurations may be adopted therefor, without departing from the gist of the present invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10124644, | Apr 23 2014 | KYB Corporation | Damper control device |
10328764, | Mar 31 2016 | HITACHI ASTEMO, LTD | Vehicle height adjustment apparatus |
10807670, | Apr 21 2017 | SRAM, LLC | Bicycle suspension component and analysis device |
7722072, | Sep 15 2004 | Yeti Cycling, LLC | Rear suspension system for a bicycle |
8439383, | Jun 30 2009 | Specialized Bicycle Components, Inc. | Bicycle shock with extension arms |
8550223, | May 09 2008 | FOX FACTORY, INC | Methods and apparatus for position sensitive suspension dampening |
8579064, | Aug 08 2008 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle with electric equipment |
8960389, | Sep 18 2009 | Specialized Bicycle Components, Inc.; SPECIALIZED BICYCLE COMPONENTS, INC | Bicycle shock absorber with slidable inertia mass |
9221513, | Sep 15 2004 | Yeti Cycling, LLC | Rear suspension system for a bicycle |
9499234, | Apr 25 2013 | Shimano Inc.; Shimano Inc | Bicycle component control apparatus |
9969458, | Mar 26 2015 | HITACHI ASTEMO, LTD | Air suspension |
20120299268, | |||
20130025987, | |||
20130081273, | |||
20170088210, | |||
20180304952, | |||
JP2014201173, | |||
JP2015205646, | |||
JP3154637, | |||
JP6613092, | |||
JP7208529, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 25 2021 | KAWASAKI, YOHEI | HONDA MOTOR CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055418 | /0783 | |
Feb 26 2021 | Honda Motor Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 26 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jun 06 2026 | 4 years fee payment window open |
Dec 06 2026 | 6 months grace period start (w surcharge) |
Jun 06 2027 | patent expiry (for year 4) |
Jun 06 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 06 2030 | 8 years fee payment window open |
Dec 06 2030 | 6 months grace period start (w surcharge) |
Jun 06 2031 | patent expiry (for year 8) |
Jun 06 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 06 2034 | 12 years fee payment window open |
Dec 06 2034 | 6 months grace period start (w surcharge) |
Jun 06 2035 | patent expiry (for year 12) |
Jun 06 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |