A system and method for repairing a coke oven having an oven chamber formed from ceramic bricks. A representative system includes a insulated enclosure insertable into the oven chamber and includes removable insulated panels that define an interior area for workers to work in. The insulated enclosure is movable between an expanded configuration and a compact configuration and moving the enclosure to the expanded configuration will decrease the distance between the insulated enclosure and the walls of the oven chamber. Removing the panels exposes the ceramic bricks and allows workers within the interior area to access and the bricks and repair the oven chamber while the oven chamber is still hot. A loading apparatus lifts and inserts the insulated enclosure into the oven chamber. The insulated enclosure can be coupled to additional insulated enclosures to form an elongated interior area.
|
1. A structure configured to be inserted into a heated area, comprising:
a ceiling portion;
a floor portion; and
a first side portion; and
a second side portion opposite the first side portion,
wherein—
the structure is expandable from a first configuration to a second configuration,
in the first configuration, the ceiling portion is spaced apart from the floor portion by a first distance,
in the second configuration, the ceiling portion is spaced apart from the floor portion from a second distance greater than the first distance, and
the structure is configured to withstand temperatures at or above a temperature of at least 1000° F.
9. A structure configured to be inserted into a heated area having a floor, sidewalls, and a ceiling, the structure comprising:
a ceiling portion;
a floor portion; and
a first side portion; and
a second side portion opposite the first side portion, wherein—
the structure is movable between a first configuration and a second configuration,
in the first configuration, the ceiling portion of the structure is spaced apart from the ceiling of the heated area by a first distance,
in the second configuration, the ceiling portion of the structure is spaced apart from the ceiling of the heated area by a second distance greater than the first distance, and
the structure is configured to withstand temperatures at or above a temperature of at least 1000° F.
2. The structure of
3. The structure of
4. The structure of
5. The structure of
6. The structure of
7. The structure of
8. The structure of
10. The structure of
11. The structure of
12. The structure of
13. The structure of
14. The structure of
15. The structure of
16. The structure of
|
This application is a continuation of U.S. patent application Ser. No. 17/076,563, filed Oct. 21, 2020, which is a divisional application of U.S. patent application Ser. No. 15/987,860 filed May 23, 2018 (now U.S. Pat. No. 10,851,306), which claims the benefit of priority to U.S. Provisional Application No. 62/510,109, filed May 23, 2017, the disclosures of which are incorporated herein by reference in their entireties.
The present technology relates to coke ovens and in particular to methods and apparatus for repairing coke ovens to improve the oven life and increase coke yield from the ovens.
Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Coking ovens have been used for many years to convert coal into metallurgical coke. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions. During the coking process, the finely crushed coal devolatilizes and forms a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.
Coke ovens are typically constructed of refractory bricks that include alumina, silica, and/or other ceramic materials. These refractory bricks are capable of withstanding high temperatures and typically retain heat for an extended period. However, the refractory bricks can be brittle and can crack, which decreases the coke-producing ability of the coke oven. To repair the coke oven, workers are often required to enter the coke oven and replace the broken bricks. Coke ovens operate at extremely high temperatures that are unsuitable for workers to enter and enabling the workers to comfortably enter the coke oven requires decreasing the temperature of the coke oven. However, the temperature within coke ovens is typically never allowed to decrease too far as doing so can potentially damage the ovens.
When a coke oven is built, burnable spacers are placed between the bricks in the oven crown to allow for brick expansion. Once the oven is heated, the spacers burn away and the bricks expand due to thermal expansion. However, the ovens are typically never allowed to drop below the thermally-volume-stable temperature (i.e., the temperature above which silica is generally volume-stable and does not expand or contract). If the bricks drop below this temperature, the bricks start to contract. Since the spacers have burned out, a traditional crown can contract up to several inches upon cooling. This is potentially enough movement for the crown bricks to start to shift and potentially collapse. Therefore, enough heat must be maintained in the ovens to keep the bricks above the thermally-volume-stable temperature. However, the thermally-volume-stable temperature is too hot for workers to comfortably enter the coke ovens. Accordingly, there is a need for an improved system that allows workers to comfortably enter a coke oven without requiring that the coke oven be cooled below the thermally-volume-stable temperature.
Several embodiments of the present technology are directed to systems and apparatuses used to repair coke ovens while the coke ovens are hot. For example, the present technology can include an insulated enclosure movable between a compact configuration and an expanded configuration in a horizontal non-heat recovery or a heat recovery coke oven, but is not limited to these applications and can be applied in other similar applications. The insulated enclosure can be placed within a coke oven in the compact configuration and expanded into the expanded position so that workers can stand and maneuver within the enclosure. The insulated enclosure can include removable insulated panels positioned around the circumference of the enclosure that insulate the interior of the enclosure from the heated oven sidewalls, floor, and/or crown. The insulated panels can be removable to allow the workers to access portions of the coke oven and clean or repair damaged portions. The insulated enclosure can be modular to allow the enclosure to be adapted to differently sized ovens. This approach can allow the coke oven to be repaired without cooling the coke oven, which can require the coke oven to be unused for an extended time period and/or can often result in the bricks that form the coke oven cracking or shifting out of position as they cool. Accordingly, the insulated enclosure can shield the workers from the high temperatures given off by the coke oven so that the coke oven can remain at an elevated temperature while the workers repair the oven. In accordance with further embodiments, the insulated enclosure allows workers to quickly access the interior of an oven between operation cycles.
Specific details of several embodiments of the disclosed technology are described below with reference to particular, representative configuration. The disclosed technology can be practiced in accordance with ovens, coke manufacturing facilities, and insulation and heat shielding structures having other suitable configurations. Specific details describing structures or processes that are well-known and often associated with coke ovens and heat shields but that can unnecessarily obscure some significant aspects of the presently disclosed technology, are not set forth in the following description for clarity. Moreover, although the following disclosure sets forth some embodiments of the different aspects of the disclosed technology, some embodiments of the technology can have configurations and/or components different than those described in this section. As such, the present technology can include some embodiments with additional elements and/or without several of the elements described below with reference to
Referring to
In operation, coke is produced in the ovens 101 by first loading coal into the oven chamber 110, heating the coal in an oxygen depleted environment, driving off the volatile fraction of coal and then oxidizing the volatiles within the oven 101 to capture and utilize the heat given off. The coal volatiles are oxidized within the ovens over a 48-hour coking cycle and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when the front door 114 is opened and coal is charged onto the floor 111. The coal on the floor 111 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. Preferably, no additional fuel other than that produced by the coking process is used. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame and radiant oven crown 113. The remaining half of the heat is transferred to the coal bed by conduction from the floor 111 which is convectively heated from the volatilization of gases in the sole flue 118. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed at the same rate, preferably meeting at the center of the coal bed after about 45-48 hours.
The floor 111, the sidewalls 112, and the crown 113 are typically formed from ceramic bricks (e.g., refractory bricks) capable of withstanding high temperatures and that typically retain heat for an extended period. In some embodiments, the bricks be formed from a ceramic material that includes silica and/or alumina. The sidewalls 112 can include bricks stacked together in an alternating arrangement and the crown 113 can include bricks arranged in an arch. However, these bricks can be brittle and can sometimes break. For example, striking the bricks (e.g., with a forklift or other machinery, with a tool, etc.) can cause the bricks to fracture. In addition, the bricks can sometimes break due to internal stresses caused by thermal expansion and contraction as the bricks are repeatedly heated and cooled over a prolonged period. The bricks can also break due to differences in temperature between opposing sides of the brick, which can result in internal stresses forming due to the temperature gradient. For example, in the illustrated embodiment, some of the bricks that form the sidewalls 112 can be positioned between the oven chamber 110 and the uptake and downcomer channels 116 and 117 and the differences in temperature between the air in the oven chamber 110 and the air in the uptake and downcomer channels 116 and 117 can sometimes result in these bricks breaking.
However, the oven chamber 110 is typically too hot for workers to comfortably work and additional insulation and cooling systems are required. In representative embodiments of the present technology, a insulated enclosure that includes insulation can be positioned within the oven chamber 110 to allow workers to comfortably enter the oven chamber 110 and access the cracks 106 and any other portions of the oven 101 that require cleaning, repair or maintenance. The insulation can prevent heat emitted by the bricks from entering the enclosure so that the temperature within the enclosure can remain at a sufficiently low temperature for the workers to comfortably work and repair the oven 101 without requiring that the oven 101 completely cool down ambient temperatures.
Each of the panels 130 can include an insulation portion 131 and a backing portion 132 coupled to the insulation portion and the panels 130 can be coupled to the frame 126 such that the insulation portion 131 faces away from the interior area 121 (i.e., towards the sidewalls 112, the crown 113, and the floor 111). The backing portion 132 can be formed from metal and can include handles that workers can use to control and maneuver the panel 130. In some embodiments, the insulation portion 131 can be formed from a high-temperature insulation wool (HTIW), ceramic blanket material, Kaowool, or the like. In other embodiments, the insulation portion 131 includes rigid insulation made from ceramic tiles. In either of these embodiments, the insulation portion 131 is sized and shaped to generally conform to the shape of the of the backing portion 132.
When the insulated enclosure 120 is in the expanded configuration, the side portions 123 can include a gap 133 between the top edges of the panels 130 and the first angled portions 125a through which heat from the oven chamber 110 can pass into the interior area 121. To prevent or at least limit the amount of heat that can pass through the gap 133 when the insulated enclosure 120 is in the expanded position, the insulated enclosure 120 can also include insulation 129 that cover the gap 133. The insulation 129 can be formed from a ceramic blanket material coupled to the ceiling portion 122. The insulation 129 can drape over the first angled portions 125a and extend past the gap 133 to at least partially cover the panels 130. When a worker needs to access a selected portion of the sidewall 112 that is blocked by the insulation 129, the insulation 129 can be pushed aside or secured out of the way to expose the selected portion of the sidewall 112. In some embodiments, the insulation 129 includes a plurality of strips that each cover a portion of the gap 133. In these embodiments, the strips can be individually manipulated and secured out of the way. In other embodiments, however, the insulation 129 can include a curtain that covers the entire gap 133. The curtain can be movably coupled to a rod attached to the frame 126 such that the curtain can slide along the entire length of the insulated enclosure 120 and can completely cover the gap 133.
In the illustrated embodiment, the first angled portions 125a form an angle of approximately 45° with the side portions 123 and the second angled portions 125b form an angle of approximately 45° with the side portions 123. In other embodiments, however, the first and second angled portions 125a and 125b can form some different angles with the side portions 123. For example, in some embodiments, the first and second angled portions 125a and 125b can form an angle less than 45° with the side portions 123. In still other embodiments, the insulated enclosure 120 can be formed such that the first angled portions 125a can form a different angle with the side portions 123 than the second angled portions 125b. In general, the insulated enclosure 120 can be formed such that the angled portions 125a and 125b conform to the size and shape of the oven chamber.
The insulated enclosure 120 can be movable between a first, expanded configuration and a second, compact configuration. In the embodiment shown in
To facilitate moving the insulated enclosure 120 between the first, expanded and the second, compact configuration, the insulated enclosure 120 can include one or more adjustable jacks 128 interactively coupled to the frame 126. The jacks 128 can be movable between an elongated position and a shortened position. Specifically, the one or more jacks can be in the elongated position when the insulated enclosure 120 is in the expanded configuration and the shortened position when the insulated enclosure 120 is in the compact configuration. To move the insulated enclosure 120 to the expanded configuration, the jacks 128 can move to the elongated position by lifting the ceiling portion 122 away from the floor portion 124, thereby increasing the height of the interior area 121 to the first height H1. Conversely, to move the insulated enclosure 120 to the compact configuration, the jacks 128 can move to the shortened position by lowering the ceiling portion 122 towards the floor portion 124, thereby decreasing the height of the interior 121 area to the second height H2. In the illustrated embodiments, the insulated enclosure 120 includes four of the jacks 128 positioned at the four corners of the insulated enclosure 120. In other embodiments, however, the insulated enclosure can include a single jack 128 positioned at the center of the insulated enclosure. In some embodiments, the jacks 128 can be hydraulic or pneumatic jacks that utilize a fluid to move the jack 128 between the elongated position and the shortened position. In other embodiments, the jacks 128 can be mechanical jacks that require a worker to move the jack 128 between the elongated position and the shortened position using a handle or a lever. When the insulated enclosure 120 is in either the expanded configuration or the compact configuration, a locking mechanism can be used to secure the ceiling portion in the selected configuration.
In the illustrated embodiments, moving the insulated enclosure 120 between the expanded configuration and the compact configuration causes both the height of the insulated enclosure 120 and the distance between the roof portion 122 and the crown to change without affecting the width of the insulated enclosure 120 does not change or the distance between the side portions 123 and the sidewalls. In other embodiments, however, moving the insulated enclosure 120 between the expanded configuration and the compact configuration can cause both the width of the insulated enclosure 120 and the distance between the side portions 123 and the sidewalls to change. In these embodiments, the insulated enclosure 120 can include one or more horizontally-oriented jacks 128 coupled to the frame 126 and used to slide the two side portions 123, thereby increasing the width of the insulated enclosure 120.
The insulated enclosure 120 can also include support rails 127 integrally coupled to the frame 126 adjacent to the floor portion 124. The support rails 127 can be formed from elongated pieces of metal having a flattened bottom surface configured to be in contact with the floor of the oven chamber. In this way, when the insulated enclosure 120 is inserted into the oven chamber, the insulated enclosure 120 can slide along the floor on the support rails 127. In other embodiments, however, the insulated enclosure 120 can include wheels, continuous tracks (i.e., tank treads), or another mechanism to facilitate moving the insulated enclosure 120 along the floor of the oven chamber.
When the insulated enclosure 120 is positioned at the entrance of the oven chamber 110, workers can use the insulated enclosure 120 to access and work on portions of the oven chamber 110 near the entrance. However, the oven chamber 110 can be longer than the insulated enclosure 120 and accessing selected portions of the oven chamber 110 far from the entrance can require the insulated enclosure 120 to be positioned away from the entrance. To allow the workers to comfortably access and work on these selected portions, multiple of the insulated enclosures 120 can be inserted into the oven chamber 110 adjacent to each other and coupled together.
In other embodiments, however, the multiple insulated enclosures 120 may only extend part of the way into the oven chamber 110 such that such that portions of the oven chamber 110 near the entrance are covered by the insulated enclosures 120 while portions further from the entrance are not. However, the portions of the oven chamber 110 further from the entrance are still at an elevated temperature and give off heat. Accordingly, the insulated enclosure 120 furthest from the entrance can have an insulated wall portion that forms a bulkhead to reduce the amount of heat from entering the interior area 121. In some embodiments, the wall portion can include removable panels 130 or can include a non-removable insulated structure. In other embodiments, the insulated wall portion can be formed from soft and flexible insulation coupled to the ceiling portion 122 that hangs over the end of the insulated enclosure 120.
To couple the multiple insulated enclosures 120 together, each of the insulated enclosures 120 can include alignment mechanisms configured to mate with the alignment mechanisms on an adjacent insulated enclosure 120. For example, in some embodiments, the insulated enclosures 120 can include guides that can help arrange and position the insulated enclosures 120. Once aligned, the insulated enclosures 120 can be coupled together using bolts, clamps, or a different connection apparatus.
In the illustrated embodiment, one of the panels 130 that forms one of the side portions 123 of the nearest insulated enclosure 120 is decoupled from the frame 126, thereby exposing the sidewall 112 and allowing workers within the insulated enclosure 120 to access and interact with the bricks that form the sidewall 112. Accordingly, decoupling the panels 130 that form the side portions 123 from the frame 126 allows the workers to repair the sidewalls 112 of the oven chamber 110. Similarly, decoupling the panels 130 that forms the floor portion 124 from the frame 126 can expose the floor 111 of the oven chamber 110 so that workers can repair the floor 111. For example, during operation of the oven 101, hardened coke can stick to the bricks that form the floor 111 and removing the coke from the oven chamber 110 can sometimes cause portions of these bricks to break off and be removed with the coke, which can result in the floor 111 being uneven. Accordingly, decoupling the panels 130 that form the floor portion 124 from the frame 126 can expose the floor 111 and allow workers to access the bricks so that the floor 111 can be repaired.
The insulated enclosure 120 can allow workers to repair the oven chamber 110 using any selected repair technique. For example, workers can selectively remove damaged or misaligned bricks from the exposed portions of the oven chamber 110 and replace the removed bricks with new bricks. The workers can also be able to repair the oven chamber without removing any bricks. For example, the workers can cast refractory over broken or misaligned bricks in the floor 111 to level the floor 111 in lieu of replacing the broken bricks as the lowered temperature within the oven chamber 110 can improve the casting ability and performance of the refractory. Other repairing techniques, such as silica welding and shotcrete can also be used to repair the oven chamber 110.
The insulated enclosures 120 can include a transportation system that transports bricks removed from the floor 111, sidewalls 112, and/or crown 113 out of the oven chamber 110. In some embodiments, the transportation system can include a conveyor belt that extends into the interior area 121. Workers can place the bricks onto the conveyor belt and the conveyor belt can carry the bricks out of the oven chamber 110. The conveyor belt apparatus can also be used to carry bricks and/or other supplies into the insulated enclosures 120 for the workers to use while inspecting or repairing the oven chamber 110.
The insulated enclosure 120 can also include additional cooling and insulating apparatuses configured to help regulate temperature within the interior area 121. For example, the insulated enclosure 120 can include fans that circulate cool air from outside of the oven 101 into the interior area 121 and/or blow warm air from inside the interior area 121 to outside of the insulated enclosure 120. In some embodiments, these fans can be positioned within the insulated enclosure 120 or can be positioned outside of the insulated enclosure 120. In embodiments for which a plurality of the insulated enclosures 120 are coupled together and extend through the oven chamber 110, the fans can blow air from one end of the oven chamber 110 to the other. The fans can also regulate and control air pressure within the interior area 121. In other embodiments, the insulated enclosure 120 can include a pipe that brings cool air into the interior area 121 from outside of the oven chamber 110. The pipe can be insulated and can be coupled to an air compressor or a fan to push the cool air through the pipe. Further, in some embodiments, the insulated enclosure 120 can include a fluid membrane coupled to the floor portion 124. The fluid membrane can be coupled to a fluid source and a fluid pump can circulate the fluid through the fluid membrane to cool the feet of the workers on or near the fluid membrane.
As previously discussed, the insulated enclosure 120 can be used to inspect and repair the oven chamber 110 when the oven 101 is not charged but without requiring that the oven chamber 110 be completely cooled. Accordingly, the bricks can be still be hot when the insulated enclosure 120 is inserted into the oven chamber 110. For example, in some embodiments, the bricks can be over 2000° F. when the oven 101 is charged and can be approximately 1000° F. when the oven is not charged. However, if the oven is uncharged for too long and the bricks cool below the thermally-volume-stable temperature of the ceramic material, the bricks can shrink, which can cause the bricks to shift out of alignment and the oven chamber 110 to require additional repairs. For example, the bricks that form the crown 113 can shrink and fall towards the insulated enclosure 120 if they cool below the thermally-volume-stable temperature, which can cause the crown 113 to collapse. Accordingly, the ceiling portion 122 can provide a safety function by preventing the bricks from falling onto the workers within the insulated enclosure 120.
