A system and method for repairing a coke oven having an oven chamber formed from ceramic bricks. A representative system includes a insulated enclosure insertable into the oven chamber and includes removable insulated panels that define an interior area for workers to work in. The insulated enclosure is movable between an expanded configuration and a compact configuration and moving the enclosure to the expanded configuration will decrease the distance between the insulated enclosure and the walls of the oven chamber. Removing the panels exposes the ceramic bricks and allows workers within the interior area to access and the bricks and repair the oven chamber while the oven chamber is still hot. A loading apparatus lifts and inserts the insulated enclosure into the oven chamber. The insulated enclosure can be coupled to additional insulated enclosures to form an elongated interior area.

Patent
   11845898
Priority
May 23 2017
Filed
Nov 08 2021
Issued
Dec 19 2023
Expiry
May 23 2038

TERM.DISCL.
Assg.orig
Entity
Large
0
750
currently ok
1. A structure configured to be inserted into a heated area, comprising:
a ceiling portion;
a floor portion; and
a first side portion; and
a second side portion opposite the first side portion,
wherein—
the structure is expandable from a first configuration to a second configuration,
in the first configuration, the ceiling portion is spaced apart from the floor portion by a first distance,
in the second configuration, the ceiling portion is spaced apart from the floor portion from a second distance greater than the first distance, and
the structure is configured to withstand temperatures at or above a temperature of at least 1000° F.
9. A structure configured to be inserted into a heated area having a floor, sidewalls, and a ceiling, the structure comprising:
a ceiling portion;
a floor portion; and
a first side portion; and
a second side portion opposite the first side portion, wherein—
the structure is movable between a first configuration and a second configuration,
in the first configuration, the ceiling portion of the structure is spaced apart from the ceiling of the heated area by a first distance,
in the second configuration, the ceiling portion of the structure is spaced apart from the ceiling of the heated area by a second distance greater than the first distance, and
the structure is configured to withstand temperatures at or above a temperature of at least 1000° F.
2. The structure of claim 1, further comprising a plurality of removable panels that at least partially define the floor portion, the ceiling portion, the first side portion, and the second side portion.
3. The structure of claim 2, wherein each of the panels includes an insulation portion and a backing portion coupled to the insulation portion.
4. The structure of claim 3, wherein the insulation portion comprises a ceramic material and the backing portion comprises metal.
5. The structure of claim 1, further comprising a cooling apparatus used to circulate cool air from outside of the structure into an interior area of the structure defined at least in part by the ceiling portion, floor portion, first side portion, and second side portion.
6. The structure of claim 1, wherein, in both the first configuration and the second configuration, the first side portion is spaced apart from the second side portion by the same distance.
7. The structure of claim 1 wherein, in the first configuration the first side portion is spaced apart from the second side portion by a first width, and in the second configuration the first side portion is spaced apart from the second side portion by a second width different than the first width.
8. The structure of claim 1, wherein the heated area is a coke oven including a crown, and wherein, in the first configuration the ceiling portion of the structure is configured to be spaced apart from the crown by a third distance, and in the second configuration the ceiling portion of the structure is configured to be spaced apart from the crown by a fourth distance different than the third distance.
10. The structure of claim 9, further comprising a plurality of removable panels that at least partially define the floor portion, the ceiling portion, the first side portion, and the second side portion.
11. The structure of claim 10, wherein each of the panels includes an insulation portion and a backing portion coupled to the insulation portion.
12. The structure of claim 11, wherein the insulation portion comprises a ceramic material and the backing portion comprises metal.
13. The structure of claim 9, further comprising a cooling apparatus used to circulate cool air from outside of the structure into an interior area of the structure defined at least in part by the ceiling portion, floor portion, first side portion, and second side portion.
14. The structure of claim 9, wherein, in both the first configuration and the second configuration, the first side portion is spaced apart from the second side portion by the same distance.
15. The structure of claim 9 wherein, in the first configuration the first side portion is spaced apart from the second side portion by a first width, and in the second configuration the first side portion is spaced apart from the second side portion by a second width different than the first width.
16. The structure of claim 9, wherein the heated area is a coke oven including a crown, and wherein, in the first configuration the ceiling portion of the structure is configured to be spaced apart from the crown by a third distance, and in the second configuration the ceiling portion of the structure is configured to be spaced apart from the crown by a fourth distance different than the third distance.

This application is a continuation of U.S. patent application Ser. No. 17/076,563, filed Oct. 21, 2020, which is a divisional application of U.S. patent application Ser. No. 15/987,860 filed May 23, 2018 (now U.S. Pat. No. 10,851,306), which claims the benefit of priority to U.S. Provisional Application No. 62/510,109, filed May 23, 2017, the disclosures of which are incorporated herein by reference in their entireties.

The present technology relates to coke ovens and in particular to methods and apparatus for repairing coke ovens to improve the oven life and increase coke yield from the ovens.

Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Coking ovens have been used for many years to convert coal into metallurgical coke. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions. During the coking process, the finely crushed coal devolatilizes and forms a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.

Coke ovens are typically constructed of refractory bricks that include alumina, silica, and/or other ceramic materials. These refractory bricks are capable of withstanding high temperatures and typically retain heat for an extended period. However, the refractory bricks can be brittle and can crack, which decreases the coke-producing ability of the coke oven. To repair the coke oven, workers are often required to enter the coke oven and replace the broken bricks. Coke ovens operate at extremely high temperatures that are unsuitable for workers to enter and enabling the workers to comfortably enter the coke oven requires decreasing the temperature of the coke oven. However, the temperature within coke ovens is typically never allowed to decrease too far as doing so can potentially damage the ovens.

When a coke oven is built, burnable spacers are placed between the bricks in the oven crown to allow for brick expansion. Once the oven is heated, the spacers burn away and the bricks expand due to thermal expansion. However, the ovens are typically never allowed to drop below the thermally-volume-stable temperature (i.e., the temperature above which silica is generally volume-stable and does not expand or contract). If the bricks drop below this temperature, the bricks start to contract. Since the spacers have burned out, a traditional crown can contract up to several inches upon cooling. This is potentially enough movement for the crown bricks to start to shift and potentially collapse. Therefore, enough heat must be maintained in the ovens to keep the bricks above the thermally-volume-stable temperature. However, the thermally-volume-stable temperature is too hot for workers to comfortably enter the coke ovens. Accordingly, there is a need for an improved system that allows workers to comfortably enter a coke oven without requiring that the coke oven be cooled below the thermally-volume-stable temperature.

FIG. 1 is an isometric, partial cut-away view of a portion of a horizontal heat recovery/non-recovery coke plant configured in accordance with embodiments of the present technology.

FIG. 2 is an isometric view of two ovens having the front doors removed.

FIG. 3A is an isometric view of a insulated enclosure in an expanded configuration that can be inserted into the oven chamber of FIG. 2 and configured in accordance with embodiments of the present technology.

FIG. 3B is an isometric view of the insulated enclosure of FIG. 3A in a compact configuration and configured in accordance with embodiments of the present technology.

FIG. 4 is an isometric view of multiple of the insulated enclosure shown in FIGS. 3A and 3B inserted into an oven chamber and coupled together, in accordance with embodiments of the present technology.

FIG. 5 is an isometric view of the insulated enclosure shown in FIGS. 3A and 3B being inserted into an oven chamber.

FIG. 6 is a method of repairing an oven chamber using the insulated enclosure, in accordance with embodiments of the present technology.

Several embodiments of the present technology are directed to systems and apparatuses used to repair coke ovens while the coke ovens are hot. For example, the present technology can include an insulated enclosure movable between a compact configuration and an expanded configuration in a horizontal non-heat recovery or a heat recovery coke oven, but is not limited to these applications and can be applied in other similar applications. The insulated enclosure can be placed within a coke oven in the compact configuration and expanded into the expanded position so that workers can stand and maneuver within the enclosure. The insulated enclosure can include removable insulated panels positioned around the circumference of the enclosure that insulate the interior of the enclosure from the heated oven sidewalls, floor, and/or crown. The insulated panels can be removable to allow the workers to access portions of the coke oven and clean or repair damaged portions. The insulated enclosure can be modular to allow the enclosure to be adapted to differently sized ovens. This approach can allow the coke oven to be repaired without cooling the coke oven, which can require the coke oven to be unused for an extended time period and/or can often result in the bricks that form the coke oven cracking or shifting out of position as they cool. Accordingly, the insulated enclosure can shield the workers from the high temperatures given off by the coke oven so that the coke oven can remain at an elevated temperature while the workers repair the oven. In accordance with further embodiments, the insulated enclosure allows workers to quickly access the interior of an oven between operation cycles.

Specific details of several embodiments of the disclosed technology are described below with reference to particular, representative configuration. The disclosed technology can be practiced in accordance with ovens, coke manufacturing facilities, and insulation and heat shielding structures having other suitable configurations. Specific details describing structures or processes that are well-known and often associated with coke ovens and heat shields but that can unnecessarily obscure some significant aspects of the presently disclosed technology, are not set forth in the following description for clarity. Moreover, although the following disclosure sets forth some embodiments of the different aspects of the disclosed technology, some embodiments of the technology can have configurations and/or components different than those described in this section. As such, the present technology can include some embodiments with additional elements and/or without several of the elements described below with reference to FIGS. 1-6.

Referring to FIG. 1, a coke plant 100 is illustrated which produces coke from coal in a reducing environment. In general, the coke plant 100 comprises at least one oven 101, along with heat recovery steam generators and an air quality control system (e.g. an exhaust or flue gas desulfurization system) both of which are positioned fluidly downstream from the ovens and both of which are fluidly connected to the ovens by suitable ducts. According to aspects of the disclosure, the coke plant can include a heat recovery or a non-heat recovery coke oven, or a horizontal heat recovery or horizontal non-recovery coke oven. The coke plant 100 preferably includes a plurality of ovens 101 and a common tunnel 102 that is fluidly connected to each of the ovens 101 with uptake ducts 103. A cooled gas duct transports the cooled gas from the heat recovery steam generators to the flue gas desulfurization system. Fluidly connected and further downstream are a baghouse for collecting particulates, at least one draft fan for controlling air pressure within the system, and a main gas stack for exhausting cooled, treated exhaust to the environment. Steam lines interconnect the heat recovery steam generators and a cogeneration plant so that the recovered heat can be utilized. The coke plant 100 can also be fluidly connected to a bypass exhaust stack 104 that can be used to vent hot exhaust gasses to the atmosphere in emergency situations.

FIG. 1 illustrates four ovens 101 with sections cut away for clarity. Each oven 101 comprises an oven chamber 110 preferably defined by a floor 111, a front door 114, a rear door 115 preferably opposite the front door 114, two sidewalls 112 extending upwardly from the floor 111 intermediate the front 114 and rear 115 doors, and a crown 113 which forms the top surface of the oven chamber 110. Controlling air flow and pressure inside the oven 101 can be critical to the efficient operation of the coking cycle and therefore the oven 101 includes one or more air inlets 119 that allow air into the oven 101. Each air inlet 119 includes an air damper which can be positioned at any number of positions between fully open and fully closed to vary the amount of primary air flow into the oven 101. In the illustrated embodiment, the oven 101 includes an air inlet 119 coupled to the front door 114, which is configured to control air flow into the oven chamber 110, and an air inlet 119 coupled to a sole flue 118 positioned beneath the floor 111 of the oven 101. Alternatively, the one or more air inlets 119 are formed through the crown 113 and/or in the uptake ducts 103. In operation, volatile gases emitted from the coal positioned inside the oven chamber 110 collect in the crown 113 and are drawn downstream in the overall system into downcomer channels 117 formed in one or both sidewalls 112. The downcomer channels 117 fluidly connect the oven chamber 110 with the sole flue 118 positioned. The sole flue 118 forms a circuitous path beneath the floor 111 and volatile gases emitted from the coal can be combusted in the sole flue 118, thereby generating heat to support the reduction of coal into coke. The downcomer channels 117 are fluidly connected to uptake channels 116 formed in one or both sidewalls 112. The air inlet 119 coupled to the sole flue 118 can fluidly connect the sole flue 118 to the atmosphere and can be used to control combustion within the sole flue. The oven 101 can also include a platform 105 adjacent to the front door 114 that a worker can stand and walk on to access the front door and the oven chamber 110.

In operation, coke is produced in the ovens 101 by first loading coal into the oven chamber 110, heating the coal in an oxygen depleted environment, driving off the volatile fraction of coal and then oxidizing the volatiles within the oven 101 to capture and utilize the heat given off. The coal volatiles are oxidized within the ovens over a 48-hour coking cycle and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when the front door 114 is opened and coal is charged onto the floor 111. The coal on the floor 111 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. Preferably, no additional fuel other than that produced by the coking process is used. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame and radiant oven crown 113. The remaining half of the heat is transferred to the coal bed by conduction from the floor 111 which is convectively heated from the volatilization of gases in the sole flue 118. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed at the same rate, preferably meeting at the center of the coal bed after about 45-48 hours.

The floor 111, the sidewalls 112, and the crown 113 are typically formed from ceramic bricks (e.g., refractory bricks) capable of withstanding high temperatures and that typically retain heat for an extended period. In some embodiments, the bricks be formed from a ceramic material that includes silica and/or alumina. The sidewalls 112 can include bricks stacked together in an alternating arrangement and the crown 113 can include bricks arranged in an arch. However, these bricks can be brittle and can sometimes break. For example, striking the bricks (e.g., with a forklift or other machinery, with a tool, etc.) can cause the bricks to fracture. In addition, the bricks can sometimes break due to internal stresses caused by thermal expansion and contraction as the bricks are repeatedly heated and cooled over a prolonged period. The bricks can also break due to differences in temperature between opposing sides of the brick, which can result in internal stresses forming due to the temperature gradient. For example, in the illustrated embodiment, some of the bricks that form the sidewalls 112 can be positioned between the oven chamber 110 and the uptake and downcomer channels 116 and 117 and the differences in temperature between the air in the oven chamber 110 and the air in the uptake and downcomer channels 116 and 117 can sometimes result in these bricks breaking.

FIG. 2 is an isometric view of two ovens 101 having the front doors removed and having a plurality of cracks 106 formed in the sidewalls 112. In the illustrated embodiment, the cracks 106 are generally vertical and extend completely through the thickness of the sidewalls 112 such that the uptake channels and the downcomer channels are in fluid communication with the oven chamber 110 and air can pass through the cracks 106. In other embodiments, the cracks 106 may not extend completely through the sidewalls 112, can be formed in the crown 113, and/or can be formed in the floor 111. The presence of these cracks 106 can affect the temperature within the oven chamber 110 as well as the airflow regulating abilities of the ovens 101, which can affect the efficiency of the oven 101 and can reduce the ability of the ovens 101 to convert coal into coke. Accordingly, to maintain the operating efficiency and effectiveness of the oven 101, the oven 101 can be repaired by replacing the broken bricks.

However, the oven chamber 110 is typically too hot for workers to comfortably work and additional insulation and cooling systems are required. In representative embodiments of the present technology, a insulated enclosure that includes insulation can be positioned within the oven chamber 110 to allow workers to comfortably enter the oven chamber 110 and access the cracks 106 and any other portions of the oven 101 that require cleaning, repair or maintenance. The insulation can prevent heat emitted by the bricks from entering the enclosure so that the temperature within the enclosure can remain at a sufficiently low temperature for the workers to comfortably work and repair the oven 101 without requiring that the oven 101 completely cool down ambient temperatures. FIG. 3A shows an elevation view of a insulated enclosure 120. The insulated enclosure 120 includes an interior area 121 defined by a ceiling portion 122, a floor portion 124, and opposing side portions 123. The ceiling portion 122 can include first angled portions 125a and the floor portion 124 can include second angled portions 125b. The insulated enclosure 120 can be formed from a frame 126 and a plurality of panels 130 removably coupled to the frame 126. The panels 130 can be positioned against and secured to the frame 126 to form the ceiling portion 122, floor portion 124, and the side portions 123 and each of the panels 130 can include insulation configured to prevent heat given off by the oven 101 from entering the interior area 121.

Each of the panels 130 can include an insulation portion 131 and a backing portion 132 coupled to the insulation portion and the panels 130 can be coupled to the frame 126 such that the insulation portion 131 faces away from the interior area 121 (i.e., towards the sidewalls 112, the crown 113, and the floor 111). The backing portion 132 can be formed from metal and can include handles that workers can use to control and maneuver the panel 130. In some embodiments, the insulation portion 131 can be formed from a high-temperature insulation wool (HTIW), ceramic blanket material, Kaowool, or the like. In other embodiments, the insulation portion 131 includes rigid insulation made from ceramic tiles. In either of these embodiments, the insulation portion 131 is sized and shaped to generally conform to the shape of the of the backing portion 132.

When the insulated enclosure 120 is in the expanded configuration, the side portions 123 can include a gap 133 between the top edges of the panels 130 and the first angled portions 125a through which heat from the oven chamber 110 can pass into the interior area 121. To prevent or at least limit the amount of heat that can pass through the gap 133 when the insulated enclosure 120 is in the expanded position, the insulated enclosure 120 can also include insulation 129 that cover the gap 133. The insulation 129 can be formed from a ceramic blanket material coupled to the ceiling portion 122. The insulation 129 can drape over the first angled portions 125a and extend past the gap 133 to at least partially cover the panels 130. When a worker needs to access a selected portion of the sidewall 112 that is blocked by the insulation 129, the insulation 129 can be pushed aside or secured out of the way to expose the selected portion of the sidewall 112. In some embodiments, the insulation 129 includes a plurality of strips that each cover a portion of the gap 133. In these embodiments, the strips can be individually manipulated and secured out of the way. In other embodiments, however, the insulation 129 can include a curtain that covers the entire gap 133. The curtain can be movably coupled to a rod attached to the frame 126 such that the curtain can slide along the entire length of the insulated enclosure 120 and can completely cover the gap 133.

In the illustrated embodiment, the first angled portions 125a form an angle of approximately 45° with the side portions 123 and the second angled portions 125b form an angle of approximately 45° with the side portions 123. In other embodiments, however, the first and second angled portions 125a and 125b can form some different angles with the side portions 123. For example, in some embodiments, the first and second angled portions 125a and 125b can form an angle less than 45° with the side portions 123. In still other embodiments, the insulated enclosure 120 can be formed such that the first angled portions 125a can form a different angle with the side portions 123 than the second angled portions 125b. In general, the insulated enclosure 120 can be formed such that the angled portions 125a and 125b conform to the size and shape of the oven chamber.

The insulated enclosure 120 can be movable between a first, expanded configuration and a second, compact configuration. In the embodiment shown in FIG. 3A, the insulated enclosure 120 is in the expanded configuration. In this configuration, the interior area 121 can have a height H1 sufficiently large enough for workers to comfortably stand and maneuver within the insulated enclosure 120. However, inserting the insulated enclosure 120 into the oven chamber 110 in the second, compact configuration allows the insulated enclosure to be placed without accidentally striking the crown and/or sidewalls of the oven chamber. Accordingly, the insulated enclosure 120 can be in the compact configuration when the insulated enclosure 120 is inserted into the oven chamber and expanded in a desired position. FIG. 3B shows the insulated enclosure 120 in the compact configuration. In this configuration, the interior area 121 can have a height H2 that is less than the height H1. In this way, the risk of striking the crown and/or the sidewalls of the oven chamber when inserting the insulated enclosure into the oven chamber can be reduced.

To facilitate moving the insulated enclosure 120 between the first, expanded and the second, compact configuration, the insulated enclosure 120 can include one or more adjustable jacks 128 interactively coupled to the frame 126. The jacks 128 can be movable between an elongated position and a shortened position. Specifically, the one or more jacks can be in the elongated position when the insulated enclosure 120 is in the expanded configuration and the shortened position when the insulated enclosure 120 is in the compact configuration. To move the insulated enclosure 120 to the expanded configuration, the jacks 128 can move to the elongated position by lifting the ceiling portion 122 away from the floor portion 124, thereby increasing the height of the interior area 121 to the first height H1. Conversely, to move the insulated enclosure 120 to the compact configuration, the jacks 128 can move to the shortened position by lowering the ceiling portion 122 towards the floor portion 124, thereby decreasing the height of the interior 121 area to the second height H2. In the illustrated embodiments, the insulated enclosure 120 includes four of the jacks 128 positioned at the four corners of the insulated enclosure 120. In other embodiments, however, the insulated enclosure can include a single jack 128 positioned at the center of the insulated enclosure. In some embodiments, the jacks 128 can be hydraulic or pneumatic jacks that utilize a fluid to move the jack 128 between the elongated position and the shortened position. In other embodiments, the jacks 128 can be mechanical jacks that require a worker to move the jack 128 between the elongated position and the shortened position using a handle or a lever. When the insulated enclosure 120 is in either the expanded configuration or the compact configuration, a locking mechanism can be used to secure the ceiling portion in the selected configuration.

