Improved optical interconnects obtained by replacing one or more single core fibers with one or more multicore fibers. In some instances, at least one of the optical fibers is shaped.
|
1. An optical component comprising:
an array comprising optical fibers; said optical fibers comprising at least one multicore optical fiber;
said array further comprising at least one alignment structure;
an imager;
said imager with substantially infinite conjugates;
said array having an end portion;
said end portion operatively connected to said imager;
said imager forming an image of said end portion substantially at infinity;
wherein said at least one alignment structure comprises a shape of said array.
2. An optical component comprising:
an array comprising optical fibers; said optical fibers comprising at least one multicore optical fiber;
said array further comprising at least one alignment structure;
an imager;
said imager with substantially infinite conjugates;
said array having an end portion;
said end portion operatively connected to said imager;
said imager forming an image of said end portion substantially at infinity;
wherein said at least one alignment structure comprises an assembly of said array.
3. An optical component comprising:
an array comprising optical fibers; said optical fibers comprising at least one multicore optical fiber;
said array further comprising at least one alignment structure;
an imager;
said imager with substantially infinite conjugates;
said array having an end portion;
said end portion operatively connected to said imager;
said imager forming an image of said end portion substantially at infinity;
wherein said at least one alignment structure comprises an asymmetric arrangement of cores in said at least one multicore optical fiber.
4. An optical component comprising:
an array comprising optical fibers; said optical fibers comprising at least one multicore optical fiber;
said array further comprising at least one alignment structure;
an imager;
said imager with substantially infinite conjugates;
said array having an end portion;
said end portion operatively connected to said imager;
said imager forming an image of said end portion substantially at infinity;
wherein said imager comprises at least one alignment plate; and wherein said alignment plate comprises at least one divot mating to said at least one alignment structure.
|
This application is a continuation of Ser. No. 16/812,454, entitled OPTICAL INTERCONNECT DEVICES, filed on Mar. 9, 2020, which claims priority to U.S. Provisional Application No. 62/815,790, entitled OPTICAL INTERCONNECT DEVICES, filed on Mar. 8, 2019, both of which are incorporated by reference herein in their entirety and for all purposes.
These teachings relate generally to optical interconnect devices and, more particularly, to optical interconnect devices that include optical fibers and optical imagers.
Systems including an optical connector comprising an array of optical fibers that is attached to an infinite conjugate imager have been disclosed. A typical optical fiber consists of a core that is a waveguide which carries optical signals. This core is surrounded by a cladding, and the cladding is typically surrounded by one or more coatings and or protective layers. Depending on the dimensions of the core and other parameters the core can be a single mode or multimode core.
Other previous patents have shown a variety of optical interconnect devices that are based on combining arrays of optical fibers with infinite conjugate imagers. Optical fibers can have multiple cores. In one configuration, there are three cores that share a common cladding. These cores may be single mode or multiple mode or a mix of the two.
There is a need for more versatile optical interconnect configurations.
Improved optical interconnects are obtained by replacing one or more single core fibers with one or more multicore fibers. In some instances, at least one of the optical fibers is shaped.
In one or more instances, the optical interconnect of these teachings includes one or more optical fibers where at least one optical fiber from the one or more optical fibers is a shaped optical fiber. One or more of optical fibers of the at least one optical fibers can have a noncircular shape. The optical interconnect of these teachings also includes an imaging subsystem and the imaging subsystem has an optical alignment surface. The optical alignment surface has at least one shaped divot. The at least one optical fiber is aligned by insertion of an end portion into the at least one shaped divot.
In one or more other embodiments, the optical interconnect of these teachings includes a shaped array of optical fibers. The shaped array of optical fibers is aligned by insertion of the end portion into the shaped divot.
For a better understanding of the present teachings, together with other and further objects thereof, reference is made to the accompanying drawings and detailed description and its scope will be pointed out in the appended claims.
Reference is made to
In
“Imager,” as used herein, refers to a lens or optical system.
“Divot,” as used herein, refers to an indented section of an object; the section having a predetermined geometry. Such divots can be for formed, for example and without restriction, by carving out a section of the object near a surface in a predetermined geometry, or by depositing material on an object in a predetermined geometry to form the divot. Divots are also referred to here, without limitation, as indentations.