To help prevent the bricks from cooling below the thermally-volume-stable temperature, in some embodiments, the insulated enclosure 120 can include one or more external heating apparatuses coupled to the exterior surface of the insulated enclosure 120 and positioned to direct heat towards the crown 113, the sidewalls 112, and the floor 111. In some of these embodiments, the external heating apparatus can be an electrical heating apparatus. In other embodiments, the external heating apparatus can include one or more chemical burners. The external heating apparatuses can direct heat towards the bricks to keep the bricks above the thermally-volume-stable temperature so that that they do not shrink while the oven chamber 110 is being repaired. Accordingly, the external heating apparatuses can help to allow the workers to work on the oven chamber 110 for a prolonged period without the bricks shrinking. In other embodiments, however, the insulated enclosure 120 does not include external heating apparatuses. Instead, the temperature of the oven chamber 110 is monitored when the insulated enclosure 120 is inserted into the oven chamber 110 so that the insulated enclosure 120 can be removed when the temperature approaches the thermally-volume-stable temperature. Heat can be added through sole flue 118 from an adjacent oven to return the oven being repaired to a sufficient temperature to maintain brick stability. Alternatively, the insulated enclosure 120 may be removed, the oven can be turned heated by any of the above mentioned means until the temperature within the oven chamber reaches a selected temperature. In this way, the insulated enclosure 120 can be in the oven chamber 110 for only a shortened period so that the bricks can be prevented from cooling below the thermally-volume-stable temperature and shrinking. Once the oven chamber 110 reaches the selected temperature, the insulated enclosure 120 can be reinserted into the oven chamber 110 so that further repairs can be made. This process can be repeated until all the necessary repairs have been.
The insulated enclosure 120 can be inserted into the oven chamber 110 using a positioning apparatus. In some embodiments, the positioning apparatus includes a forklift.
The positioning apparatus can also be used to remove the insulated enclosure 120 from the oven chamber 110. For example, in embodiments for which the forklift 140 is used to insert the insulated enclosure 120 into the oven chamber 110, the forklift 140 can lift and pull the insulated enclosure 120 out of the oven chamber 110. Similarly, the pushing mechanism can be used to pull the insulated enclosure 120 out of the oven chamber 110. The insulated enclosure 120 can include an attachment mechanism coupled to the frame and the attachment mechanism can be releasably couplable to a second attachment mechanism coupled to the pushing mechanism and the pushing mechanism can be used to pull the insulated enclosure 120 out of the oven 101 using the attachment mechanisms. In some embodiments, the attachment mechanisms include collars that interlock with each other to attach the insulated enclosure 120 to the pushing mechanism. In some embodiments, the attachment mechanisms can also be used to push the insulated enclosure 120 into the oven chamber.
At step 610, the front and/or back door of the oven chamber is removed. If the identified portions of the oven chamber are near the front of the oven chamber, only the front door can be removed, while if the identified portions of the oven chamber are near the back of the oven chamber, only the back door can be removed. However, if the identified portions are in the middle of the oven chamber and/or are near both the front and back of the oven chamber, both the front and back doors can be removed. In some embodiments, the front and/or back doors can be removed before the oven chamber reaches the predetermined temperature to increase the rate of cooling within the oven chamber.
At step 615, the oven charge is removed and the oven may be allowed to cool to a predetermined temperature. Some coke ovens can operate at temperatures greater than 2000° F., requiring the insulated enclosure to protect workers from heat. Accordingly, the ovens need to be turned off so that the oven chambers can cool before the workers can enter the oven chamber. However, coke ovens typically do not use a supplemental heat source to form the coke and instead rely upon the heat produced by the coal as it burns to heat the oven chamber. As a result, cooling a coke oven often includes removing the coke from the oven chamber without adding new coal. After the charge is removed from the coke oven, the oven chamber can be allowed to cool until the temperature reaches a predetermined temperature. In some embodiments, the predetermined temperature can be similar to the thermally-volume-stable temperature of the bricks so that the bricks do not substantially shrink. For example, in embodiments where the bricks are formed from silica, the oven chamber can be allowed to cool until the temperature reaches approximately 1200° F. In embodiments where the bricks are formed from alumina, however, the oven chamber can be allowed to cool to a temperature below 1200° F. In general, the predetermined temperature can be selected based on the type of oven and the composition of the bricks so that the bricks do not substantially shrink and deform as the oven chamber cools.
At step 620, one or more insulated enclosures can be inserted into the oven chamber. The one or more insulated enclosures can include removable insulated panels coupled to a frame and can be inserted into the oven chamber using machinery (e.g., a forklift or a pushing mechanism), until the one or more insulated enclosures are positioned over the one or more identified portions. At step 620a, the insulated enclosures can include coupling mechanisms and can be coupled to each other using the coupling mechanisms to form a passageway from the front and/or back entrance of the oven chamber to the identified portion.
The insulated enclosures can be movable between a compact configuration and an expanded configuration and can be inserted into the oven chamber when in the compact configuration. At step 625, the insulated enclosures can be moved from the compact configuration to the expanded configuration using one or more jacks. In some embodiments, moving the insulated enclosures to the expanded configuration can increase the height of the insulated enclosures so that the ceiling portion of the insulated enclosure is closer to the crown of the oven chamber and so that workers can more comfortably stand working in the insulated enclosures. In other embodiments, moving the insulated enclosures to the expanded configuration can increase the width of the insulated enclosures so that the side portions of the insulated enclosure are closer to the sidewalls of the oven chamber. In still other embodiments, moving the insulated enclosure to the expanded configuration can increase both the height and the width of the insulated enclosure.
At step 625a, the insulated enclosures can optionally include cooling apparatuses used to provide additional cooling to the workers within the insulated enclosures and external heating apparatuses coupled to the exterior of the insulated enclosures to heat the bricks so that the bricks do not cool and shrink while the oven chamber is being repaired. In some embodiments, the cooling apparatuses can include fans, fluid membranes that circulate cooled fluid throughout the insulated enclosures, insulated pipes that can bring in cool air from outside of the oven, etc., while the external heating apparatuses include electrical heaters and/or chemical burners. According to alternative embodiments, heat from adjacent operational ovens can be transferred to the oven being repaired or cleaned through the sole flue. Once the insulated enclosure is in the expanded configuration, the cooling apparatuses and the external heating apparatuses can be activated.
At step 630, one or more of the insulated removable panels can be detached from the frame to expose the one or more identified portions of the oven. The panels can be arranged along the side portions, the ceiling portions, and the floor portions of the insulated enclosures so that the identified portions that are in the sidewalls, the floor, and/or the crown of the oven chamber can be accessed by workers within the insulated enclosure.
At step 635, the one or more identified portions of the oven chamber are repaired. Repairing the one or more identified portions can include replacing damaged bricks, casting refractory over uneven surfaces in the floor, silica welding bricks together, and/or using shotcrete. Other cleaning and repairing techniques can also be used.
At step 640, after repairing the identified portions, the insulated removable panels are reattached to the frame to cover the now-repaired identified portions.
At step 645, the insulated enclosures can be moved from the expanded configuration to the compact configuration.
At step 650a, the insulated enclosures can be optionally be decoupled from each other and removed from the oven chamber (e.g., using the forklift or the pushing mechanism). At step 650, the insulated enclosures can be removed from the oven. In some embodiments, the insulated enclosures can be decoupled from each other before being moved to the compact configuration while in other embodiments, the insulated enclosures can be decoupled from each other after being moved to the compact configuration.
At step 655, the oven can be charged with coal. At step 660, the front and/or back doors are reattached to the oven chamber. In some embodiments, heating the oven can include depositing coal into the oven chamber and closing the doors so that the latent heat within the oven chamber can burn the coal, thus causing the oven to heat back up. In other embodiments, however, an additional heat source or heat from an adjacent oven can be used to heat the oven chamber back up to an elevated temperature.
From the foregoing, it will be appreciated that several embodiments of the disclosed technology have been described herein for purposes of illustration, but that various modifications can be made without deviating from the technology. For example, in some embodiments, the insulated enclosure can be in the expanded configuration or the compact configuration but cannot be movable between the expanded configuration and the compact configuration. The insulated enclosure can be insulated using any suitable type of insulation and can be cooled using any suitable cooling mechanism. More generally, the insulated enclosure can be used in any type of oven or furnace to allow workers to access and repair the oven chamber or furnace.
Certain aspects of the technology described in the context of particular embodiments can be combined or eliminated in other embodiments. For example, the insulated enclosure can be formed without insulation and/or some of the panels cannot be removable. Further, while advantages associated with some embodiments of the disclosed technology have been described herein, configurations with different characteristics can also exhibit such advantages, and not all configurations need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other arrangements not expressly shown or described herein. The following examples provide further representative descriptions of the present technology:
1. An insulated enclosure having an interior area defined by a floor portion, a ceiling portion, and opposing first and second side portions that extend between the floor portion and the ceiling portion, the insulated enclosure comprising:
a frame portion; and
a plurality of panels releasably coupled to the frame portion, wherein—
the plurality of panels at least partially define the floor portion, the ceiling portion, and the first and second side portions,
individual of the panels comprises an insulation portion and a backing portion coupled to the insulation portion,
the insulated enclosure is movable between a first configuration and a second configuration, and
the interior area comprises a first height when the insulated enclosure is in the first configuration and a second height less than the first height when the enclosure is in the second configuration.
2. The insulated enclosure of example 1, further comprising
a first gap between the ceiling portion and the first side portion and a second gap between the ceiling portion and the second side portion when the insulated enclosure is in the first configuration; and
insulation coupled to the ceiling portion that covers the first and second gaps.
3. The insulated enclosure of example 1, further comprising:
at least one jack coupled to the frame portion, wherein the at least one jack is configured to move the insulated enclosure between the first configuration and the second configuration.
4. The insulated enclosure of example 3 wherein the at least one jack comprises a mechanical jack.
5. The insulated enclosure of example 1, further comprising:
a cooling apparatus used to circulate cool air from outside of the insulated enclosure into the interior area.
6. The insulated enclosure of example 1, further comprising:
an external heating apparatus used to produce heat, wherein the external heating apparatus is coupled to an exterior surface of the insulated enclosure and is positioned to direct the produced heat away from the interior area.
7. The insulated enclosure of example 1 wherein the interior area comprises a first width when the insulated enclosure is in the first configuration and a second width less than the second width when the insulated enclosure is in the second configuration.
8. The insulated enclosure of example 1 wherein the insulation portion comprises a ceramic material and the backing portion comprises metal.