In the illustrated embodiments, moving the insulated enclosure 120 between the expanded configuration and the compact configuration causes both the height of the insulated enclosure 120 and the distance between the roof portion 122 and the crown to change without affecting the width of the insulated enclosure 120 does not change or the distance between the side portions 123 and the sidewalls. In other embodiments, however, moving the insulated enclosure 120 between the expanded configuration and the compact configuration can cause both the width of the insulated enclosure 120 and the distance between the side portions 123 and the sidewalls to change. In these embodiments, the insulated enclosure 120 can include one or more horizontally-oriented jacks 128 coupled to the frame 126 and used to slide the two side portions 123, thereby increasing the width of the insulated enclosure 120.

The insulated enclosure 120 can also include support rails 127 integrally coupled to the frame 126 adjacent to the floor portion 124. The support rails 127 can be formed from elongated pieces of metal having a flattened bottom surface configured to be in contact with the floor of the oven chamber. In this way, when the insulated enclosure 120 is inserted into the oven chamber, the insulated enclosure 120 can slide along the floor on the support rails 127. In other embodiments, however, the insulated enclosure 120 can include wheels, continuous tracks (i.e., tank treads), or another mechanism to facilitate moving the insulated enclosure 120 along the floor of the oven chamber.

When the insulated enclosure 120 is positioned at the entrance of the oven chamber 110, workers can use the insulated enclosure 120 to access and work on portions of the oven chamber 110 near the entrance. However, the oven chamber 110 can be longer than the insulated enclosure 120 and accessing selected portions of the oven chamber 110 far from the entrance can require the insulated enclosure 120 to be positioned away from the entrance. To allow the workers to comfortably access and work on these selected portions, multiple of the insulated enclosures 120 can be inserted into the oven chamber 110 adjacent to each other and coupled together.

FIG. 4 shows an isometric view of a plurality of insulated enclosures 120 coupled together and positioned within the oven chamber 110. In the illustrated embodiment, the plurality of insulated enclosures 120 extend completely through the oven chamber 110 from the front side to the back side. With this arrangement, the multiple insulated enclosures 120 can form an elongated interior area 121 having a length substantially equal to the length of the oven chamber 110. Further, the front and rear doors (i.e., the front door 114 and the rear door 115 shown in FIG. 1) can be opened and/or removed so that air from outside of the oven 101 can flow through the elongated interior area 121 to provide additional cooling to the workers.

In other embodiments, however, the multiple insulated enclosures 120 may only extend part of the way into the oven chamber 110 such that such that portions of the oven chamber 110 near the entrance are covered by the insulated enclosures 120 while portions further from the entrance are not. However, the portions of the oven chamber 110 further from the entrance are still at an elevated temperature and give off heat. Accordingly, the insulated enclosure 120 furthest from the entrance can have an insulated wall portion that forms a bulkhead to reduce the amount of heat from entering the interior area 121. In some embodiments, the wall portion can include removable panels 130 or can include a non-removable insulated structure. In other embodiments, the insulated wall portion can be formed from soft and flexible insulation coupled to the ceiling portion 122 that hangs over the end of the insulated enclosure 120.

To couple the multiple insulated enclosures 120 together, each of the insulated enclosures 120 can include alignment mechanisms configured to mate with the alignment mechanisms on an adjacent insulated enclosure 120. For example, in some embodiments, the insulated enclosures 120 can include guides that can help arrange and position the insulated enclosures 120. Once aligned, the insulated enclosures 120 can be coupled together using bolts, clamps, or a different connection apparatus.

In the illustrated embodiment, one of the panels 130 that forms one of the side portions 123 of the nearest insulated enclosure 120 is decoupled from the frame 126, thereby exposing the sidewall 112 and allowing workers within the insulated enclosure 120 to access and interact with the bricks that form the sidewall 112. Accordingly, decoupling the panels 130 that form the side portions 123 from the frame 126 allows the workers to repair the sidewalls 112 of the oven chamber 110. Similarly, decoupling the panels 130 that forms the floor portion 124 from the frame 126 can expose the floor 111 of the oven chamber 110 so that workers can repair the floor 111. For example, during operation of the oven 101, hardened coke can stick to the bricks that form the floor 111 and removing the coke from the oven chamber 110 can sometimes cause portions of these bricks to break off and be removed with the coke, which can result in the floor 111 being uneven. Accordingly, decoupling the panels 130 that form the floor portion 124 from the frame 126 can expose the floor 111 and allow workers to access the bricks so that the floor 111 can be repaired.

The insulated enclosure 120 can allow workers to repair the oven chamber 110 using any selected repair technique. For example, workers can selectively remove damaged or misaligned bricks from the exposed portions of the oven chamber 110 and replace the removed bricks with new bricks. The workers can also be able to repair the oven chamber without removing any bricks. For example, the workers can cast refractory over broken or misaligned bricks in the floor 111 to level the floor 111 in lieu of replacing the broken bricks as the lowered temperature within the oven chamber 110 can improve the casting ability and performance of the refractory. Other repairing techniques, such as silica welding and shotcrete can also be used to repair the oven chamber 110.

The insulated enclosures 120 can include a transportation system that transports bricks removed from the floor 111, sidewalls 112, and/or crown 113 out of the oven chamber 110. In some embodiments, the transportation system can include a conveyor belt that extends into the interior area 121. Workers can place the bricks onto the conveyor belt and the conveyor belt can carry the bricks out of the oven chamber 110. The conveyor belt apparatus can also be used to carry bricks and/or other supplies into the insulated enclosures 120 for the workers to use while inspecting or repairing the oven chamber 110.

The insulated enclosure 120 can also include additional cooling and insulating apparatuses configured to help regulate temperature within the interior area 121. For example, the insulated enclosure 120 can include fans that circulate cool air from outside of the oven 101 into the interior area 121 and/or blow warm air from inside the interior area 121 to outside of the insulated enclosure 120. In some embodiments, these fans can be positioned within the insulated enclosure 120 or can be positioned outside of the insulated enclosure 120. In embodiments for which a plurality of the insulated enclosures 120 are coupled together and extend through the oven chamber 110, the fans can blow air from one end of the oven chamber 110 to the other. The fans can also regulate and control air pressure within the interior area 121. In other embodiments, the insulated enclosure 120 can include a pipe that brings cool air into the interior area 121 from outside of the oven chamber 110. The pipe can be insulated and can be coupled to an air compressor or a fan to push the cool air through the pipe. Further, in some embodiments, the insulated enclosure 120 can include a fluid membrane coupled to the floor portion 124. The fluid membrane can be coupled to a fluid source and a fluid pump can circulate the fluid through the fluid membrane to cool the feet of the workers on or near the fluid membrane.

As previously discussed, the insulated enclosure 120 can be used to inspect and repair the oven chamber 110 when the oven 101 is not charged but without requiring that the oven chamber 110 be completely cooled. Accordingly, the bricks can be still be hot when the insulated enclosure 120 is inserted into the oven chamber 110. For example, in some embodiments, the bricks can be over 2000° F. when the oven 101 is charged and can be approximately 1000° F. when the oven is not charged. However, if the oven is uncharged for too long and the bricks cool below the thermally-volume-stable temperature of the ceramic material, the bricks can shrink, which can cause the bricks to shift out of alignment and the oven chamber 110 to require additional repairs. For example, the bricks that form the crown 113 can shrink and fall towards the insulated enclosure 120 if they cool below the thermally-volume-stable temperature, which can cause the crown 113 to collapse. Accordingly, the ceiling portion 122 can provide a safety function by preventing the bricks from falling onto the workers within the insulated enclosure 120.

To help prevent the bricks from cooling below the thermally-volume-stable temperature, in some embodiments, the insulated enclosure 120 can include one or more external heating apparatuses coupled to the exterior surface of the insulated enclosure 120 and positioned to direct heat towards the crown 113, the sidewalls 112, and the floor 111. In some of these embodiments, the external heating apparatus can be an electrical heating apparatus. In other embodiments, the external heating apparatus can include one or more chemical burners. The external heating apparatuses can direct heat towards the bricks to keep the bricks above the thermally-volume-stable temperature so that that they do not shrink while the oven chamber 110 is being repaired. Accordingly, the external heating apparatuses can help to allow the workers to work on the oven chamber 110 for a prolonged period without the bricks shrinking. In other embodiments, however, the insulated enclosure 120 does not include external heating apparatuses. Instead, the temperature of the oven chamber 110 is monitored when the insulated enclosure 120 is inserted into the oven chamber 110 so that the insulated enclosure 120 can be removed when the temperature approaches the thermally-volume-stable temperature. Heat can be added through sole flue 118 from an adjacent oven to return the oven being repaired to a sufficient temperature to maintain brick stability. Alternatively, the insulated enclosure 120 may be removed, the oven can be turned heated by any of the above mentioned means until the temperature within the oven chamber reaches a selected temperature. In this way, the insulated enclosure 120 can be in the oven chamber 110 for only a shortened period so that the bricks can be prevented from cooling below the thermally-volume-stable temperature and shrinking. Once the oven chamber 110 reaches the selected temperature, the insulated enclosure 120 can be reinserted into the oven chamber 110 so that further repairs can be made. This process can be repeated until all the necessary repairs have been.

The insulated enclosure 120 can be inserted into the oven chamber 110 using a positioning apparatus. In some embodiments, the positioning apparatus includes a forklift. FIG. 5 shows an isometric view of the insulated enclosure 120 being inserted into the oven chamber 110 using a forklift 140. In the illustrated embodiment, the forklift 140 lifts the insulated enclosure by engaging the ceiling portion 122 of the insulated enclosure 120. In other embodiments, the forklift 140 can engage with a different portion of the insulated enclosure 120 to support the weight of the insulated enclosure 120. For example, in some embodiments, the forklift 140 can engage with the floor portion 124 or with mounting points positioned along the side portions 123. In other embodiments, however, the insulated enclosure 120 can be inserted into the oven chamber 110 using a different positioning apparatus. For example, in some embodiments, construction equipment, such as an excavator, can be used to lift and position the insulated enclosure 120. In still other embodiments, the positioning apparatus can include a moving structure (e.g., a railcar), and a pushing mechanism (e.g., a ram). The insulated enclosure 120 can be positioned on the moving structure and can be pushed into the oven chamber 110 with the pushing mechanism when the moving structure is aligned with the entrance to the oven chamber 110.

The positioning apparatus can also be used to remove the insulated enclosure 120 from the oven chamber 110. For example, in embodiments for which the forklift 140 is used to insert the insulated enclosure 120 into the oven chamber 110, the forklift 140 can lift and pull the insulated enclosure 120 out of the oven chamber 110. Similarly, the pushing mechanism can be used to pull the insulated enclosure 120 out of the oven chamber 110. The insulated enclosure 120 can include an attachment mechanism coupled to the frame and the attachment mechanism can be releasably couplable to a second attachment mechanism coupled to the pushing mechanism and the pushing mechanism can be used to pull the insulated enclosure 120 out of the oven 101 using the attachment mechanisms. In some embodiments, the attachment mechanisms include collars that interlock with each other to attach the insulated enclosure 120 to the pushing mechanism. In some embodiments, the attachment mechanisms can also be used to push the insulated enclosure 120 into the oven chamber.