Optical fibers typically contain cladding around the core, and the cladding is typically coated. Further, the coatings may have more than one layer, and the coated fibers are typically jacketed for further protection. The terms coating and shaped coating referred to herein are, without limitation, are also used to describe jacketing and shaped jacketing, respectively.
These optical connectors also utilize the optical principles in U.S. Pat. Nos. 6,635,861, 7,015,454, 7,446,298, 8,171,625, 9,594,214, and 8,350,210 which are also incorporated herein by reference in their entirety for all purposes. In general, the multicore optical fibers described herein can be substituted in the optical connectors described in these and other references incorporated by reference herein to provide benefits including for example, without limitation, additional data throughput, increased redundancy, improved compactness, reduction in weight, etc.
The references cited above described optical interconnect technology for one or more optical fibers, such as shown in
A typical optical fiber, as shown in
Depending on the dimensions of the core and other parameters the core can be a single mode or multimode core. While this optical fiber is shown to be round, other shapes as described below and other waveguide configurations are included in the general term optical fiber use here.
The other patents that are incorporated by reference above show a variety of optical interconnect devices that are based on combining arrays of optical fibers typically with infinite conjugate imagers. Optical fibers can have multiple cores as shown in
In the present teachings, it is sometimes useful to break the symmetry in the arrays of cores so that individual cores are readily identified by their position. One such asymmetric arrangement of cores, in which one member of a hexagonal array of cores has been deleted, is shown in
In the resulting configurations subgroups of signals traveling along multiple cores in a single multicore fiber can be routed together in the multicore fiber. The array of cores in one or more multicore fiber(s) can be directly substituted in the patents incorporated by reference for the fiber arrays described therein according to the teachings herein.
While there are still tolerances in relative position of the multiple cores in a multicore fiber, they are often tighter tolerances than experienced by arraying multiple individual fibers. The accurate relative placement of each of the multiple cores in a fiber sometimes result from manufacturing techniques where fiber preforms or boules are accurately constructed and the relative position accuracy is passed on to the multicore fibers in the optical fiber drawing process.
It is also possible to shape the cladding and or the coating (and/or the jacketing) of a single or multicore fiber. For example, this can be accomplished by shaping the boule or preform used in fabricating the fiber before the pull (or draw) is made. An example of this is shown in
In
An example of this is shown
In another configuration of the present teachings, the cladding (and/or coating, fibers, multicore fibers, fiber arrays, and arrays of multicore fibers) of a multicore fiber can be asymmetrically shaped. An example of such a configuration is shown in the
While in
For example and without limitation, by matching the shape of the divots in the face of the infinite conjugate imager to that of the shaped cladding, individual fibers and multicore fibers and arrays of multicore fibers may be accurately placed and/or aligned, including the alignment of the array of cores in the multicore fibers, by placing or inserting the shaped fiber onto or into the shaped divot and cementing and/or bonding and/or fusing and/or optically affixing the fiber to the infinite conjugate imager. In one set of configurations of the present teachings, in this fashion, an optical connector that connects single multicore optical fibers or alternatively connects multiple multicore optical fibers is produced by substituting one or more shaped optical fibers and shaped divots for the optical fibers and divots described in U.S. Pat. No. 9,594,214. By broadening the description of shaped cladding in
An embodiment of a connector of the present teachings is illustrated in
In a similar fashion, breakout and fanout from signals in the cores among single or multiple multicore fibers can be accomplished as described in U.S. patent application Ser. No. 11/777,170 which is incorporated herein by reference for all purposes, wherein the array of optical fibers as originally described is replaced by one or more multicore optical fibers that optionally make use of shaped cladding and/or coating to relatively orient the multicore fibers in any of the ways described above.