9. A method of repairing a coke oven having an oven chamber defined by a floor, a crown, and sidewalls that extend between the floor and the crown and wherein the coke oven comprises a plurality of bricks that form the floor, the crown, and the sidewalls, the method comprising:
inserting a insulated enclosure into the oven chamber, wherein—
the insulated enclosure includes a plurality of panels removably coupled to a frame portion,
the insulated enclosure is movable between a first configuration and a second configuration,
inserting the insulated enclosure into the oven chamber comprises inserting the insulated enclosure into the oven chamber when the insulated enclosure is in the first configuration;
moving the insulated enclosure from the first configuration to the second configuration;
detaching at least one of the panels from the frame portion to expose at least one of the floor, the crown, and the sidewalls;
repairing at least one of the bricks;
reattaching the at least one panel to the frame portion;
move the insulated enclosure to the first configuration; and
remove the insulated enclosure from the oven chamber.
10. The method of example 9, wherein the insulated enclosure comprises a first insulated enclosure and wherein inserting the insulated enclosure into the oven chamber comprises inserting the first insulated enclosure into the oven chamber, the method comprising:
before moving the insulated enclosure from the first configuration to the second configuration, inserting a second insulated enclosure into the oven chamber adjacent to the first insulated enclosure; and
coupling the first insulated enclosure to the second insulated enclosure.
11. The method of example 10, wherein—
the frame portion comprises a first frame portion,
the plurality of panels comprises a first plurality of panels,
the second insulated enclosure includes a second plurality of panels coupled to a second frame portion,
the second insulated enclosure is movable from the first configuration to the second configuration, and
moving the insulated enclosure from the first configuration to the second configuration comprises moving the first insulated enclosure and the second insulated enclosure from the first configuration to the second configuration.
12. The method of example 9, further comprising:
before inserting the insulated enclosure into the over chamber, identifying a portion of the oven chamber, wherein—
inserting the insulated enclosure into the oven chamber comprises positioning the insulated enclosure over the identified portion,
detaching the at least one panel from the frame portion to expose at least one of the floor, the crown, and the sidewalls comprises detaching the at least one panel to expose the identified portion, and
the identified portion comprises the at least one brick.
13. The method of example 9 wherein—
the at least one brick comprises a first brick, and
repairing the at least one brick comprises replacing the first brick with a second brick.
14. The method of example 9, wherein the coke oven is configured to burn coal at a first temperature and air surrounding the coke oven is at a second temperature less than the first temperature, the method further comprising:
before inserting the insulated enclosure into the oven chamber, cooling the oven chamber from the first temperature to third second temperature less than the first temperature and greater than the first temperature; and
after removing the insulated enclosure from the oven chamber, heating the oven chamber to the first temperature.
15. An oven repairing system for repairing an oven having an oven chamber defined by a floor, a crown, and sidewalls that extend between the floor and the crown and wherein the coke oven comprises a plurality of bricks that form the floor, the crown, and the sidewalls, the oven repairing system comprising:
an insulated enclosure insertable into the oven chamber and having an interior area defined by a floor portion, a ceiling portion, and opposing first and second side portions that extend between the floor portion and the ceiling portion, the insulated enclosure comprising:
a frame portion, and
a plurality of panels removably coupled to the frame portion, wherein—
the plurality of panels at least partially define the floor portion, the ceiling portion, and the first and second side portions, and
individual of the panels comprises an insulation portion and a backing portion coupled to the insulation portion; and
a positioning apparatus, wherein the insert apparatus inserts the insulated enclosure into the oven chamber.
16. The oven repairing system of example 15 wherein the insulated enclosure comprises a first insulated enclosure and the interior area comprises a first interior area, the oven repairing system further comprising:
a second insulated enclosure insertable into the oven chamber, wherein—
the positioning apparatus is configured to insert the second insulated enclosure into the oven chamber adjacent to the first apparatus,
the second insulated enclosure is couplable to the first insulated enclosure,
the second insulated enclosure comprises a second interior area, and
the first interior area and the second interior area are fluidly connected to each other when the first and second insulated enclosures are coupled to each other.
17. The oven repairing system of example 15, wherein—
the insulated enclosure is movable between a first configuration and a second configuration, and
the ceiling portion is separated from the crown by a first distance when the insulated enclosure is in the first configuration and a second distance greater than the first distance when the when the insulated enclosure is in the second configuration.
18. The oven repairing system of example 17, further comprising:
insulation coupled to an exterior surface of the ceiling portion, wherein the ceiling portion is separated from the side portions by gaps when the insulated enclosure is in the first configuration and wherein the insulation extends over the gaps.
19. The oven repairing system of example 15 wherein, when the insulated enclosure is inserted into the oven chamber, the floor portion is positioned adjacent to the floor of the oven, the first side portion is positioned adjacent to a first of the sidewalls, the second side portion is positioned adjacent to a second of the sidewalls, and the ceiling portion is positioned adjacent to the crown.
20. The oven repairing system of example 15 wherein—
the plurality of panels comprises a first panel configured to be removed from the frame portion, and
at least one of the brick is exposed to the interior area when the first panel is decoupled from the frame portion.
To the extent any materials incorporated herein by reference conflict with the present disclosure, the present disclosure controls. As used herein, the phrase “and/or” as in “A and/or B” refers to A alone, B alone, and both A and B. The following examples provide further representative features of the present technology.
Quanci, John Francis, West, Gary Dean, Ball, Mark Anthony, Choi, Chun Wai, Crum, Jason
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10016714, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Systems and methods for removing mercury from emissions |
10041002, | Aug 17 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke plant including exhaust gas sharing |
10047295, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
10047296, | Aug 06 2012 | SHANXI XINLI ENERGY TECHNOLOGY CO., LTD | Thermal cycle continuous automated coal pyrolyzing furnace |
10053627, | Aug 29 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for testing coal coking properties |
10233392, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method for optimizing coke plant operation and output |
10308876, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Burn profiles for coke operations |
10323192, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Systems and methods for improving quenched coke recovery |
10392563, | Oct 17 2014 | THYSSENKRUPP INDUSTRIAL SOLUTIONS AG; THYSSENKRUPP AG | Coke oven with improved exhaust gas conduction into the secondary heating chambers |
10435042, | Apr 16 2014 | Modular cargo containment systems, assemblies, components, and methods | |
10526541, | Jun 30 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Horizontal heat recovery coke ovens having monolith crowns |
10578521, | May 10 2017 | American Air Filter Company, Inc. | Sealed automatic filter scanning system |
10611965, | Aug 17 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke plant including exhaust gas sharing |
10619101, | Dec 31 2013 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Methods for decarbonizing coking ovens, and associated systems and devices |
10732621, | May 09 2016 | STRONGFORCE IOT PORTFOLIO 2016, LLC; Strong Force IOT Portfolio 2016, LLC | Methods and systems for process adaptation in an internet of things downstream oil and gas environment |
10851306, | May 23 2017 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | System and method for repairing a coke oven |
10877007, | Jul 08 2014 | Silicon Valley Bank | Gas leak detection and event selection based on spatial concentration variability and other event properties |
10883051, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Methods and systems for improved coke quenching |
10920148, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Burn profiles for coke operations |
10927303, | Mar 15 2013 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Methods for improved quench tower design |
10947455, | Aug 17 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Automatic draft control system for coke plants |
10968393, | Sep 15 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke ovens having monolith component construction |
10968395, | Dec 31 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Multi-modal beds of coking material |
10975309, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Exhaust flow modifier, duct intersection incorporating the same, and methods therefor |
10975310, | Dec 31 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Multi-modal beds of coking material |
10975311, | Dec 31 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Multi-modal beds of coking material |
11008517, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods |
11008518, | Dec 28 2018 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke plant tunnel repair and flexible joints |
11021655, | Dec 28 2018 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Decarbonization of coke ovens and associated systems and methods |
11053444, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and system for optimizing coke plant operation and output |
11071935, | Dec 28 2018 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Particulate detection for industrial facilities, and associated systems and methods |
11098252, | Dec 28 2018 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Spring-loaded heat recovery oven system and method |
11117087, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Systems and methods for removing mercury from emissions |
11142699, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Vent stack lids and associated systems and methods |
11186778, | May 23 2017 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | System and method for repairing a coke oven |
11193069, | Dec 28 2018 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke plant tunnel repair and anchor distribution |
11214739, | Dec 28 2015 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and system for dynamically charging a coke oven |
11261381, | Dec 28 2018 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Heat recovery oven foundation |
1140798, | |||
1378782, | |||
1424777, | |||
1429346, | |||
1430027, | |||
1486401, | |||
1530995, | |||
1572391, | |||
1677973, | |||
1705039, | |||
1721813, | |||
1757682, | |||
1818370, | |||
1818994, | |||
1830951, | |||
1848818, | |||
1895202, | |||
1947499, | |||
1955962, | |||
1979507, | |||
2075337, | |||
2141035, | |||
2195466, | |||
2235970, | |||
2340283, | |||
2340981, | |||
2394173, | |||
2424012, | |||
2486199, | |||
2609948, | |||
2641575, | |||
2649978, | |||
2667185, | |||
2723725, | |||
2756842, | |||
2813708, | |||
2827424, | |||
2873816, | |||
2902991, | |||
2907698, | |||
2968083, | |||
3015893, | |||
3026715, | |||
3033764, | |||
3175961, | |||
3199135, | |||
3224805, | |||
3259551, | |||
3265044, | |||
3267913, | |||
3327521, | |||
3342990, | |||
3444046, | |||
3444047, | |||
3448012, | |||
3453839, | |||
3462345, | |||
3511030, | |||
3542650, | |||
3545470, | |||
3587198, | |||
3591827, | |||
3592742, | |||
3616408, | |||
3623511, | |||
3630852, | |||
3652403, | |||
3676305, | |||
3709794, | |||
3710551, | |||
3746626, | |||
3748235, | |||
3784034, | |||
3806032, | |||
3811572, | |||
3836161, | |||
3839156, | |||
3844900, | |||
3857758, | |||
3875016, | |||
3876143, | |||
3876506, | |||
3878053, | |||
3894302, | |||
3897312, | |||
3906992, | |||
3912091, | |||
3912597, | |||
3917458, | |||
3928144, | |||
3930961, | Apr 08 1974 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Hooded quenching wharf for coke side emission control |
3933443, | May 18 1971 | Coking component | |
3957591, | May 25 1973 | Hartung, Kuhn & Co., Maschinenfabrik GmbH | Coking oven |
3959084, | Sep 25 1974 | DAVY MCKEE CORPORATION, A DE CORP | Process for cooling of coke |
3963582, | Nov 26 1974 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Method and apparatus for suppressing the deposition of carbonaceous material in a coke oven battery |
3969191, | Jun 01 1973 | Dr. C. Otto & Comp. G.m.b.H. | Control for regenerators of a horizontal coke oven |
3975148, | Feb 19 1974 | Onoda Cement Company, Ltd. | Apparatus for calcining cement |
3979870, | Jan 24 1975 | Light-weight, insulated construction element and wall | |
3984289, | Jul 12 1974 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Coke quencher car apparatus |
3990948, | Feb 11 1975 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Apparatus for cleaning the bottom surface of a coke oven door plug |
4004702, | Apr 21 1975 | Bethlehem Steel Corporation | Coke oven larry car coal restricting insert |
4004983, | Apr 04 1974 | Dr. C. Otto & Comp. G.m.b.H. | Coke oven battery |
4025395, | Aug 03 1971 | USX CORPORATION, A CORP OF DE | Method for quenching coke |
4040910, | Jun 03 1975 | Firma Carl Still | Apparatus for charging coke ovens |
4045056, | Oct 14 1975 | Expansion compensator for pipelines | |
4045299, | Nov 24 1975 | Pennsylvania Coke Technology, Inc. | Smokeless non-recovery type coke oven |
4059885, | May 19 1975 | Dr. C. Otto & Comp. G.m.b.H. | Process for partial restoration of a coke oven battery |
4065059, | Sep 07 1976 | Repair gun for coke ovens | |
4067462, | Apr 02 1972 | ELK RIVER RESOURCES, INC | Coke oven pushing and charging machine and method |
4077848, | Dec 10 1976 | USX CORPORATION, A CORP OF DE | Method and apparatus for applying patching or sealing compositions to coke oven side walls and roof |
4083753, | May 04 1976 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | One-spot coke quencher car |
4086231, | Oct 31 1974 | ENPROTECH CORP | Coke oven door construction |
4093245, | Jun 02 1977 | JOY POWER PRODUCTS, INC , A CORP OF PA | Mechanical sealing means |
4100033, | Aug 21 1974 | Extraction of charge gases from coke ovens | |
4100491, | Feb 28 1977 | Southwest Research Institute | Automatic self-cleaning ferromagnetic metal detector |
4100889, | Apr 07 1977 | Combustion Engineering, Inc. | Band type tube support |
4111757, | May 25 1977 | Pennsylvania Coke Technology, Inc. | Smokeless and non-recovery type coke oven battery |
4124450, | Nov 24 1975 | Pennsylvania Coke Technology, Inc. | Method for producing coke |
4133720, | Oct 22 1976 | Dr. C. Otto & Comp. G.m.b.H. | Support apparatus for a battery of underjet coke ovens |
4135948, | Dec 17 1976 | Krupp-Koppers GmbH | Method and apparatus for scraping the bottom wall of a coke oven chamber |
4141796, | Aug 08 1977 | Bethlehem Steel Corporation | Coke oven emission control method and apparatus |
4143104, | Oct 09 1972 | Hoogovens Ijmuiden, B.V. | Repairing damaged refractory walls by gunning |
4145195, | Jul 07 1972 | Firma Carl Still | Adjustable device for removing pollutants from gases and vapors evolved during coke quenching operations |
4147230, | Apr 14 1978 | Nelson Industries, Inc. | Combination spark arrestor and aspirating muffler |
4162546, | Oct 31 1977 | Carrcraft Manufacturing Company | Branch tail piece |
4176013, | Jan 23 1978 | Interlake, Inc. | Coke oven door seal assembly |
4181459, | Mar 01 1978 | USX CORPORATION, A CORP OF DE | Conveyor protection system |
4189272, | Feb 27 1978 | Gewerkschaft Schalker Eisenhutte | Method of and apparatus for charging coal into a coke oven chamber |
4194951, | Mar 19 1977 | Dr. C. Otto & Comp. G.m.b.H. | Coke oven quenching car |
4196053, | Oct 04 1977 | Hartung, Kuhn & Co. Maschinenfabrik GmbH | Equipment for operating coke oven service machines |
4211608, | Sep 28 1977 | Bethlehem Steel Corporation | Coke pushing emission control system |
4211611, | Feb 06 1978 | Firma Carl Still | Coke oven coal charging device |
4213489, | Sep 19 1977 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | One-spot coke quench car coke distribution system |
4213828, | Jan 05 1977 | Method and apparatus for quenching coke | |
4222748, | Apr 10 1978 | AFP Imaging Corporation | Electrostatically augmented fiber bed and method of using |
4222824, | Feb 25 1978 | Didier Engineering GmbH; Bergwerksverband GmbH | Recuperative coke oven and process for the operation thereof |
4224109, | Apr 07 1977 | Bergwerksverband GmbH; Didier Engineering GmbH | Process and apparatus for the recovery of waste heat from a coke oven operation |
4225393, | Dec 10 1977 | Gewerkschaft Schalker Eisenhutte | Door-removal device |
4226113, | Apr 11 1979 | Electric Power Research Institute, Inc. | Leak detecting arrangement especially suitable for a steam condenser and method |
4230498, | Aug 02 1978 | USX CORPORATION, A CORP OF DE | Coke oven patching and sealing material |
4235830, | Sep 05 1978 | Mobil Solar Energy Corporation | Flue pressure control for tunnel kilns |
4239602, | Jul 23 1979 | Insul Company, Inc. | Ascension pipe elbow lid for coke ovens |
4248671, | Apr 04 1979 | Envirotech Corporation | Dry coke quenching and pollution control |
4249997, | Dec 18 1978 | Bethlehem Steel Corporation | Low differential coke oven heating system |
425797, | |||
4263099, | May 17 1979 | Bethlehem Steel Corporation | Wet quenching of incandescent coke |
4268360, | Mar 03 1980 | Koritsu Machine Industrial Limited | Temporary heat-proof apparatus for use in repairing coke ovens |
4271814, | Apr 29 1977 | Heat extracting apparatus for fireplaces | |
4284478, | Aug 19 1977 | Didier Engineering GmbH | Apparatus for quenching hot coke |
4285772, | Feb 06 1979 | Method and apparatus for handlng and dry quenching coke | |
4287024, | Jun 22 1978 | ELK RIVER RESOURCES, INC | High-speed smokeless coke oven battery |
4289479, | Jun 19 1980 | JOHNSON, FRANCES H | Thermally insulated rotary kiln and method of making same |
4289584, | Mar 15 1979 | Bethlehem Steel Corporation | Coke quenching practice for one-spot cars |
4289585, | Apr 14 1979 | Didier Engineering GmbH | Method and apparatus for the wet quenching of coke |
4296938, | May 17 1979 | Firma Carl Still GmbH & KG | Immersion-type seal for the standpipe opening of coke ovens |
4298497, | Jan 21 1980 | Nalco Chemical Company | Composition for preventing cold end corrosion in boilers |
4299666, | Apr 10 1979 | Firma Carl Still GmbH & Co. KG | Heating wall construction for horizontal chamber coke ovens |
4302935, | Jan 31 1980 | Adjustable (D)-port insert header for internal combustion engines | |
4303615, | Jun 02 1980 | FISHER SCIENTIFIC COMPANY A CORP OF DE | Crucible with lid |
4307673, | Jul 23 1979 | Forest Fuels, Inc. | Spark arresting module |
4314787, | Jun 02 1979 | Dr. C. Otto & Comp. GmbH | Charging car for coke ovens |
4316435, | Feb 27 1980 | General Electric Company | Boiler tube silencer |
4324568, | Aug 11 1980 | Flanders Filters, Inc. | Method and apparatus for the leak testing of filters |
4330372, | May 29 1981 | NATIONAL STEEL CORPORATION, A CORP OF DE | Coke oven emission control method and apparatus |
4334963, | Sep 26 1979 | WSW Planungs-GmbH | Exhaust hood for unloading assembly of coke-oven battery |
4336107, | Sep 02 1981 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Aligning device |
4336843, | Oct 19 1979 | ODECO Engineers, Inc. | Emergency well-control vessel |
4340445, | Jan 09 1981 | Car for receiving incandescent coke | |
4342195, | Aug 15 1980 | Motorcycle exhaust system | |
4344820, | Jun 22 1980 | ELK RIVER RESOURCES, INC | Method of operation of high-speed coke oven battery |
4344822, | Oct 31 1979 | Bethlehem Steel Corporation | One-spot car coke quenching method |
4353189, | Aug 15 1978 | Firma Carl Still GmbH & Co. KG | Earthquake-proof foundation for coke oven batteries |
4366029, | Aug 31 1981 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Pivoting back one-spot coke car |
4373244, | May 25 1979 | Dr. C. Otto & Comp. G.m.b.H. | Method for renewing the brickwork of coke ovens |
4375388, | Oct 23 1979 | Nippon Steel Corporation | Apparatus for filling carbonizing chamber of coke oven with powered coal with vibration applied thereto |
4385962, | Jun 16 1980 | RUHRKOHLE AKTIENGESELLSCHAFT, A GERMAN CORP | Method for the production of coke |
4391674, | Apr 29 1980 | LTV STEEL COMPANY, INC , | Coke delivery apparatus and method |
4392824, | Oct 08 1980 | DR C OTTO & COMP G M B H , A WEST GERMAN CORP | System for improving the flow of gases to a combustion chamber of a coke oven or the like |
4394217, | Mar 27 1980 | Ruhrkohle Aktiengesellschaft; Gewerkschaft Schalker Eisenhutte | Apparatus for servicing coke ovens |
4395269, | Sep 30 1981 | Donaldson Company, Inc. | Compact dust filter assembly |
4396394, | Dec 21 1981 | ARCH COAL, INC | Method for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal |
4396461, | Oct 31 1979 | Bethlehem Steel Corporation | One-spot car coke quenching process |
4406619, | Mar 30 1981 | Ruhrkohle AG; Steag AG | Sealing lid means for coke oven chamber |
4407237, | Feb 18 1981 | Applied Engineering Co., Inc. | Economizer with soot blower |
4421070, | Jun 25 1982 | Combustion Engineering, Inc. | Steam cooled hanger tube for horizontal superheaters and reheaters |
4431484, | May 20 1981 | Firma Carl Still GmbH & Co. KG | Heating system for regenerative coke oven batteries |
4439277, | Aug 01 1981 | Coke-oven door with Z-profile sealing frame | |
4440098, | Dec 10 1982 | ENERGY RECORVERY GROUP INC , A FL CORP | Waste material incineration system and method |
4445977, | Feb 28 1983 | Furnco Construction Corporation | Coke oven having an offset expansion joint and method of installation thereof |
4446018, | May 01 1980 | Armco Inc. | Waste treatment system having integral intrachannel clarifier |
4448541, | Sep 22 1982 | Mediminder Development Limited Partnership | Medical timer apparatus |
4452749, | Sep 14 1982 | MODERN REFRACTORIES SERVICE CORPORATION, A CORP OF NY | Method of repairing hot refractory brick walls |
4459103, | Mar 10 1982 | Hazen Research, Inc. | Automatic volatile matter content analyzer |
4469446, | Jun 24 1982 | BABCOCK & WILCOX COMPANY, THE | Fluid handling |
4474344, | Mar 25 1981 | The Boeing Company | Compression-sealed nacelle inlet door assembly |
4487137, | Jan 21 1983 | Auxiliary exhaust system | |
4498786, | Nov 15 1980 | Balcke-Durr Aktiengesellschaft | Apparatus for mixing at least two individual streams having different thermodynamic functions of state |
4506025, | Mar 22 1984 | INDRESCO, INC | Silica castables |
4508539, | Mar 04 1982 | Idemitsu Kosan Company Limited | Process for improving low quality coal |
4518461, | Mar 20 1982 | Krupp-Koppers GmbH | Support for batteries of coking furnaces heated from the top |
4527488, | Apr 26 1983 | RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO | Coke oven charging car |
4564420, | Dec 09 1982 | Dr. C. Otto & Comp. GmbH | Coke oven battery |
4568426, | Feb 09 1983 | PETROLEUM ANALYZER COMPANY L P | Controlled atmosphere oven |
4570670, | May 21 1984 | Valve | |
4614567, | Oct 28 1983 | Firma Carl Still GmbH & Co. KG | Method and apparatus for selective after-quenching of coke on a coke bench |
4643327, | Mar 25 1986 | Insulated container hinge seal | |
4645513, | Oct 20 1982 | Idemitsu Kosan Company Limited | Process for modification of coal |
4655193, | Jun 05 1984 | Incinerator | |
4655804, | Dec 11 1985 | CLYDE BERGEMANN US INC | Hopper gas distribution system |
4666675, | Nov 12 1985 | Shell Oil Company | Mechanical implant to reduce back pressure in a riser reactor equipped with a horizontal tee joint connection |
4680167, | Feb 09 1983 | PETROLEUM ANALYZER COMPANY L P | Controlled atmosphere oven |
4690689, | Mar 02 1983 | Columbia Gas System Service Corp. | Gas tracer composition and method |
469868, | |||
4704195, | Dec 01 1984 | Krupp Koppers GmbH | Method of reducing NOx component of flue gas in heating coking ovens, and an arrangement of coking oven for carrying out the method |
4720262, | Oct 05 1984 | Krupp Polysius AG | Apparatus for the heat treatment of fine material |
4724976, | Jan 12 1987 | Collapsible container | |
4726465, | Jun 15 1985 | FIRMA CARL STILL GMBH & CO KG ; FA DR C OTTO & COMP GMBH | Coke quenching car |
4732652, | Nov 28 1980 | Krupp Koppers GmbH | Clamping system for coke oven heating walls |
4749446, | Mar 05 1981 | Estel Hoogovens B.V. | Horizontal coke-oven battery |
4793981, | Nov 19 1986 | The Babcock & Wilcox Company | Integrated injection and bag filter house system for SOx -NOx -particulate control with reagent/catalyst regeneration |
4821473, | Mar 12 1987 | Chimney by-pass | |
4824614, | Apr 09 1987 | Texaco, Inc | Device for uniformly distributing a two-phase fluid |
4889698, | Jul 16 1986 | A S NIRO ATOMIZER | Process for removal or mercury vapor and/or vapor of noxious organic compounds and/or nitrogen oxides from flue gas from an incinerator plant |
4898021, | Nov 30 1988 | Westinghouse Electric Corp. | Quantitative air inleakage detection system and method for turbine-condenser systems |
4918975, | Mar 31 1987 | Leybold Aktiengesellschaft | Method and apparatus for testing fluid-filled systems for leaks |
4919170, | Aug 08 1987 | FLACHGLAS AKTIENGESELLSCHAFT, OTTO-SEELING-PROMENADE 10-14, D-8510 FURTH, WEST GERMANY A CORP OF GERMANY; VEBA KRAFTWERKE RUHR AKTIENGESELLSCHAFT, BERGMANNSGLUCKSTR 41-43 D-4650 GELSENKIRCHEN-BUER, WEST GERMANY A CORP OF GERMANY | Flow duct for the flue gas of a flue gas-cleaning plant |
4929179, | Oct 17 1988 | Ruhrkohle AG | Roof structure |
4941824, | May 13 1988 | HEINZ HOLTER, BEISENSTRASSE 39-41 | Method of and apparatus for cooling and cleaning the roof and environs of a coke oven |
5052922, | Jun 27 1989 | Hoogovens Groep BV | Ceramic gas burner for a hot blast stove, and bricks therefor |
5062925, | Dec 10 1988 | Uhde GmbH | Method of reducing the nitrogen dioxide content of flue gas from a coke oven with dual heating flues by a combination of external flue gas feed back and internal flue gas recirculation |
5078822, | Nov 14 1989 | Method for making refractory lined duct and duct formed thereby | |
5087328, | Sep 07 1989 | Voest-Alpine Stahl Linz Gasellschaft m.b.H. | Method and apparatus for removing filling gases from coke ovens |
5114542, | Sep 25 1990 | SUNCOKE ENERGY, INC | Nonrecovery coke oven battery and method of operation |
5213138, | Mar 09 1992 | United Technologies Corporation | Mechanism to reduce turning losses in conduits |
5227106, | Feb 09 1990 | TONAWANDA COKE CORPORATION A NY CORP | Process for making large size cast monolithic refractory repair modules suitable for use in a coke oven repair |
5228955, | May 22 1992 | SUNCOKE TECHNOLOGY AND DEVELOPMENT CORP | High strength coke oven wall having gas flues therein |
5234601, | Sep 28 1992 | GE OSMONICS, INC | Apparatus and method for controlling regeneration of a water treatment system |
5318671, | Sep 25 1990 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method of operation of nonrecovery coke oven battery |
5370218, | Sep 17 1993 | Johnson Industries, Inc. | Apparatus for hauling coal through a mine |
5398543, | Jul 08 1992 | Hitachi Building Equipment Engineering Co., Ltd. | Method and apparatus for detection of vacuum leak |
5423152, | Feb 09 1990 | Tonawanda Coke Corporation | Large size cast monolithic refractory repair modules and interfitting ceiling repair modules suitable for use in a coke over repair |
5447606, | May 12 1993 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method of and apparatus for capturing coke oven charging emissions |
5480594, | Sep 02 1994 | Method and apparatus for distributing air through a cooling tower | |
5542650, | Feb 10 1995 | Anthony-Ross Company | Apparatus for automatically cleaning smelt spouts of a chemical recovery furnace |
5597452, | Sep 24 1992 | Robert Bosch GmbH | Method of restoring heating walls of coke oven battery |
5603810, | Mar 07 1995 | Minnotte Corporations | Coke-oven door seal |
5622280, | Jul 06 1995 | NORTH AMERICA PACKAGING CORP | Method and apparatus for sealing an open head drum |
5659110, | Feb 03 1994 | Lentjes GmbH | Process of purifying combustion exhaust gases |
5670025, | Aug 24 1995 | Saturn Machine & Welding Co., Inc. | Coke oven door with multi-latch sealing system |
5687768, | Jan 18 1996 | The Babcock & Wilcox Company | Corner foils for hydraulic measurement |
5705037, | Dec 21 1994 | Uhde GmbH | Device for reducing the concentration of CO in the waste gas from coke oven batteries that are heated with lean gas |
5715962, | Nov 16 1995 | Expandable ice chest | |
5720855, | May 14 1996 | Saturn Machine & Welding Co. Inc. | Coke oven door |
5745969, | Oct 29 1993 | JP STEEL PLANTECH CO | Method and apparatus for repairing a coke oven |
5752548, | Oct 06 1995 | Benkan Corporation | Coupling for drainage pipings |
5787821, | Feb 13 1996 | The Babcock & Wilcox Company | High velocity integrated flue gas treatment scrubbing system |
5810032, | Mar 22 1995 | CHEVRON U S A INC | Method and apparatus for controlling the distribution of two-phase fluids flowing through impacting pipe tees |
5816210, | Oct 03 1996 | Nissan Diesel Motor Co., Ltd. | Structure of an exhaust port in an internal combustion engine |
5857308, | May 18 1991 | Nukem Limited | Double lid system |
5881551, | Sep 22 1997 | ALSTOM POWER INC | Heat recovery steam generator |
5913448, | Jul 08 1997 | Rubbermaid Incorporated | Collapsible container |
5928476, | Aug 19 1997 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Nonrecovery coke oven door |
5966886, | Feb 25 1994 | FIB-Services | Method for partially building and/or repairing at high temperatures industrial facilities including a structure made of refractory materials, and prefabricated element therefor |
5968320, | Feb 07 1997 | STELCO INC | Non-recovery coke oven gas combustion system |
6002993, | Apr 04 1996 | Nippon Steel Corporation | Apparatus for monitoring wall surface |
6003706, | Sep 17 1998 | Sonoco Development, Inc | Adjustable depth insulated container |
6017214, | Oct 05 1998 | Pennsylvania Coke Technology, Inc. | Interlocking floor brick for non-recovery coke oven |
6022112, | May 30 1996 | Centre de Pyrolyse de Marienau "CMP" | Endoscopic inspection sensor for coke oven batteries |
6059932, | Oct 05 1998 | Pennsylvania Coke Technology, Inc. | Coal bed vibration compactor for non-recovery coke oven |
6126910, | Oct 14 1997 | Codan Development LLC | Method for removing acid gases from flue gas |
6139692, | Mar 25 1997 | Kawasaki Steel Corporation | Method of controlling the operating temperature and pressure of a coke oven |
6152668, | Sep 25 1997 | Uhde GmbH | Coal charging car for charging chambers in a coke-oven battery |
6156688, | Dec 05 1997 | Kawasaki Steel Corporation; Kawasaki Refractories Co., Ltd.; Taiho Industries Co., Ltd. | Repairing material for bricks of carbonizing chamber in coke oven and repairing method |
6173679, | Jun 30 1997 | Siemens Aktiengesellschaft | Waste-heat steam generator |
6187148, | Mar 01 1999 | Pennsylvania Coke Technology, Inc. | Downcomer valve for non-recovery coke oven |
6189819, | May 20 1999 | Wisconsin Electric Power Company (WEPCO) | Mill door in coal-burning utility electrical power generation plant |
6290494, | Oct 05 2000 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for coal coking |
6412221, | Aug 02 1999 | Thermal Engineering International; THERMAL ENGINEERING INTERNATIONAL USA , INC | Catalyst door system |
6495268, | Sep 28 2000 | The Babcock & Wilcox Company | Tapered corrosion protection of tubes at mud drum location |
6539602, | Jul 05 1999 | Kawasaki Steel Corporation; Otto Corporation | Method of repairing coke oven |
6596128, | Feb 14 2001 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke oven flue gas sharing |
6626984, | Oct 26 1999 | FSX, Inc.; FSX, INC | High volume dust and fume collector |
6699035, | Sep 06 2001 | BROOKER, DWIGHT | Detonation flame arrestor including a spiral wound wedge wire screen for gases having a low MESG |
6712576, | Sep 18 2001 | OTTAWA FIBRE LP | Batch charger for cold top electric furnace |
6758875, | Nov 13 2001 | TWIN BROOK CAPITAL PARTNERS, LLC, AS AGENT | Air cleaning system for a robotic welding chamber |
6786941, | Jun 30 2000 | Hazen Research, Inc. | Methods of controlling the density and thermal properties of bulk materials |
6830660, | Jul 29 1998 | JFE Steel Corporation | Method for producing metallurgical coke |
6907895, | Sep 19 2001 | COMMERCE, UNITED STATES OF AMEICA, AS REPRESENTED BY THE SECRETARY OF, THE | Method for microfluidic flow manipulation |
6946011, | Mar 18 2003 | The Babcock & Wilcox Company | Intermittent mixer with low pressure drop |
6964236, | Sep 20 2000 | Uhde GmbH | Leveling device with an adjustable width |
7056390, | May 04 2001 | MARK VII EQUIPMENT INC | Vehicle wash apparatus with an adjustable boom |
705926, | |||
7077892, | Nov 26 2003 | Air purification system and method | |
7314060, | Apr 23 2005 | Industrial Technology Research Institute | Fluid flow conducting module |
7331298, | Sep 03 2004 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke oven rotary wedge door latch |
7433743, | May 25 2001 | IMPERIAL COLLEGE INNOVATIONS, LTD | Process control using co-ordinate space |
7497930, | Jun 16 2006 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for compacting coal for a coal coking process |
7547377, | Feb 28 2005 | KANSAI COKE AND CHEMICALS CO , LTD , THE | Coke oven repairing apparatus |
760372, | |||
7611609, | May 01 2001 | ARCELORMITTAL INVESTIGACION Y DESARROLLO, S L | Method for producing blast furnace coke through coal compaction in a non-recovery or heat recovery type oven |
7644711, | Aug 05 2005 | The Big Green Egg, Inc. | Spark arrestor and airflow control assembly for a portable cooking or heating device |
7722843, | Nov 24 2006 | System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems | |
7727307, | Sep 04 2007 | Steag Energy Services GmbH | Method for removing mercury from flue gas after combustion |
7785447, | Sep 17 2001 | EKOCOKE, LLC | Clean production of coke |
7803627, | Jun 23 2005 | ALIXIUM DEVICES LIMITED | Process for evaluating quality of coke and bitumen of refinery feedstocks |
7823401, | Oct 27 2006 | Denso Corporation | Refrigerant cycle device |
7827689, | Jan 16 2007 | Vanocur Refractories, L.L.C. | Coke oven reconstruction |
7998316, | Mar 17 2009 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Flat push coke wet quenching apparatus and process |
8071060, | Jan 21 2008 | MITSUBISHI HEAVY INDUSTRIES, LTD | Flue gas control system of coal combustion boiler and operating method thereof |
8079751, | Sep 10 2004 | M-I L.L.C. | Apparatus for homogenizing two or more fluids of different densities |
8080088, | Mar 05 2007 | Flue gas mercury control | |
8146376, | Jan 14 2008 | Research Products Corporation | System and methods for actively controlling an HVAC system based on air cleaning requirements |
8152970, | Mar 03 2006 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for producing coke |
8172930, | Mar 13 2009 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Cleanable in situ spark arrestor |
8236142, | May 19 2010 | Westbrook Thermal Technology, LLC | Process for transporting and quenching coke |
8266853, | May 12 2009 | Vanocur Refractories LLC | Corbel repairs of coke ovens |
8311777, | Feb 22 2007 | Nippon Steel Corporation | Coke oven wall surface evaluation apparatus, coke oven wall surface repair supporting apparatus, coke oven wall surface evaluation method, coke oven wall surface repair supporting method and computer program |
8383055, | Jun 15 2007 | PALMER TECHNOLOGIES PTY LTD ; PALMER LININGS PTY LTD | Anchor system for refractory lining |
8398935, | Jun 09 2005 | The Government of the United States of America, as represented by the Secretary of the Navy | Sheath flow device and method |
8409405, | Mar 11 2009 | Thyssenkrupp Uhde GmbH | Device and method for dosing or shutting off primary combustion air in the primary heating room of horizontal coke-oven chambers |
845719, | |||
8500881, | Sep 30 2009 | MITSUBISHI POWER, LTD | Carbon dioxide capture power generation system |
8515508, | Apr 20 2010 | Panasonic Corporation | Method for measuring a concentration of a biogenic substance contained in a living body |
8568568, | Nov 28 2007 | Uhde GmbH | Leveling apparatus for and method of filling an oven chamber of a coke-oven battery |
8640635, | May 12 2009 | Vanocur Refractories, L.L.C. | Corbel repairs of coke ovens |
8647476, | Sep 07 2007 | Uhde GmbH | Device for feeding combustion air or gas influencing coal carbonization into the upper area of coke ovens |
875989, | |||
8800795, | Mar 26 2010 | Ice chest having extending wall for variable volume | |
8956995, | Aug 20 2008 | SAKAI CHEMICAL INDUSTRY CO , LTD | Catalyst and method for thermal decomposition of organic substance and method for producing such catalyst |
8980063, | Sep 29 2008 | Thyssenkrupp Uhde GmbH; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG | Air proportioning system for secondary air in coke ovens depending on the vault vs. sole temperature ratio |
9039869, | Dec 18 2007 | Uhde GmbH | Controllable air ducts for feeding of additional combustion air into the area of flue gas channels of coke oven chambers |
9057023, | Jul 01 2009 | Thyssenkrupp Uhde GmbH | Method and device for keeping coke furnace chambers hot when a waste heat boiler is stopped |
9103234, | May 27 2008 | Gas Technology Institute | HRSG for fluidized gasification |
9169439, | Aug 29 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for testing coal coking properties |
9193913, | Sep 21 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Reduced output rate coke oven operation with gas sharing providing extended process cycle |
9193915, | Mar 14 2013 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Horizontal heat recovery coke ovens having monolith crowns |
9200225, | Aug 03 2010 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for compacting coal for a coal coking process |
9238778, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Systems and methods for improving quenched coke recovery |
9243186, | Aug 17 2012 | SunCoke Technology and Development LLC.; SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke plant including exhaust gas sharing |
9249357, | Aug 17 2012 | SunCoke Technology and Development LLC.; SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and apparatus for volatile matter sharing in stamp-charged coke ovens |
9273249, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Systems and methods for controlling air distribution in a coke oven |
9273250, | Mar 15 2013 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Methods and systems for improved quench tower design |
9321965, | Mar 17 2009 | SunCoke Technology and Development LLC. | Flat push coke wet quenching apparatus and process |
9359554, | Aug 17 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Automatic draft control system for coke plants |
9404043, | Oct 09 2008 | Thyssenkrupp Uhde GmbH; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG | Air distributing device for primary air in coke ovens |
9463980, | Oct 14 2011 | JFE Steel Corporation | Method for manufacturing coke |
9498786, | Dec 12 2008 | GENERAL ELECTRIC TECHNOLOGY GMBH | Dry flue gas desulfurization system with dual feed atomizer liquid distributor |
9580656, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke oven charging system |
9672499, | Apr 02 2014 | MODERNITY FINANCIAL HOLDINGS, LTD | Data analytic and security mechanism for implementing a hot wallet service |
9708542, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Method and system for optimizing coke plant operation and output |
976580, | |||
9862888, | Dec 28 2012 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Systems and methods for improving quenched coke recovery |
9976089, | Aug 28 2014 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | Coke oven charging system |
20020170605, | |||
20030014954, | |||
20030015809, | |||
20030057083, | |||
20040220840, | |||
20050087767, | |||
20050096759, | |||
20060029532, | |||
20060102420, | |||
20060149407, | |||
20070087946, | |||
20070102278, | |||
20070116619, | |||
20070251198, | |||
20080028935, | |||
20080179165, | |||
20080250863, | |||
20080257236, | |||
20080271985, | |||
20080289305, | |||
20090007785, | |||
20090032385, | |||
20090105852, | |||
20090152092, | |||
20090162269, | |||
20090217576, | |||
20090257932, | |||
20090283395, | |||
20100015564, | |||
20100095521, | |||
20100106310, | |||
20100113266, | |||
20100115912, | |||
20100119425, | |||
20100181297, | |||
20100196597, | |||
20100276269, | |||
20100287871, | |||
20100300867, | |||
20100314234, | |||
20110000284, | |||
20110014406, | |||
20110048917, | |||
20110083314, | |||
20110088600, | |||
20110120852, | |||
20110144406, | |||
20110168482, | |||
20110174301, | |||
20110192395, | |||
20110198206, | |||
20110223088, | |||
20110253521, | |||
20110291827, | |||
20110313218, | |||
20110315538, | |||
20120031076, | |||
20120125709, | |||
20120152720, | |||
20120177541, | |||
20120179421, | |||
20120180133, | |||
20120195815, | |||
20120228115, | |||
20120247939, | |||
20120305380, | |||
20120312019, | |||
20130020781, | |||
20130045149, | |||
20130213114, | |||
20130216717, | |||
20130220373, | |||
20130306462, | |||
20140033917, | |||
20140039833, | |||
20140156584, | |||
20140182683, | |||
20140208997, | |||
20140224123, | |||
20140262726, | |||
20150041304, | |||
20150122629, | |||
20150143908, | |||
20150175433, | |||
20150219530, | |||
20150226499, | |||
20150361347, | |||
20160026193, | |||
20160048139, | |||
20160149944, | |||
20160154171, | |||
20160319198, | |||
20160370082, | |||
20170173519, | |||
20170182447, | |||
20170183569, | |||
20170226425, | |||
20170261417, | |||
20170313943, | |||
20170352243, | |||
20180340122, | |||
20190169503, | |||
20190317167, | |||
20200071190, | |||
20200139273, | |||
20200173679, | |||
20200206683, | |||
20200208059, | |||
20200208060, | |||
20200208063, | |||
20200208833, | |||
20200407641, | |||
20210024828, | |||
20210040391, | |||
20210130697, | |||
20210163821, | |||
20210163822, | |||
20210163823, | |||
20210198579, | |||
20210261877, | |||
20210340454, | |||
20210363426, | |||
20210363427, | |||
20210371752, | |||
20210388270, | |||
20220056342, | |||
20220106527, | |||
20220298423, | |||
20220325183, | |||
20220356410, | |||
20230012031, | |||
CA1172895, | |||
CA2775992, | |||
CA2822841, | |||
CA2822857, | |||
CA2905110, | |||
CN100500619, | |||
CN100510004, | |||
CN101037603, | |||
CN101058731, | |||
CN101157874, | |||
CN101211495, | |||
CN101395248, | |||
CN101486017, | |||
CN101497835, | |||
CN101509427, | |||
CN101886466, | |||
CN101910530, | |||
CN102072829, | |||
CN102155300, | |||
CN102584294, | |||
CN103399536, | |||
CN103468289, | |||
CN103913193, | |||
CN104498059, | |||
CN105001914, | |||
CN105137947, | |||
CN105189704, | |||
CN105264448, | |||
CN105467949, | |||
CN106661456, | |||
CN106687564, | |||
CN107445633, | |||
CN1092457, | |||
CN1255528, | |||
CN1270983, | |||
CN1358822, | |||
CN1468364, | |||
CN1527872, | |||
CN1957204, | |||
CN201121178, | |||
CN201264981, | |||
CN202226816, | |||
CN202265541, | |||
CN202415446, | |||
CN202470353, | |||
CN203981700, | |||
CN2064363, | |||
CN2139121, | |||
CN2509188, | |||
CN2521473, | |||
CN2528771, | |||
CN2668641, | |||
CN87107195, | |||
CN87212113, | |||
DE10122531, | |||
DE10154785, | |||
DE102005015301, | |||
DE102006004669, | |||
DE102006026521, | |||
DE102009031436, | |||
DE102011052785, | |||
DE1212037, | |||
DE19545736, | |||
DE19803455, | |||
DE201729, | |||
DE212176, | |||
DE2212544, | |||
DE2720688, | |||
DE3231697, | |||
DE3315738, | |||
DE3328702, | |||
DE3329367, | |||
DE3407487, | |||
EA10510, | |||
EP126399, | |||
EP208490, | |||
EP903393, | |||
EP1538503, | |||
EP1860034, | |||
EP2295129, | |||
EP2468837, | |||
FR2339664, | |||
FR2517802, | |||
FR2764978, | |||
GB364236, | |||
GB368649, | |||
GB441784, | |||
GB606340, | |||
GB611524, | |||
GB725865, | |||
GB871094, | |||
GB923205, | |||
JP10273672, | |||
JP1103694, | |||
JP11131074, | |||
JP11256166, | |||
JP1249886, | |||
JP2000204373, | |||
JP2000219883, | |||
JP2001055576, | |||
JP2001200258, | |||
JP2002097472, | |||
JP2002106941, | |||
JP2003041258, | |||
JP2003051082, | |||
JP2003071313, | |||
JP2003292968, | |||
JP2003342581, | |||
JP2004169016, | |||
JP2005135422, | |||
JP2005154597, | |||
JP2005263983, | |||
JP2005344085, | |||
JP2005503448, | |||
JP2006188608, | |||
JP2007063420, | |||
JP2007231326, | |||
JP2008231278, | |||
JP2009019106, | |||
JP2009073864, | |||
JP2009073865, | |||
JP2009135276, | |||
JP2009144121, | |||
JP2010229239, | |||
JP2010248389, | |||
JP2011068733, | |||
JP2011102351, | |||
JP2011504947, | |||
JP2012102302, | |||
JP2012102325, | |||
JP2013006957, | |||
JP2013189322, | |||
JP2013510910, | |||
JP2014040502, | |||
JP2015094091, | |||
JP2016169897, | |||
JP319127, | |||
JP3197588, | |||
JP3924064, | |||
JP4101226, | |||
JP4159392, | |||
JP4178494, | |||
JP50148405, | |||
JP5230466, | |||
JP5319301, | |||
JP54054101, | |||
JP5453103, | |||
JP57051786, | |||
JP57051787, | |||
JP57083585, | |||
JP57090092, | |||
JP57172978, | |||
JP58091788, | |||
JP59051978, | |||
JP59053589, | |||
JP59071388, | |||
JP59108083, | |||
JP59145281, | |||
JP60004588, | |||
JP61106690, | |||
JP62011794, | |||
JP62285980, | |||
JP6264062, | |||
JP6299156, | |||
JP649450, | |||
JP654753, | |||
JP7188668, | |||
JP7204432, | |||
JP7216357, | |||
JP8104875, | |||
JP8127778, | |||
JP8218071, | |||
JP843314, | |||
KR100296700, | |||
KR100737393, | |||
KR100797852, | |||
KR101314288, | |||
KR101318388, | |||
KR101862491, | |||
KR1019960008754, | |||
KR1019990054426, | |||
KR1020040020883, | |||
KR19990017156, | |||
KR20000042375, | |||
KR20030012458, | |||
KR20040107204, | |||
KR20050053861, | |||
KR20060132336, | |||
KR20080069170, | |||
KR20110010452, | |||
KR20120033091, | |||
KR20130050807, | |||
KR20140042526, | |||
KR20150011084, | |||
KR20170038102, | |||
KR20170058808, | |||
KR20170103857, | |||
RU2083532, | |||
RU2441898, | |||
RU2493233, | |||
SU1535880, | |||
TW201241166, | |||
TW201245431, | |||
UA50580, | |||
WO2062922, | |||
WO2005023649, | |||
WO2005031297, | |||
WO2005115583, | |||
WO2007103649, | |||
WO2008034424, | |||
WO2008105269, | |||
WO2009147983, | |||
WO2010103992, | |||
WO2010107513, | |||
WO2011000447, | |||
WO2011126043, | |||
WO2012029979, | |||
WO2012031726, | |||
WO2013023872, | |||
WO2014021909, | |||
WO2014043667, | |||
WO2014105064, | |||
WO2014153050, | |||
WO2016004106, | |||
WO2016033511, | |||
WO2016086322, | |||
WO9012074, | |||
WO9945083, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 06 2017 | QUANCI, JOHN FRANCIS | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058192 | /0809 | |
Apr 27 2018 | CHOI, CHUN WAI | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058192 | /0567 | |
May 02 2018 | BALL, MARK ANTHONY | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058192 | /0567 | |
May 02 2018 | WEST, GARY DEAN | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058192 | /0567 | |
May 07 2018 | CRUM, JASON | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058192 | /0567 | |
Nov 08 2021 | SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 08 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Dec 19 2026 | 4 years fee payment window open |
Jun 19 2027 | 6 months grace period start (w surcharge) |
Dec 19 2027 | patent expiry (for year 4) |
Dec 19 2029 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 19 2030 | 8 years fee payment window open |
Jun 19 2031 | 6 months grace period start (w surcharge) |
Dec 19 2031 | patent expiry (for year 8) |
Dec 19 2033 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 19 2034 | 12 years fee payment window open |
Jun 19 2035 | 6 months grace period start (w surcharge) |
Dec 19 2035 | patent expiry (for year 12) |
Dec 19 2037 | 2 years to revive unintentionally abandoned end. (for year 12) |