FIG. 6 shows a method 600 of using the insulated enclosure to repair an oven chamber for a coke oven without the temperature in the oven chamber falling below an elevated temperature. At step 605, the oven chamber is inspected for any portions that need repair. These portions can include defects that can be visually diagnosed, such as cracks or broken bricks in the floor portion, sidewalls, and/or crown or bricks that have shifted out of alignment. The portions can also include older bricks that do not appear to be broken or defective but that are old and need to be replaced for newer bricks.

At step 610, the front and/or back door of the oven chamber is removed. If the identified portions of the oven chamber are near the front of the oven chamber, only the front door can be removed, while if the identified portions of the oven chamber are near the back of the oven chamber, only the back door can be removed. However, if the identified portions are in the middle of the oven chamber and/or are near both the front and back of the oven chamber, both the front and back doors can be removed. In some embodiments, the front and/or back doors can be removed before the oven chamber reaches the predetermined temperature to increase the rate of cooling within the oven chamber.

At step 615, the oven charge is removed and the oven may be allowed to cool to a predetermined temperature. Some coke ovens can operate at temperatures greater than 2000° F., requiring the insulated enclosure to protect workers from heat. Accordingly, the ovens need to be turned off so that the oven chambers can cool before the workers can enter the oven chamber. However, coke ovens typically do not use a supplemental heat source to form the coke and instead rely upon the heat produced by the coal as it burns to heat the oven chamber. As a result, cooling a coke oven often includes removing the coke from the oven chamber without adding new coal. After the charge is removed from the coke oven, the oven chamber can be allowed to cool until the temperature reaches a predetermined temperature. In some embodiments, the predetermined temperature can be similar to the thermally-volume-stable temperature of the bricks so that the bricks do not substantially shrink. For example, in embodiments where the bricks are formed from silica, the oven chamber can be allowed to cool until the temperature reaches approximately 1200° F. In embodiments where the bricks are formed from alumina, however, the oven chamber can be allowed to cool to a temperature below 1200° F. In general, the predetermined temperature can be selected based on the type of oven and the composition of the bricks so that the bricks do not substantially shrink and deform as the oven chamber cools.

At step 620, one or more insulated enclosures can be inserted into the oven chamber. The one or more insulated enclosures can include removable insulated panels coupled to a frame and can be inserted into the oven chamber using machinery (e.g., a forklift or a pushing mechanism), until the one or more insulated enclosures are positioned over the one or more identified portions. At step 620a, the insulated enclosures can include coupling mechanisms and can be coupled to each other using the coupling mechanisms to form a passageway from the front and/or back entrance of the oven chamber to the identified portion.

The insulated enclosures can be movable between a compact configuration and an expanded configuration and can be inserted into the oven chamber when in the compact configuration. At step 625, the insulated enclosures can be moved from the compact configuration to the expanded configuration using one or more jacks. In some embodiments, moving the insulated enclosures to the expanded configuration can increase the height of the insulated enclosures so that the ceiling portion of the insulated enclosure is closer to the crown of the oven chamber and so that workers can more comfortably stand working in the insulated enclosures. In other embodiments, moving the insulated enclosures to the expanded configuration can increase the width of the insulated enclosures so that the side portions of the insulated enclosure are closer to the sidewalls of the oven chamber. In still other embodiments, moving the insulated enclosure to the expanded configuration can increase both the height and the width of the insulated enclosure.

At step 625a, the insulated enclosures can optionally include cooling apparatuses used to provide additional cooling to the workers within the insulated enclosures and external heating apparatuses coupled to the exterior of the insulated enclosures to heat the bricks so that the bricks do not cool and shrink while the oven chamber is being repaired. In some embodiments, the cooling apparatuses can include fans, fluid membranes that circulate cooled fluid throughout the insulated enclosures, insulated pipes that can bring in cool air from outside of the oven, etc., while the external heating apparatuses include electrical heaters and/or chemical burners. According to alternative embodiments, heat from adjacent operational ovens can be transferred to the oven being repaired or cleaned through the sole flue. Once the insulated enclosure is in the expanded configuration, the cooling apparatuses and the external heating apparatuses can be activated.

At step 630, one or more of the insulated removable panels can be detached from the frame to expose the one or more identified portions of the oven. The panels can be arranged along the side portions, the ceiling portions, and the floor portions of the insulated enclosures so that the identified portions that are in the sidewalls, the floor, and/or the crown of the oven chamber can be accessed by workers within the insulated enclosure.

At step 635, the one or more identified portions of the oven chamber are repaired. Repairing the one or more identified portions can include replacing damaged bricks, casting refractory over uneven surfaces in the floor, silica welding bricks together, and/or using shotcrete. Other cleaning and repairing techniques can also be used.

At step 640, after repairing the identified portions, the insulated removable panels are reattached to the frame to cover the now-repaired identified portions.

At step 645, the insulated enclosures can be moved from the expanded configuration to the compact configuration.

At step 650a, the insulated enclosures can be optionally be decoupled from each other and removed from the oven chamber (e.g., using the forklift or the pushing mechanism). At step 650, the insulated enclosures can be removed from the oven. In some embodiments, the insulated enclosures can be decoupled from each other before being moved to the compact configuration while in other embodiments, the insulated enclosures can be decoupled from each other after being moved to the compact configuration.

At step 655, the oven can be charged with coal. At step 660, the front and/or back doors are reattached to the oven chamber. In some embodiments, heating the oven can include depositing coal into the oven chamber and closing the doors so that the latent heat within the oven chamber can burn the coal, thus causing the oven to heat back up. In other embodiments, however, an additional heat source or heat from an adjacent oven can be used to heat the oven chamber back up to an elevated temperature.

From the foregoing, it will be appreciated that several embodiments of the disclosed technology have been described herein for purposes of illustration, but that various modifications can be made without deviating from the technology. For example, in some embodiments, the insulated enclosure can be in the expanded configuration or the compact configuration but cannot be movable between the expanded configuration and the compact configuration. The insulated enclosure can be insulated using any suitable type of insulation and can be cooled using any suitable cooling mechanism. More generally, the insulated enclosure can be used in any type of oven or furnace to allow workers to access and repair the oven chamber or furnace.

Certain aspects of the technology described in the context of particular embodiments can be combined or eliminated in other embodiments. For example, the insulated enclosure can be formed without insulation and/or some of the panels cannot be removable. Further, while advantages associated with some embodiments of the disclosed technology have been described herein, configurations with different characteristics can also exhibit such advantages, and not all configurations need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other arrangements not expressly shown or described herein. The following examples provide further representative descriptions of the present technology:

1. An insulated enclosure having an interior area defined by a floor portion, a ceiling portion, and opposing first and second side portions that extend between the floor portion and the ceiling portion, the insulated enclosure comprising:

a frame portion; and

a plurality of panels releasably coupled to the frame portion, wherein—

the plurality of panels at least partially define the floor portion, the ceiling portion, and the first and second side portions,

individual of the panels comprises an insulation portion and a backing portion coupled to the insulation portion,

the insulated enclosure is movable between a first configuration and a second configuration, and

the interior area comprises a first height when the insulated enclosure is in the first configuration and a second height less than the first height when the enclosure is in the second configuration.

2. The insulated enclosure of example 1, further comprising

a first gap between the ceiling portion and the first side portion and a second gap between the ceiling portion and the second side portion when the insulated enclosure is in the first configuration; and

insulation coupled to the ceiling portion that covers the first and second gaps.

3. The insulated enclosure of example 1, further comprising:

at least one jack coupled to the frame portion, wherein the at least one jack is configured to move the insulated enclosure between the first configuration and the second configuration.

4. The insulated enclosure of example 3 wherein the at least one jack comprises a mechanical jack.

5. The insulated enclosure of example 1, further comprising:

a cooling apparatus used to circulate cool air from outside of the insulated enclosure into the interior area.

6. The insulated enclosure of example 1, further comprising:

an external heating apparatus used to produce heat, wherein the external heating apparatus is coupled to an exterior surface of the insulated enclosure and is positioned to direct the produced heat away from the interior area.

7. The insulated enclosure of example 1 wherein the interior area comprises a first width when the insulated enclosure is in the first configuration and a second width less than the second width when the insulated enclosure is in the second configuration.

8. The insulated enclosure of example 1 wherein the insulation portion comprises a ceramic material and the backing portion comprises metal.

9. A method of repairing a coke oven having an oven chamber defined by a floor, a crown, and sidewalls that extend between the floor and the crown and wherein the coke oven comprises a plurality of bricks that form the floor, the crown, and the sidewalls, the method comprising:

inserting a insulated enclosure into the oven chamber, wherein—

the insulated enclosure includes a plurality of panels removably coupled to a frame portion,

the insulated enclosure is movable between a first configuration and a second configuration,

inserting the insulated enclosure into the oven chamber comprises inserting the insulated enclosure into the oven chamber when the insulated enclosure is in the first configuration;

moving the insulated enclosure from the first configuration to the second configuration;

detaching at least one of the panels from the frame portion to expose at least one of the floor, the crown, and the sidewalls;

repairing at least one of the bricks;

reattaching the at least one panel to the frame portion;

move the insulated enclosure to the first configuration; and

remove the insulated enclosure from the oven chamber.

10. The method of example 9, wherein the insulated enclosure comprises a first insulated enclosure and wherein inserting the insulated enclosure into the oven chamber comprises inserting the first insulated enclosure into the oven chamber, the method comprising:

before moving the insulated enclosure from the first configuration to the second configuration, inserting a second insulated enclosure into the oven chamber adjacent to the first insulated enclosure; and

coupling the first insulated enclosure to the second insulated enclosure.

11. The method of example 10, wherein—

the frame portion comprises a first frame portion,

the plurality of panels comprises a first plurality of panels,

the second insulated enclosure includes a second plurality of panels coupled to a second frame portion,

the second insulated enclosure is movable from the first configuration to the second configuration, and

moving the insulated enclosure from the first configuration to the second configuration comprises moving the first insulated enclosure and the second insulated enclosure from the first configuration to the second configuration.

12. The method of example 9, further comprising:

before inserting the insulated enclosure into the over chamber, identifying a portion of the oven chamber, wherein—

inserting the insulated enclosure into the oven chamber comprises positioning the insulated enclosure over the identified portion,

detaching the at least one panel from the frame portion to expose at least one of the floor, the crown, and the sidewalls comprises detaching the at least one panel to expose the identified portion, and

the identified portion comprises the at least one brick.

13. The method of example 9 wherein—

the at least one brick comprises a first brick, and

repairing the at least one brick comprises replacing the first brick with a second brick.

14. The method of example 9, wherein the coke oven is configured to burn coal at a first temperature and air surrounding the coke oven is at a second temperature less than the first temperature, the method further comprising:

before inserting the insulated enclosure into the oven chamber, cooling the oven chamber from the first temperature to third second temperature less than the first temperature and greater than the first temperature; and

after removing the insulated enclosure from the oven chamber, heating the oven chamber to the first temperature.

15. An oven repairing system for repairing an oven having an oven chamber defined by a floor, a crown, and sidewalls that extend between the floor and the crown and wherein the coke oven comprises a plurality of bricks that form the floor, the crown, and the sidewalls, the oven repairing system comprising:

an insulated enclosure insertable into the oven chamber and having an interior area defined by a floor portion, a ceiling portion, and opposing first and second side portions that extend between the floor portion and the ceiling portion, the insulated enclosure comprising:

a frame portion, and

a plurality of panels removably coupled to the frame portion, wherein—

the plurality of panels at least partially define the floor portion, the ceiling portion, and the first and second side portions, and

individual of the panels comprises an insulation portion and a backing portion coupled to the insulation portion; and

a positioning apparatus, wherein the insert apparatus inserts the insulated enclosure into the oven chamber.

16. The oven repairing system of example 15 wherein the insulated enclosure comprises a first insulated enclosure and the interior area comprises a first interior area, the oven repairing system further comprising:

a second insulated enclosure insertable into the oven chamber, wherein—

the positioning apparatus is configured to insert the second insulated enclosure into the oven chamber adjacent to the first apparatus,

the second insulated enclosure is couplable to the first insulated enclosure,

the second insulated enclosure comprises a second interior area, and

the first interior area and the second interior area are fluidly connected to each other when the first and second insulated enclosures are coupled to each other.

17. The oven repairing system of example 15, wherein—

the insulated enclosure is movable between a first configuration and a second configuration, and

the ceiling portion is separated from the crown by a first distance when the insulated enclosure is in the first configuration and a second distance greater than the first distance when the when the insulated enclosure is in the second configuration.

18. The oven repairing system of example 17, further comprising:

insulation coupled to an exterior surface of the ceiling portion, wherein the ceiling portion is separated from the side portions by gaps when the insulated enclosure is in the first configuration and wherein the insulation extends over the gaps.

19. The oven repairing system of example 15 wherein, when the insulated enclosure is inserted into the oven chamber, the floor portion is positioned adjacent to the floor of the oven, the first side portion is positioned adjacent to a first of the sidewalls, the second side portion is positioned adjacent to a second of the sidewalls, and the ceiling portion is positioned adjacent to the crown.

20. The oven repairing system of example 15 wherein—

the plurality of panels comprises a first panel configured to be removed from the frame portion, and

at least one of the brick is exposed to the interior area when the first panel is decoupled from the frame portion.

To the extent any materials incorporated herein by reference conflict with the present disclosure, the present disclosure controls. As used herein, the phrase “and/or” as in “A and/or B” refers to A alone, B alone, and both A and B. The following examples provide further representative features of the present technology.

Quanci, John Francis, West, Gary Dean, Ball, Mark Anthony, Choi, Chun Wai, Crum, Jason

Patent Priority Assignee Title
Patent Priority Assignee Title
10016714, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Systems and methods for removing mercury from emissions
10041002, Aug 17 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke plant including exhaust gas sharing
10047295, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
10047296, Aug 06 2012 SHANXI XINLI ENERGY TECHNOLOGY CO., LTD Thermal cycle continuous automated coal pyrolyzing furnace
10053627, Aug 29 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for testing coal coking properties
10233392, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method for optimizing coke plant operation and output
10308876, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Burn profiles for coke operations
10323192, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Systems and methods for improving quenched coke recovery
10392563, Oct 17 2014 THYSSENKRUPP INDUSTRIAL SOLUTIONS AG; THYSSENKRUPP AG Coke oven with improved exhaust gas conduction into the secondary heating chambers
10435042, Apr 16 2014 Modular cargo containment systems, assemblies, components, and methods
10526541, Jun 30 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Horizontal heat recovery coke ovens having monolith crowns
10578521, May 10 2017 American Air Filter Company, Inc. Sealed automatic filter scanning system
10611965, Aug 17 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke plant including exhaust gas sharing
10619101, Dec 31 2013 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Methods for decarbonizing coking ovens, and associated systems and devices
10732621, May 09 2016 STRONGFORCE IOT PORTFOLIO 2016, LLC; Strong Force IOT Portfolio 2016, LLC Methods and systems for process adaptation in an internet of things downstream oil and gas environment
10851306, May 23 2017 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC System and method for repairing a coke oven
10877007, Jul 08 2014 Silicon Valley Bank Gas leak detection and event selection based on spatial concentration variability and other event properties
10883051, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Methods and systems for improved coke quenching
10920148, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Burn profiles for coke operations
10927303, Mar 15 2013 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Methods for improved quench tower design
10947455, Aug 17 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Automatic draft control system for coke plants
10968393, Sep 15 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke ovens having monolith component construction
10968395, Dec 31 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Multi-modal beds of coking material
10975309, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
10975310, Dec 31 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Multi-modal beds of coking material
10975311, Dec 31 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Multi-modal beds of coking material
11008517, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
11008518, Dec 28 2018 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke plant tunnel repair and flexible joints
11021655, Dec 28 2018 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Decarbonization of coke ovens and associated systems and methods
11053444, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and system for optimizing coke plant operation and output
11071935, Dec 28 2018 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Particulate detection for industrial facilities, and associated systems and methods
11098252, Dec 28 2018 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Spring-loaded heat recovery oven system and method
11117087, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Systems and methods for removing mercury from emissions
11142699, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Vent stack lids and associated systems and methods
11186778, May 23 2017 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC System and method for repairing a coke oven
11193069, Dec 28 2018 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke plant tunnel repair and anchor distribution
11214739, Dec 28 2015 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and system for dynamically charging a coke oven
11261381, Dec 28 2018 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Heat recovery oven foundation
1140798,
1378782,
1424777,
1429346,
1430027,
1486401,
1530995,
1572391,
1677973,
1705039,
1721813,
1757682,
1818370,
1818994,
1830951,
1848818,
1895202,
1947499,
1955962,
1979507,
2075337,
2141035,
2195466,
2235970,
2340283,
2340981,
2394173,
2424012,
2486199,
2609948,
2641575,
2649978,
2667185,
2723725,
2756842,
2813708,
2827424,
2873816,
2902991,
2907698,
2968083,
3015893,
3026715,
3033764,
3175961,
3199135,
3224805,
3259551,
3265044,
3267913,
3327521,
3342990,
3444046,
3444047,
3448012,
3453839,
3462345,
3511030,
3542650,
3545470,
3587198,
3591827,
3592742,
3616408,
3623511,
3630852,
3652403,
3676305,
3709794,
3710551,
3746626,
3748235,
3784034,
3806032,
3811572,
3836161,
3839156,
3844900,
3857758,
3875016,
3876143,
3876506,
3878053,
3894302,
3897312,
3906992,
3912091,
3912597,
3917458,
3928144,
3930961, Apr 08 1974 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Hooded quenching wharf for coke side emission control
3933443, May 18 1971 Coking component
3957591, May 25 1973 Hartung, Kuhn & Co., Maschinenfabrik GmbH Coking oven
3959084, Sep 25 1974 DAVY MCKEE CORPORATION, A DE CORP Process for cooling of coke
3963582, Nov 26 1974 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Method and apparatus for suppressing the deposition of carbonaceous material in a coke oven battery
3969191, Jun 01 1973 Dr. C. Otto & Comp. G.m.b.H. Control for regenerators of a horizontal coke oven
3975148, Feb 19 1974 Onoda Cement Company, Ltd. Apparatus for calcining cement
3979870, Jan 24 1975 Light-weight, insulated construction element and wall
3984289, Jul 12 1974 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Coke quencher car apparatus
3990948, Feb 11 1975 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Apparatus for cleaning the bottom surface of a coke oven door plug
4004702, Apr 21 1975 Bethlehem Steel Corporation Coke oven larry car coal restricting insert
4004983, Apr 04 1974 Dr. C. Otto & Comp. G.m.b.H. Coke oven battery
4025395, Aug 03 1971 USX CORPORATION, A CORP OF DE Method for quenching coke
4040910, Jun 03 1975 Firma Carl Still Apparatus for charging coke ovens
4045056, Oct 14 1975 Expansion compensator for pipelines
4045299, Nov 24 1975 Pennsylvania Coke Technology, Inc. Smokeless non-recovery type coke oven
4059885, May 19 1975 Dr. C. Otto & Comp. G.m.b.H. Process for partial restoration of a coke oven battery
4065059, Sep 07 1976 Repair gun for coke ovens
4067462, Apr 02 1972 ELK RIVER RESOURCES, INC Coke oven pushing and charging machine and method
4077848, Dec 10 1976 USX CORPORATION, A CORP OF DE Method and apparatus for applying patching or sealing compositions to coke oven side walls and roof
4083753, May 04 1976 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO One-spot coke quencher car
4086231, Oct 31 1974 ENPROTECH CORP Coke oven door construction
4093245, Jun 02 1977 JOY POWER PRODUCTS, INC , A CORP OF PA Mechanical sealing means
4100033, Aug 21 1974 Extraction of charge gases from coke ovens
4100491, Feb 28 1977 Southwest Research Institute Automatic self-cleaning ferromagnetic metal detector
4100889, Apr 07 1977 Combustion Engineering, Inc. Band type tube support
4111757, May 25 1977 Pennsylvania Coke Technology, Inc. Smokeless and non-recovery type coke oven battery
4124450, Nov 24 1975 Pennsylvania Coke Technology, Inc. Method for producing coke
4133720, Oct 22 1976 Dr. C. Otto & Comp. G.m.b.H. Support apparatus for a battery of underjet coke ovens
4135948, Dec 17 1976 Krupp-Koppers GmbH Method and apparatus for scraping the bottom wall of a coke oven chamber
4141796, Aug 08 1977 Bethlehem Steel Corporation Coke oven emission control method and apparatus
4143104, Oct 09 1972 Hoogovens Ijmuiden, B.V. Repairing damaged refractory walls by gunning
4145195, Jul 07 1972 Firma Carl Still Adjustable device for removing pollutants from gases and vapors evolved during coke quenching operations
4147230, Apr 14 1978 Nelson Industries, Inc. Combination spark arrestor and aspirating muffler
4162546, Oct 31 1977 Carrcraft Manufacturing Company Branch tail piece
4176013, Jan 23 1978 Interlake, Inc. Coke oven door seal assembly
4181459, Mar 01 1978 USX CORPORATION, A CORP OF DE Conveyor protection system
4189272, Feb 27 1978 Gewerkschaft Schalker Eisenhutte Method of and apparatus for charging coal into a coke oven chamber
4194951, Mar 19 1977 Dr. C. Otto & Comp. G.m.b.H. Coke oven quenching car
4196053, Oct 04 1977 Hartung, Kuhn & Co. Maschinenfabrik GmbH Equipment for operating coke oven service machines
4211608, Sep 28 1977 Bethlehem Steel Corporation Coke pushing emission control system
4211611, Feb 06 1978 Firma Carl Still Coke oven coal charging device
4213489, Sep 19 1977 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO One-spot coke quench car coke distribution system
4213828, Jan 05 1977 Method and apparatus for quenching coke
4222748, Apr 10 1978 AFP Imaging Corporation Electrostatically augmented fiber bed and method of using
4222824, Feb 25 1978 Didier Engineering GmbH; Bergwerksverband GmbH Recuperative coke oven and process for the operation thereof
4224109, Apr 07 1977 Bergwerksverband GmbH; Didier Engineering GmbH Process and apparatus for the recovery of waste heat from a coke oven operation
4225393, Dec 10 1977 Gewerkschaft Schalker Eisenhutte Door-removal device
4226113, Apr 11 1979 Electric Power Research Institute, Inc. Leak detecting arrangement especially suitable for a steam condenser and method
4230498, Aug 02 1978 USX CORPORATION, A CORP OF DE Coke oven patching and sealing material
4235830, Sep 05 1978 Mobil Solar Energy Corporation Flue pressure control for tunnel kilns
4239602, Jul 23 1979 Insul Company, Inc. Ascension pipe elbow lid for coke ovens
4248671, Apr 04 1979 Envirotech Corporation Dry coke quenching and pollution control
4249997, Dec 18 1978 Bethlehem Steel Corporation Low differential coke oven heating system
425797,
4263099, May 17 1979 Bethlehem Steel Corporation Wet quenching of incandescent coke
4268360, Mar 03 1980 Koritsu Machine Industrial Limited Temporary heat-proof apparatus for use in repairing coke ovens
4271814, Apr 29 1977 Heat extracting apparatus for fireplaces
4284478, Aug 19 1977 Didier Engineering GmbH Apparatus for quenching hot coke
4285772, Feb 06 1979 Method and apparatus for handlng and dry quenching coke
4287024, Jun 22 1978 ELK RIVER RESOURCES, INC High-speed smokeless coke oven battery
4289479, Jun 19 1980 JOHNSON, FRANCES H Thermally insulated rotary kiln and method of making same
4289584, Mar 15 1979 Bethlehem Steel Corporation Coke quenching practice for one-spot cars
4289585, Apr 14 1979 Didier Engineering GmbH Method and apparatus for the wet quenching of coke
4296938, May 17 1979 Firma Carl Still GmbH & KG Immersion-type seal for the standpipe opening of coke ovens
4298497, Jan 21 1980 Nalco Chemical Company Composition for preventing cold end corrosion in boilers
4299666, Apr 10 1979 Firma Carl Still GmbH & Co. KG Heating wall construction for horizontal chamber coke ovens
4302935, Jan 31 1980 Adjustable (D)-port insert header for internal combustion engines
4303615, Jun 02 1980 FISHER SCIENTIFIC COMPANY A CORP OF DE Crucible with lid
4307673, Jul 23 1979 Forest Fuels, Inc. Spark arresting module
4314787, Jun 02 1979 Dr. C. Otto & Comp. GmbH Charging car for coke ovens
4316435, Feb 27 1980 General Electric Company Boiler tube silencer
4324568, Aug 11 1980 Flanders Filters, Inc. Method and apparatus for the leak testing of filters
4330372, May 29 1981 NATIONAL STEEL CORPORATION, A CORP OF DE Coke oven emission control method and apparatus
4334963, Sep 26 1979 WSW Planungs-GmbH Exhaust hood for unloading assembly of coke-oven battery
4336107, Sep 02 1981 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Aligning device
4336843, Oct 19 1979 ODECO Engineers, Inc. Emergency well-control vessel
4340445, Jan 09 1981 Car for receiving incandescent coke
4342195, Aug 15 1980 Motorcycle exhaust system
4344820, Jun 22 1980 ELK RIVER RESOURCES, INC Method of operation of high-speed coke oven battery
4344822, Oct 31 1979 Bethlehem Steel Corporation One-spot car coke quenching method
4353189, Aug 15 1978 Firma Carl Still GmbH & Co. KG Earthquake-proof foundation for coke oven batteries
4366029, Aug 31 1981 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Pivoting back one-spot coke car
4373244, May 25 1979 Dr. C. Otto & Comp. G.m.b.H. Method for renewing the brickwork of coke ovens
4375388, Oct 23 1979 Nippon Steel Corporation Apparatus for filling carbonizing chamber of coke oven with powered coal with vibration applied thereto
4385962, Jun 16 1980 RUHRKOHLE AKTIENGESELLSCHAFT, A GERMAN CORP Method for the production of coke
4391674, Apr 29 1980 LTV STEEL COMPANY, INC , Coke delivery apparatus and method
4392824, Oct 08 1980 DR C OTTO & COMP G M B H , A WEST GERMAN CORP System for improving the flow of gases to a combustion chamber of a coke oven or the like
4394217, Mar 27 1980 Ruhrkohle Aktiengesellschaft; Gewerkschaft Schalker Eisenhutte Apparatus for servicing coke ovens
4395269, Sep 30 1981 Donaldson Company, Inc. Compact dust filter assembly
4396394, Dec 21 1981 ARCH COAL, INC Method for producing a dried coal fuel having a reduced tendency to spontaneously ignite from a low rank coal
4396461, Oct 31 1979 Bethlehem Steel Corporation One-spot car coke quenching process
4406619, Mar 30 1981 Ruhrkohle AG; Steag AG Sealing lid means for coke oven chamber
4407237, Feb 18 1981 Applied Engineering Co., Inc. Economizer with soot blower
4421070, Jun 25 1982 Combustion Engineering, Inc. Steam cooled hanger tube for horizontal superheaters and reheaters
4431484, May 20 1981 Firma Carl Still GmbH & Co. KG Heating system for regenerative coke oven batteries
4439277, Aug 01 1981 Coke-oven door with Z-profile sealing frame
4440098, Dec 10 1982 ENERGY RECORVERY GROUP INC , A FL CORP Waste material incineration system and method
4445977, Feb 28 1983 Furnco Construction Corporation Coke oven having an offset expansion joint and method of installation thereof
4446018, May 01 1980 Armco Inc. Waste treatment system having integral intrachannel clarifier
4448541, Sep 22 1982 Mediminder Development Limited Partnership Medical timer apparatus
4452749, Sep 14 1982 MODERN REFRACTORIES SERVICE CORPORATION, A CORP OF NY Method of repairing hot refractory brick walls
4459103, Mar 10 1982 Hazen Research, Inc. Automatic volatile matter content analyzer
4469446, Jun 24 1982 BABCOCK & WILCOX COMPANY, THE Fluid handling
4474344, Mar 25 1981 The Boeing Company Compression-sealed nacelle inlet door assembly
4487137, Jan 21 1983 Auxiliary exhaust system
4498786, Nov 15 1980 Balcke-Durr Aktiengesellschaft Apparatus for mixing at least two individual streams having different thermodynamic functions of state
4506025, Mar 22 1984 INDRESCO, INC Silica castables
4508539, Mar 04 1982 Idemitsu Kosan Company Limited Process for improving low quality coal
4518461, Mar 20 1982 Krupp-Koppers GmbH Support for batteries of coking furnaces heated from the top
4527488, Apr 26 1983 RAYMOND KAISER ENGINEERS INC , A CORP OF OHIO Coke oven charging car
4564420, Dec 09 1982 Dr. C. Otto & Comp. GmbH Coke oven battery
4568426, Feb 09 1983 PETROLEUM ANALYZER COMPANY L P Controlled atmosphere oven
4570670, May 21 1984 Valve
4614567, Oct 28 1983 Firma Carl Still GmbH & Co. KG Method and apparatus for selective after-quenching of coke on a coke bench
4643327, Mar 25 1986 Insulated container hinge seal
4645513, Oct 20 1982 Idemitsu Kosan Company Limited Process for modification of coal
4655193, Jun 05 1984 Incinerator
4655804, Dec 11 1985 CLYDE BERGEMANN US INC Hopper gas distribution system
4666675, Nov 12 1985 Shell Oil Company Mechanical implant to reduce back pressure in a riser reactor equipped with a horizontal tee joint connection
4680167, Feb 09 1983 PETROLEUM ANALYZER COMPANY L P Controlled atmosphere oven
4690689, Mar 02 1983 Columbia Gas System Service Corp. Gas tracer composition and method
469868,
4704195, Dec 01 1984 Krupp Koppers GmbH Method of reducing NOx component of flue gas in heating coking ovens, and an arrangement of coking oven for carrying out the method
4720262, Oct 05 1984 Krupp Polysius AG Apparatus for the heat treatment of fine material
4724976, Jan 12 1987 Collapsible container
4726465, Jun 15 1985 FIRMA CARL STILL GMBH & CO KG ; FA DR C OTTO & COMP GMBH Coke quenching car
4732652, Nov 28 1980 Krupp Koppers GmbH Clamping system for coke oven heating walls
4749446, Mar 05 1981 Estel Hoogovens B.V. Horizontal coke-oven battery
4793981, Nov 19 1986 The Babcock & Wilcox Company Integrated injection and bag filter house system for SOx -NOx -particulate control with reagent/catalyst regeneration
4821473, Mar 12 1987 Chimney by-pass
4824614, Apr 09 1987 Texaco, Inc Device for uniformly distributing a two-phase fluid
4889698, Jul 16 1986 A S NIRO ATOMIZER Process for removal or mercury vapor and/or vapor of noxious organic compounds and/or nitrogen oxides from flue gas from an incinerator plant
4898021, Nov 30 1988 Westinghouse Electric Corp. Quantitative air inleakage detection system and method for turbine-condenser systems
4918975, Mar 31 1987 Leybold Aktiengesellschaft Method and apparatus for testing fluid-filled systems for leaks
4919170, Aug 08 1987 FLACHGLAS AKTIENGESELLSCHAFT, OTTO-SEELING-PROMENADE 10-14, D-8510 FURTH, WEST GERMANY A CORP OF GERMANY; VEBA KRAFTWERKE RUHR AKTIENGESELLSCHAFT, BERGMANNSGLUCKSTR 41-43 D-4650 GELSENKIRCHEN-BUER, WEST GERMANY A CORP OF GERMANY Flow duct for the flue gas of a flue gas-cleaning plant
4929179, Oct 17 1988 Ruhrkohle AG Roof structure
4941824, May 13 1988 HEINZ HOLTER, BEISENSTRASSE 39-41 Method of and apparatus for cooling and cleaning the roof and environs of a coke oven
5052922, Jun 27 1989 Hoogovens Groep BV Ceramic gas burner for a hot blast stove, and bricks therefor
5062925, Dec 10 1988 Uhde GmbH Method of reducing the nitrogen dioxide content of flue gas from a coke oven with dual heating flues by a combination of external flue gas feed back and internal flue gas recirculation
5078822, Nov 14 1989 Method for making refractory lined duct and duct formed thereby
5087328, Sep 07 1989 Voest-Alpine Stahl Linz Gasellschaft m.b.H. Method and apparatus for removing filling gases from coke ovens
5114542, Sep 25 1990 SUNCOKE ENERGY, INC Nonrecovery coke oven battery and method of operation
5213138, Mar 09 1992 United Technologies Corporation Mechanism to reduce turning losses in conduits
5227106, Feb 09 1990 TONAWANDA COKE CORPORATION A NY CORP Process for making large size cast monolithic refractory repair modules suitable for use in a coke oven repair
5228955, May 22 1992 SUNCOKE TECHNOLOGY AND DEVELOPMENT CORP High strength coke oven wall having gas flues therein
5234601, Sep 28 1992 GE OSMONICS, INC Apparatus and method for controlling regeneration of a water treatment system
5318671, Sep 25 1990 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method of operation of nonrecovery coke oven battery
5370218, Sep 17 1993 Johnson Industries, Inc. Apparatus for hauling coal through a mine
5398543, Jul 08 1992 Hitachi Building Equipment Engineering Co., Ltd. Method and apparatus for detection of vacuum leak
5423152, Feb 09 1990 Tonawanda Coke Corporation Large size cast monolithic refractory repair modules and interfitting ceiling repair modules suitable for use in a coke over repair
5447606, May 12 1993 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method of and apparatus for capturing coke oven charging emissions
5480594, Sep 02 1994 Method and apparatus for distributing air through a cooling tower
5542650, Feb 10 1995 Anthony-Ross Company Apparatus for automatically cleaning smelt spouts of a chemical recovery furnace
5597452, Sep 24 1992 Robert Bosch GmbH Method of restoring heating walls of coke oven battery
5603810, Mar 07 1995 Minnotte Corporations Coke-oven door seal
5622280, Jul 06 1995 NORTH AMERICA PACKAGING CORP Method and apparatus for sealing an open head drum
5659110, Feb 03 1994 Lentjes GmbH Process of purifying combustion exhaust gases
5670025, Aug 24 1995 Saturn Machine & Welding Co., Inc. Coke oven door with multi-latch sealing system
5687768, Jan 18 1996 The Babcock & Wilcox Company Corner foils for hydraulic measurement
5705037, Dec 21 1994 Uhde GmbH Device for reducing the concentration of CO in the waste gas from coke oven batteries that are heated with lean gas
5715962, Nov 16 1995 Expandable ice chest
5720855, May 14 1996 Saturn Machine & Welding Co. Inc. Coke oven door
5745969, Oct 29 1993 JP STEEL PLANTECH CO Method and apparatus for repairing a coke oven
5752548, Oct 06 1995 Benkan Corporation Coupling for drainage pipings
5787821, Feb 13 1996 The Babcock & Wilcox Company High velocity integrated flue gas treatment scrubbing system
5810032, Mar 22 1995 CHEVRON U S A INC Method and apparatus for controlling the distribution of two-phase fluids flowing through impacting pipe tees
5816210, Oct 03 1996 Nissan Diesel Motor Co., Ltd. Structure of an exhaust port in an internal combustion engine
5857308, May 18 1991 Nukem Limited Double lid system
5881551, Sep 22 1997 ALSTOM POWER INC Heat recovery steam generator
5913448, Jul 08 1997 Rubbermaid Incorporated Collapsible container
5928476, Aug 19 1997 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Nonrecovery coke oven door
5966886, Feb 25 1994 FIB-Services Method for partially building and/or repairing at high temperatures industrial facilities including a structure made of refractory materials, and prefabricated element therefor
5968320, Feb 07 1997 STELCO INC Non-recovery coke oven gas combustion system
6002993, Apr 04 1996 Nippon Steel Corporation Apparatus for monitoring wall surface
6003706, Sep 17 1998 Sonoco Development, Inc Adjustable depth insulated container
6017214, Oct 05 1998 Pennsylvania Coke Technology, Inc. Interlocking floor brick for non-recovery coke oven
6022112, May 30 1996 Centre de Pyrolyse de Marienau "CMP" Endoscopic inspection sensor for coke oven batteries
6059932, Oct 05 1998 Pennsylvania Coke Technology, Inc. Coal bed vibration compactor for non-recovery coke oven
6126910, Oct 14 1997 Codan Development LLC Method for removing acid gases from flue gas
6139692, Mar 25 1997 Kawasaki Steel Corporation Method of controlling the operating temperature and pressure of a coke oven
6152668, Sep 25 1997 Uhde GmbH Coal charging car for charging chambers in a coke-oven battery
6156688, Dec 05 1997 Kawasaki Steel Corporation; Kawasaki Refractories Co., Ltd.; Taiho Industries Co., Ltd. Repairing material for bricks of carbonizing chamber in coke oven and repairing method
6173679, Jun 30 1997 Siemens Aktiengesellschaft Waste-heat steam generator
6187148, Mar 01 1999 Pennsylvania Coke Technology, Inc. Downcomer valve for non-recovery coke oven
6189819, May 20 1999 Wisconsin Electric Power Company (WEPCO) Mill door in coal-burning utility electrical power generation plant
6290494, Oct 05 2000 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for coal coking
6412221, Aug 02 1999 Thermal Engineering International; THERMAL ENGINEERING INTERNATIONAL USA , INC Catalyst door system
6495268, Sep 28 2000 The Babcock & Wilcox Company Tapered corrosion protection of tubes at mud drum location
6539602, Jul 05 1999 Kawasaki Steel Corporation; Otto Corporation Method of repairing coke oven
6596128, Feb 14 2001 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke oven flue gas sharing
6626984, Oct 26 1999 FSX, Inc.; FSX, INC High volume dust and fume collector
6699035, Sep 06 2001 BROOKER, DWIGHT Detonation flame arrestor including a spiral wound wedge wire screen for gases having a low MESG
6712576, Sep 18 2001 OTTAWA FIBRE LP Batch charger for cold top electric furnace
6758875, Nov 13 2001 TWIN BROOK CAPITAL PARTNERS, LLC, AS AGENT Air cleaning system for a robotic welding chamber
6786941, Jun 30 2000 Hazen Research, Inc. Methods of controlling the density and thermal properties of bulk materials
6830660, Jul 29 1998 JFE Steel Corporation Method for producing metallurgical coke
6907895, Sep 19 2001 COMMERCE, UNITED STATES OF AMEICA, AS REPRESENTED BY THE SECRETARY OF, THE Method for microfluidic flow manipulation
6946011, Mar 18 2003 The Babcock & Wilcox Company Intermittent mixer with low pressure drop
6964236, Sep 20 2000 Uhde GmbH Leveling device with an adjustable width
7056390, May 04 2001 MARK VII EQUIPMENT INC Vehicle wash apparatus with an adjustable boom
705926,
7077892, Nov 26 2003 Air purification system and method
7314060, Apr 23 2005 Industrial Technology Research Institute Fluid flow conducting module
7331298, Sep 03 2004 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke oven rotary wedge door latch
7433743, May 25 2001 IMPERIAL COLLEGE INNOVATIONS, LTD Process control using co-ordinate space
7497930, Jun 16 2006 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for compacting coal for a coal coking process
7547377, Feb 28 2005 KANSAI COKE AND CHEMICALS CO , LTD , THE Coke oven repairing apparatus
760372,
7611609, May 01 2001 ARCELORMITTAL INVESTIGACION Y DESARROLLO, S L Method for producing blast furnace coke through coal compaction in a non-recovery or heat recovery type oven
7644711, Aug 05 2005 The Big Green Egg, Inc. Spark arrestor and airflow control assembly for a portable cooking or heating device
7722843, Nov 24 2006 System and method for sequestration and separation of mercury in combustion exhaust gas aqueous scrubber systems
7727307, Sep 04 2007 Steag Energy Services GmbH Method for removing mercury from flue gas after combustion
7785447, Sep 17 2001 EKOCOKE, LLC Clean production of coke
7803627, Jun 23 2005 ALIXIUM DEVICES LIMITED Process for evaluating quality of coke and bitumen of refinery feedstocks
7823401, Oct 27 2006 Denso Corporation Refrigerant cycle device
7827689, Jan 16 2007 Vanocur Refractories, L.L.C. Coke oven reconstruction
7998316, Mar 17 2009 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Flat push coke wet quenching apparatus and process
8071060, Jan 21 2008 MITSUBISHI HEAVY INDUSTRIES, LTD Flue gas control system of coal combustion boiler and operating method thereof
8079751, Sep 10 2004 M-I L.L.C. Apparatus for homogenizing two or more fluids of different densities
8080088, Mar 05 2007 Flue gas mercury control
8146376, Jan 14 2008 Research Products Corporation System and methods for actively controlling an HVAC system based on air cleaning requirements
8152970, Mar 03 2006 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for producing coke
8172930, Mar 13 2009 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Cleanable in situ spark arrestor
8236142, May 19 2010 Westbrook Thermal Technology, LLC Process for transporting and quenching coke
8266853, May 12 2009 Vanocur Refractories LLC Corbel repairs of coke ovens
8311777, Feb 22 2007 Nippon Steel Corporation Coke oven wall surface evaluation apparatus, coke oven wall surface repair supporting apparatus, coke oven wall surface evaluation method, coke oven wall surface repair supporting method and computer program
8383055, Jun 15 2007 PALMER TECHNOLOGIES PTY LTD ; PALMER LININGS PTY LTD Anchor system for refractory lining
8398935, Jun 09 2005 The Government of the United States of America, as represented by the Secretary of the Navy Sheath flow device and method
8409405, Mar 11 2009 Thyssenkrupp Uhde GmbH Device and method for dosing or shutting off primary combustion air in the primary heating room of horizontal coke-oven chambers
845719,
8500881, Sep 30 2009 MITSUBISHI POWER, LTD Carbon dioxide capture power generation system
8515508, Apr 20 2010 Panasonic Corporation Method for measuring a concentration of a biogenic substance contained in a living body
8568568, Nov 28 2007 Uhde GmbH Leveling apparatus for and method of filling an oven chamber of a coke-oven battery
8640635, May 12 2009 Vanocur Refractories, L.L.C. Corbel repairs of coke ovens
8647476, Sep 07 2007 Uhde GmbH Device for feeding combustion air or gas influencing coal carbonization into the upper area of coke ovens
875989,
8800795, Mar 26 2010 Ice chest having extending wall for variable volume
8956995, Aug 20 2008 SAKAI CHEMICAL INDUSTRY CO , LTD Catalyst and method for thermal decomposition of organic substance and method for producing such catalyst
8980063, Sep 29 2008 Thyssenkrupp Uhde GmbH; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG Air proportioning system for secondary air in coke ovens depending on the vault vs. sole temperature ratio
9039869, Dec 18 2007 Uhde GmbH Controllable air ducts for feeding of additional combustion air into the area of flue gas channels of coke oven chambers
9057023, Jul 01 2009 Thyssenkrupp Uhde GmbH Method and device for keeping coke furnace chambers hot when a waste heat boiler is stopped
9103234, May 27 2008 Gas Technology Institute HRSG for fluidized gasification
9169439, Aug 29 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for testing coal coking properties
9193913, Sep 21 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Reduced output rate coke oven operation with gas sharing providing extended process cycle
9193915, Mar 14 2013 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Horizontal heat recovery coke ovens having monolith crowns
9200225, Aug 03 2010 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for compacting coal for a coal coking process
9238778, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Systems and methods for improving quenched coke recovery
9243186, Aug 17 2012 SunCoke Technology and Development LLC.; SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke plant including exhaust gas sharing
9249357, Aug 17 2012 SunCoke Technology and Development LLC.; SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and apparatus for volatile matter sharing in stamp-charged coke ovens
9273249, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Systems and methods for controlling air distribution in a coke oven
9273250, Mar 15 2013 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Methods and systems for improved quench tower design
9321965, Mar 17 2009 SunCoke Technology and Development LLC. Flat push coke wet quenching apparatus and process
9359554, Aug 17 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Automatic draft control system for coke plants
9404043, Oct 09 2008 Thyssenkrupp Uhde GmbH; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG Air distributing device for primary air in coke ovens
9463980, Oct 14 2011 JFE Steel Corporation Method for manufacturing coke
9498786, Dec 12 2008 GENERAL ELECTRIC TECHNOLOGY GMBH Dry flue gas desulfurization system with dual feed atomizer liquid distributor
9580656, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke oven charging system
9672499, Apr 02 2014 MODERNITY FINANCIAL HOLDINGS, LTD Data analytic and security mechanism for implementing a hot wallet service
9708542, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Method and system for optimizing coke plant operation and output
976580,
9862888, Dec 28 2012 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Systems and methods for improving quenched coke recovery
9976089, Aug 28 2014 SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC Coke oven charging system
20020170605,
20030014954,
20030015809,
20030057083,
20040220840,
20050087767,
20050096759,
20060029532,
20060102420,
20060149407,
20070087946,
20070102278,
20070116619,
20070251198,
20080028935,
20080179165,
20080250863,
20080257236,
20080271985,
20080289305,
20090007785,
20090032385,
20090105852,
20090152092,
20090162269,
20090217576,
20090257932,
20090283395,
20100015564,
20100095521,
20100106310,
20100113266,
20100115912,
20100119425,
20100181297,
20100196597,
20100276269,
20100287871,
20100300867,
20100314234,
20110000284,
20110014406,
20110048917,
20110083314,
20110088600,
20110120852,
20110144406,
20110168482,
20110174301,
20110192395,
20110198206,
20110223088,
20110253521,
20110291827,
20110313218,
20110315538,
20120031076,
20120125709,
20120152720,
20120177541,
20120179421,
20120180133,
20120195815,
20120228115,
20120247939,
20120305380,
20120312019,
20130020781,
20130045149,
20130213114,
20130216717,
20130220373,
20130306462,
20140033917,
20140039833,
20140156584,
20140182683,
20140208997,
20140224123,
20140262726,
20150041304,
20150122629,
20150143908,
20150175433,
20150219530,
20150226499,
20150361347,
20160026193,
20160048139,
20160149944,
20160154171,
20160319198,
20160370082,
20170173519,
20170182447,
20170183569,
20170226425,
20170261417,
20170313943,
20170352243,
20180340122,
20190169503,
20190317167,
20200071190,
20200139273,
20200173679,
20200206683,
20200208059,
20200208060,
20200208063,
20200208833,
20200407641,
20210024828,
20210040391,
20210130697,
20210163821,
20210163822,
20210163823,
20210198579,
20210261877,
20210340454,
20210363426,
20210363427,
20210371752,
20210388270,
20220056342,
20220106527,
20220298423,
20220325183,
20220356410,
20230012031,
CA1172895,
CA2775992,
CA2822841,
CA2822857,
CA2905110,
CN100500619,
CN100510004,
CN101037603,
CN101058731,
CN101157874,
CN101211495,
CN101395248,
CN101486017,
CN101497835,
CN101509427,
CN101886466,
CN101910530,
CN102072829,
CN102155300,
CN102584294,
CN103399536,
CN103468289,
CN103913193,
CN104498059,
CN105001914,
CN105137947,
CN105189704,
CN105264448,
CN105467949,
CN106661456,
CN106687564,
CN107445633,
CN1092457,
CN1255528,
CN1270983,
CN1358822,
CN1468364,
CN1527872,
CN1957204,
CN201121178,
CN201264981,
CN202226816,
CN202265541,
CN202415446,
CN202470353,
CN203981700,
CN2064363,
CN2139121,
CN2509188,
CN2521473,
CN2528771,
CN2668641,
CN87107195,
CN87212113,
DE10122531,
DE10154785,
DE102005015301,
DE102006004669,
DE102006026521,
DE102009031436,
DE102011052785,
DE1212037,
DE19545736,
DE19803455,
DE201729,
DE212176,
DE2212544,
DE2720688,
DE3231697,
DE3315738,
DE3328702,
DE3329367,
DE3407487,
EA10510,
EP126399,
EP208490,
EP903393,
EP1538503,
EP1860034,
EP2295129,
EP2468837,
FR2339664,
FR2517802,
FR2764978,
GB364236,
GB368649,
GB441784,
GB606340,
GB611524,
GB725865,
GB871094,
GB923205,
JP10273672,
JP1103694,
JP11131074,
JP11256166,
JP1249886,
JP2000204373,
JP2000219883,
JP2001055576,
JP2001200258,
JP2002097472,
JP2002106941,
JP2003041258,
JP2003051082,
JP2003071313,
JP2003292968,
JP2003342581,
JP2004169016,
JP2005135422,
JP2005154597,
JP2005263983,
JP2005344085,
JP2005503448,
JP2006188608,
JP2007063420,
JP2007231326,
JP2008231278,
JP2009019106,
JP2009073864,
JP2009073865,
JP2009135276,
JP2009144121,
JP2010229239,
JP2010248389,
JP2011068733,
JP2011102351,
JP2011504947,
JP2012102302,
JP2012102325,
JP2013006957,
JP2013189322,
JP2013510910,
JP2014040502,
JP2015094091,
JP2016169897,
JP319127,
JP3197588,
JP3924064,
JP4101226,
JP4159392,
JP4178494,
JP50148405,
JP5230466,
JP5319301,
JP54054101,
JP5453103,
JP57051786,
JP57051787,
JP57083585,
JP57090092,
JP57172978,
JP58091788,
JP59051978,
JP59053589,
JP59071388,
JP59108083,
JP59145281,
JP60004588,
JP61106690,
JP62011794,
JP62285980,
JP6264062,
JP6299156,
JP649450,
JP654753,
JP7188668,
JP7204432,
JP7216357,
JP8104875,
JP8127778,
JP8218071,
JP843314,
KR100296700,
KR100737393,
KR100797852,
KR101314288,
KR101318388,
KR101862491,
KR1019960008754,
KR1019990054426,
KR1020040020883,
KR19990017156,
KR20000042375,
KR20030012458,
KR20040107204,
KR20050053861,
KR20060132336,
KR20080069170,
KR20110010452,
KR20120033091,
KR20130050807,
KR20140042526,
KR20150011084,
KR20170038102,
KR20170058808,
KR20170103857,
RU2083532,
RU2441898,
RU2493233,
SU1535880,
TW201241166,
TW201245431,
UA50580,
WO2062922,
WO2005023649,
WO2005031297,
WO2005115583,
WO2007103649,
WO2008034424,
WO2008105269,
WO2009147983,
WO2010103992,
WO2010107513,
WO2011000447,
WO2011126043,
WO2012029979,
WO2012031726,
WO2013023872,
WO2014021909,
WO2014043667,
WO2014105064,
WO2014153050,
WO2016004106,
WO2016033511,
WO2016086322,
WO9012074,
WO9945083,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 06 2017QUANCI, JOHN FRANCISSUNCOKE TECHNOLOGY AND DEVELOPMENT LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0581920809 pdf
Apr 27 2018CHOI, CHUN WAISUNCOKE TECHNOLOGY AND DEVELOPMENT LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0581920567 pdf
May 02 2018BALL, MARK ANTHONYSUNCOKE TECHNOLOGY AND DEVELOPMENT LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0581920567 pdf
May 02 2018WEST, GARY DEANSUNCOKE TECHNOLOGY AND DEVELOPMENT LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0581920567 pdf
May 07 2018CRUM, JASONSUNCOKE TECHNOLOGY AND DEVELOPMENT LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0581920567 pdf
Nov 08 2021SUNCOKE TECHNOLOGY AND DEVELOPMENT LLC(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 08 2021BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Dec 19 20264 years fee payment window open
Jun 19 20276 months grace period start (w surcharge)
Dec 19 2027patent expiry (for year 4)
Dec 19 20292 years to revive unintentionally abandoned end. (for year 4)
Dec 19 20308 years fee payment window open
Jun 19 20316 months grace period start (w surcharge)
Dec 19 2031patent expiry (for year 8)
Dec 19 20332 years to revive unintentionally abandoned end. (for year 8)
Dec 19 203412 years fee payment window open
Jun 19 20356 months grace period start (w surcharge)
Dec 19 2035patent expiry (for year 12)
Dec 19 20372 years to revive unintentionally abandoned end. (for year 12)