The term alignment is used herein to include positional alignment as well as orientational alignment. Individual shaped fibers, or on a larger scale shaped arrays of fibers, can both be aligned positionally and/or orientationally by sizing the shaped divot to receive either individual shaped fibers or an array of fibers that has a particular shape that matches a correspondingly sized and shaped divot or indentation. It should also be noted that alignment of shaped optical fibers (or shaped arrays of fibers) by inserting them into shaped divots in an alignment surface or alignment plate is useful not only for aligning the fibers in an infinite conjugate imager, but is useful for aligning optical fibers, each with one or multiple cores, for input into more general optical systems including but not limited to finite conjugate imagers, connectors, image planes, optical devices, electro-optical devices, etc. The terms alignment surface, alignment plate, imager input, element of an imager, face of an imager, image plane of an imager, alignment plate of an imager, etc. are used herein interchangeably.
As used herein, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Except where otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.”
For the purpose of better describing and defining the present teachings, it is noted that terms of degree (e.g., “substantially,” “about,” and the like) may be used in the specification and/or in the claims. Such terms of degree are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, and/or other representation. The terms of degree may also be utilized herein to represent the degree by which a quantitative representation may vary (e.g., ±10%) from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Although the teachings have been described with respect to various embodiments, it should be realized these teachings are also capable of a wide variety of further and other embodiments within the spirit and scope of the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10564363, | Mar 15 2013 | WAVEFRONT RESEARCH, INC | Optical connectors |
4962988, | Jul 10 1989 | Optomec Design Company | Termination interface structure and method for joining an optical fiber to a graded index rod lens |
5050954, | Jan 12 1990 | AT&T Bell Laboratories | Multiport optical devices |
6635861, | Oct 22 1998 | WAVEFRONT RESEARCH, INC | Relaxed tolerance optical interconnect system having a GRIN rod lens |
7015454, | Oct 22 1998 | WAVEFRONT RESEARCH, INC | Relaxed tolerance optical interconnect system capable of providing an array of sub-images |
7357005, | Apr 05 2005 | TOYO SEIKAN GROUP HOLDINGS, LTD | Fiber optic collimator system, fiber optic collimator array, and manufacturing method of the fiber optic collimator system and fiber optic collimator array system |
7400799, | Dec 28 2004 | Precise Gauges Co., Ltd. | Optical device and fabrication method and apparatus for the same |
7446298, | Oct 22 1998 | WAVEFRONT RESEARCH, INC | Relaxed tolerance optical interconnect systems |
7660502, | Jul 12 2006 | WAVEFRONT RESEARCH, INC | Optical interconnect and connector devices |
8171625, | Jun 02 2008 | WAVEFRONT RESEARCH, INC | Method of providing low footprint optical interconnect |
8350210, | Jun 03 2008 | WAVEFRONT RESEARCH, INC | Embedded optical interconnect devices and methods of use thereof |
9140850, | Jun 16 2011 | FURUKAWA ELECTRIC CO., LTD.; TOHOKU GAKUIN | Optical coupling structure and optical fiber amplifier |
9213141, | Jul 12 2006 | Wavefront Research, Inc. | Optical interconnect and connector devices |
9250385, | Aug 19 2014 | Fujitsu Limited | Optical transmission medium and optical amplifier |
9594214, | Mar 15 2013 | WAVEFRONT RESEARCH, INC | Optical fiber devices |
9885840, | Dec 25 2014 | Olympus Corporation | Optical transmission connector device |
20040159777, | |||
20040252941, | |||
20110274435, | |||
20130063809, | |||
20140010501, | |||
20150168642, | |||
20150331182, | |||
20160020573, | |||
20160245989, | |||
20170299806, | |||
20200064563, | |||
20200225420, | |||
20210080644, | |||
20210149119, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 31 2020 | STONE, THOMAS W | WAVEFRONT RESEARCH INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060532 | /0792 | |
May 09 2022 | Wavefront Research, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 09 2022 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 13 2022 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Aug 15 2026 | 4 years fee payment window open |
Feb 15 2027 | 6 months grace period start (w surcharge) |
Aug 15 2027 | patent expiry (for year 4) |
Aug 15 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 15 2030 | 8 years fee payment window open |
Feb 15 2031 | 6 months grace period start (w surcharge) |
Aug 15 2031 | patent expiry (for year 8) |
Aug 15 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 15 2034 | 12 years fee payment window open |
Feb 15 2035 | 6 months grace period start (w surcharge) |
Aug 15 2035 | patent expiry (for year 12) |
Aug 15 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |