A wireless communication system comprises Public Land Mobile Networks (plmns) that use Uniform Data repositories (UDRs) to serve wireless User Equipment (UEs) over wireless network slices. A serving plmn determines a ue identifier (id) for a wireless ue and a slice id for a wireless network slice. The serving plmn indicates the ue id and the slice id to a service communication proxy (SCP) in the serving plmn. The SCP selects a UDR in a different plmn based on the ue id and the slice id. The SCP indicates the ue id and the slice id to the selected UDR in the different plmn. The selected UDR in the different plmn transfers ue information for the ue for delivery to the network element in the serving plmn. The network element in the serving plmn controls the wireless network slice for the wireless ue based on the ue information.
|
1. A method of operating a wireless communication system that comprises Public Land Mobile Networks (plmns) to use Uniform Data repositories (UDRs) to serve wireless User Equipment (UEs) over wireless network slices, the method comprising:
a network element in a serving one of the plmns determining a ue identifier (id) for one of the wireless UEs and a slice id for one of the wireless network slices and transferring a request that indicates the ue id and the slice id to a service communication proxy (SCP) in the serving one of the plmns;
the SCP in the serving one of the plmns receiving the request from the network element, and in response, selecting one of the UDRs in a different one of the plmns based on the ue id and the slice id and transferring the request to the selected one of the UDRs in the different one of the plmns;
the selected one of the UDRs in the different one of the plmns receiving the request from the SCP and responsively transferring ue information for the one of the wireless UEs for delivery to the network element in the serving one of the plmns; and
the network element in the serving one of the plmns receiving the ue information transferred by the selected one of the UDRs and controlling the one of the wireless network slices for the one of the wireless UEs based on the ue information.
11. A wireless communication system that comprises Public Land Mobile Networks (plmns) to use Uniform Data repositories (UDRs) to serve wireless User Equipment (UEs) over wireless network slices, the wireless communication system comprising:
a network element in a serving one of the plmns configured to determine a ue identifier (id) for one of the wireless UEs and a slice id for one of the wireless network slices and transfer a request that indicates the ue id and the slice id to a service communication proxy (SCP) in the serving one of the plmns;
the SCP in the serving one of the plmns configured to receive the request from the network element, and in response, select one of the UDRs in a different one of the plmns based on the ue id and the slice id and transfer the request to the selected one of the UDRs in the different one of the plmns;
the selected one of the UDRs in the different one of the plmns configured to receive the request from the SCP and responsively transfer ue information for the one of the wireless UEs for delivery to the network element in the serving one of the plmns; and
the network element in the serving one of the plmns configured to receive the ue information transferred by the selected one of the UDRs and control the one of the wireless network slices for the one of the wireless UEs based on the ue information.
2. The method of
the selected one of the UDRs in the different one of the plmns transferring the ue information for delivery to the network element comprises transferring the ue information to the SCP in the serving one of the plmns; and further comprising
the SCP in the serving one of the plmns receiving the ue information from the selected one of the UDRs in the different one of the plmns and transferring the ue information to the network element; and wherein
the network element in the serving one of the plmns receiving the ue information transferred by the selected one of the UDRs comprises receiving the ue information from the SCP in the serving one of the plmns.
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
12. The wireless communication system of
the selected one of the UDRs in the different one of the plmns is configured to transfer the ue information to the SCP in the serving one of the plmns to transfer the ue information for delivery to the network element; and further comprising
the SCP in the serving one of the plmns configured to receive the ue information from the selected one of the UDRs in the different one of the plmns and transfer the ue information to the network element; and wherein
the network element in the serving one of the plmns is configured to receive the ue information from the SCP in the serving one of the plmns to receive the ue information transferred by the selected one of the UDRs.
13. The wireless communication system of
14. The wireless communication system of
15. The wireless communication system of
16. The wireless communication system of
17. The wireless communication system of
18. The wireless communication system of
19. The wireless communication system of
20. The wireless communication system of
|
Wireless communication networks provide wireless data services to wireless user devices. Exemplary wireless data services include machine-control, internet-access, media-streaming, and social-networking. Exemplary wireless user devices comprise phones, computers, vehicles, robots, and sensors. The wireless user devices execute user applications that use the wireless data services. For example, a smartphone may execute a social-networking application that communicates with a content server over a wireless communication network. In another example, a vehicle may execute a navigation application that communicates with a direction server over a wireless communication network.
The wireless communication networks have wireless access nodes which exchange wireless signals with the wireless user devices over radio frequency bands. The wireless signals use wireless network protocols like Fifth Generation New Radio (5GNR), Long Term Evolution (LTE), Institute of Electrical and Electronic Engineers (IEEE) 802.11 (WIFI), and Low-Power Wide Area Network (LP-WAN). The wireless access nodes exchange network signaling and user data with network elements that are often clustered together in network data centers. Some of the network elements like User Plane Functions (UPFs) are grouped into wireless network slices that deliver data services like massive Machine Type Communications (mMTC), Ultra-Reliable Low-Latency Communications (URLLC), enhanced Mobile Broadband (eMBB), Mobile Virtual Network Operator (MVNO), private network, mobile internet-access, and/or some other networking product. The wireless network elements comprise Unified Data Repositories (UDRs), Unified Data Management (UDM), Access and Mobility Management Functions (AMFs), and the like.
The wireless user devices and the AMFs communicate over the wireless access nodes. The AMFs and the UDMs authenticate the wireless user devices and identify subscriber information like wireless network slices. The AMFs and Policy Control Functions (PCFs) identify subscriber policies like roaming rules and service quality. The UDMs and PCFs store the subscriber information and policies in the UDRs. The UDRs also store data for the Network Exposure Functions (NEFs) which expose network data like UE location to network elements like PCFs and Application Functions (AFs). For example, an AF may transfer packet flow instruction for a wireless user device to a NEF for delivery to a PCF which implements the instruction. Thus, the UDRs store and serve data for the UDMs, PCFs, and NEFs.
A UDR is typically located in a Public Land Mobile Network (PLMN). The UDR serves the UDMs, PCFs, and NEFs that are in its PLMN. The PLMN may have multiple UDRs that can be requestor-specific and that handle different user-groups. For example, a PCF would access a UDR that stores policies, and a NEF would access another UDR that stores exposure data. To discover the proper UDR in the PLMN, the network element (UDM, PCF, NEF) asks a Network Repository Function (NRF). The NRF selects the UDR based the requesting network element—like selecting a policy UDR for a PCF. The UDRs may be further separated by user groups, and the NRF may select a UDR based on the wireless user device identifier and its corresponding user group. The user groups may comprise ranges of Subscriber Permanent Identifiers (SUPIs).
Service Communication Proxies (SCPs) route requests between the network elements. A PCF may transfer a UDR request to an SCP, and the SCP routes the UDR request to the proper policy UDR based on the PCF request, SUPI range, and the like. The SCPs may handle the UDR responses or they may be direct. The network elements may be configured to use specific SCPs or may discover them from the NRFs.
The amount of wireless network users and the variety of wireless network slices is expanding rapidly across the PLMNs. Unfortunately, the UDRs are inefficiently organized based on PLMN and simple data categories like subscriber, policy, application, and exposure. Moreover, the SCPs do not have effective access to a larger array of UDRs across the PLMNs to efficiently serve the growing number of wireless user device and wireless network slices.
A wireless communication system comprises Public Land Mobile Networks (PLMNs) that use Uniform Data Repositories (UDRs) to serve wireless User Equipment (UEs) over wireless network slices. A serving PLMN determines a UE Identifier (ID) for a wireless UE and a slice ID for a wireless network slice. The serving PLMN indicates the UE ID and the slice ID to a Service Communication Proxy (SCP) in the serving PLMN. The SCP selects a UDR in a different PLMN based on the UE ID and the slice ID. The SCP indicates the UE ID and the slice ID to the selected UDR in the different PLMN. The selected UDR in the different PLMN transfers UE information for the UE for delivery to the network element in the serving PLMN. The network element in the serving PLMN controls the wireless network slice for the wireless UE based on the UE information.
Various examples of network configuration and operation are described herein. In some examples, network elements 131 in PLMN 101 serve wireless network slice B to UE 111 over wireless access node 121. In response, one of network elements 131 determines a UE Identifier (ID) for wireless UE 111 and a slice ID for wireless network slice B. This requesting one of network elements 131 transfers a request that indicates the UE ID and the slice ID to SCP 141 in serving PLMN 101. SCP 141 in serving PLMN 101 receives the request, and in response, SCP 141 selects UDR 152 in PLMN 102 based on the UE ID for UE 111 and the slice ID for slice B. For example, SCPs 141-143 may each host their own data structure that correlates all available UE-slice pairs in wireless communication system 100 with individual UDRs 151-153 across all PLMNs 101-103. SCP 141 transfers the request to selected UDR 152 in PLMN 102. UDR 152 in PLMN 102 receives the request from SCP 141 and responsively transfers UE information for wireless UE 111 for delivery to the requesting one of network elements 131 in serving PLMN 101. This transfer of the UE information from UDR 152 to the requesting one of network elements 131 may be direct or traverse SCP 141. The requesting one of network elements 131 receives the UE information transferred by UDR 152 and controls wireless network slice B for wireless UE 111 based on the UE information. For example, a UDM in network elements 131 may authenticate UE 111 based on the UE information for slice B from UDR 152. A PCF in network elements 131 may select a quality-of-service for UE 111 based on the UE information for slice B from UDR 152. A NEF in network elements 131 may control a packet flow for UE 111 based on the UE information for slice B from UDR 152. Advantageously, UDRs 151-153 are efficiently organized based on wireless network slice and UE ID. Moreover, SCPs 141-142 have effective access to a larger array of UDRs across PLMNs 101-103 to efficiently serve the growing number of UEs and slices.
Additional factors may be used to deploy UDRs 151-153—especially assuming that the number of UDRs is likely far higher than shown. In a large deployment, the data for a given UE and slice should be stored redundantly with one copy stored near the likely requestors to reduce latency. The data for groups of UEs and slices should be stored together so individual UDRs support ranges of SUPIs. Regional and national UDR clusters may be established where both regional and national UDR clusters maintain redundant copies of the UDR data. Within a region, the UDRs may maintain redundant copies of the UDR data to further bolster secure data access. Thus, the national UFR cluster backs-up the regional UDR clusters which also back-up each other. All of the SCPs and the UDRs across all regional and national clusters should be coupled over a fault-tolerant SCP/UDR communication network like optical rings.
UEs 111-113 and wireless access nodes 121-123 communicate over wireless links that use wireless technologies like Fifth Generation New Radio (5GNR), Long Term Evolution (LTE), Institute of Electrical and Electronic Engineers (IEEE) 802.11 (WIFI), Low-Power Wide Area Network (LP-WAN), Bluetooth, and/or some other wireless communication protocols. The components of wireless communication system 100 communicate over network connections that comprise metallic wiring, glass fibers, radio channels, or some other communication media. The network connections use technologies like IEEE 802.3 (ETHERNET), Internet Protocol (IP), Time Division Multiplex (TDM), Data Over Cable System Interface Specification (DOCSIS), General Packet Radio Service Transfer Protocol (GTP), 5GNR, LTE, WIFI, LP-WAN, Bluetooth, virtual switching, inter-processor communication, bus interfaces, and/or some other data communication protocols. UEs 111-113 and wireless access nodes 121-123 comprise radios. UEs 111-113, wireless access nodes 121-123, network elements 131-133, SCPs 141-143, and UDRs 151-153 comprise microprocessors, software, memories, transceivers, bus circuitry, and the like. The microprocessors comprise Digital Signal Processors (DSP), Central Processing Units (CPU), Graphical Processing Units (GPU), Application-Specific Integrated Circuits (ASIC), and/or the like. The memories comprise Random Access Memory (RAM), flash circuitry, disk drives, and/or the like. The memories store software like operating systems, user applications, radio applications, and network functions. The microprocessors retrieve the software from the memories and execute the software to drive the operation of wireless communication system 100 as described herein.
UE 111 then requests slice B from network elements 131 over wireless access node 121. In response, network elements 131 determine the UE ID for wireless UE 111 and a slice ID for wireless network slice B. Network elements 131 transfer requests that indicate the UE ID and the slice ID to SCP 141. SCP 141 receives the requests, and in response, selects UDR 152 based on the UE ID for UE 111 and the slice ID for slice B. SCP 141 transfers the requests to selected UDR 152 in PLMN 102. UDR 152 receives the request from SCP 141 and responsively transfers UE information for wireless UE 111 to SCP 141 which forwards the UE information to the network elements 131 in PLMN 101. Network elements 131 receive the UE information for slice B that was transferred by UDR 152 and generates signaling to control wireless network slice B for wireless UE 111 based on the UE information. Network elements 131 transfer the signaling to UE 111 over wireless access node 121. UE 111 and external systems exchange user data for slice B over wireless access node 121 and network elements 131 based on the signaling.
UE 407 wirelessly attaches to 5GNR AN 413 and registers with AMF 454. UE 407 reports a Subscriber Concealed Identifier (SUCI) and an mMTC slice capability. AMF 454 interacts with AUSF 455 to authenticate UE 407 for an mMTC slice. AUSF 455 interacts with UDM 451 to authenticate UE 407 for the mMTC slice. UDM 451 interacts with UDR SCP 433 to authenticate UE 407 for the mMTC slice. UDR SCP 433 selects mMTC UDR 443 to authenticate UE 407 for the mMTC slice. In some examples, multiple mMTC UDRs are available and segmented by UR ID range, and UDR SCP 433 selects mMTC UDR 443 based on the SUCI or group ID for UE 407. UDR SCP 433 interacts with mMTC UDR 443 to authenticate UE 407 for the mMTC slice. In particular, mMTC UDR 443 serves a Subscriber Permanent Identifier (SUPI) for UE 407 and secret identity key for UE 407 to UDM 451 over UDR SCP 433. UDM 451 hashes a random number and the secret identity key into an expected result and transfers the random number, expected result, and SUPI for UE 407 to AUSF 455. AUSF 455 transfers the random number and expected result to AMF 454. AMF 454 transfers the random number to UE 407 over 5GNR AN 413. UE 407 hashes the random number with its own copy of the secret identity key into the same expected result and transfers the expected result to AMF 454. AMF 454 authenticates UE 407 by matching the expected results and then retrieves the SUPI for UE 407 from AUSF 455.
AMF 454 interacts with UDM 451 to obtain information for UE 407 for the mMTC slice. UDM 451 interacts with UDR SCP 433 to obtain the UE information for the mMTC slice. UDR SCP 433 selects mMTC UDR 443 to obtain the UE information for the mMTC slice. In some examples, multiple mMTC UDRs are available and UDR SCP 433 selects mMTC UDR 443 based on the SUPI or group ID for UE 407. UDR SCP 433 interacts with mMTC UDR 443 to obtain the UE information for the mMTC slice. In particular, mMTC UDR 443 serves UE subscriber data for UE 407 to UDM 451 over UDR SCP 433. UDM 451 serves the UE subscriber data for UE 407 to AMF 451.
AMF 454 interacts with PCF 453 to obtain policy for UE 407 for the mMTC slice. UDM 451 interacts with UDR SCP 433 to obtain the UE policy for the mMTC slice. UDR SCP 433 selects mMTC UDR 443 to obtain the UE policy for the mMTC slice. In some examples, multiple mMTC UDRs are available and UDR SCP 433 selects mMTC UDR 443 based on the SUPI or group ID for UE 407. UDR SCP 433 interacts with mMTC UDR 443 to obtain the UE policy for the mMTC slice. In particular, mMTC UDR 443 serves UE quality-of-service criteria and roaming rules for UE 407 to PCF 453 over UDR SCP 433. PCF 453 serves the UE policy data for UE 407 and the mMTC slice to AMF 451.
AMF 451 develops UE context for the mMTC slice for UE 407 based on the UE subscriber and policy data. AMF 451 signals the UE context for the mMTC slice for UE 407 to SMF 456. AMF 451 signals the UE context for the mMTC slice for UE 407 to 5GNR AN 413. AMF 451 signals the UE context for the mMTC slice to UE 407 over 5GNR AN 413. SMF 456 drives mMTC UPF 461 to serve UE 407 per the UE context for the mMTC slice. UE 407 and external systems exchange user data over 5GNR AN 413 and mMTC UPF 461 per the UE context for the mMTC slice.
Another UE 404 wirelessly attaches to 5GNR AN 412 and registers with AMF 454. UE 404 reports a SUCI and an eMBB slice capability. AMF 454 interacts with AUSF 455 to authenticate UE 404 for the eMBB slice. AUSF 455 interacts with UDM 451 to authenticate UE 404 for the eMBB slice. UDM 451 interacts with UDR SCP 433 to authenticate UE 404 for the eMBB slice. UDR SCP 433 selects eMBB UDR 441 to authenticate UE 404 for the eMBB slice. In some examples, multiple eMBB UDRs are available and UDR SCP 433 selects eMBB UDR 441 based on the SUCI or group ID for UE 404. UDR SCP 433 interacts with eMBB UDR 441 over SEPPs 471 and 473 to authenticate UE 407 for the eMBB slice. In particular, eMBB UDR 441 serves a SUPI and secret identity key for UE 404 to UDM 451 over SEPPs 471 and 473 and UDR SCP 433. UDM 451 hashes the random number and the secret identity key into an expected result and transfers the random number, expected result, and SUPI for UE 407 to AUSF 455. AUSF 455 transfers the random number and expected result to AMF 454. AMF 454 transfers the random number to UE 404 over 5GNR AN 412. UE 404 hashes the random number with its own copy of the secret identity key into the same expected result and transfers the expected result to AMF 454. AMF 454 authenticates UE 404 by matching the expected results and then retrieves the SUPI for UE 404 from AUSF 455.
AMF 454 interacts with UDM 451 to obtain information for UE 404 for the eMBB slice. UDM 451 interacts with UDR SCP 433 to obtain the UE information for the eMBB slice. UDR SCP 433 selects eMBB UDR 441 to obtain the UE information for the eMBB slice. In some examples, multiple eMBB UDRs are available and UDR SCP 433 selects eMBB UDR 441 based on the SUPI or group ID for UE 404. UDR SCP 433 interacts with eMBB UDR 443 to obtain the UE information for the eMBB slice. In particular, eMBB UDR 441 serves UE subscriber data for the SUPI for UE 404 to UDM 451 over UDR SCP 433 and SEPs 471 and 473. UDM 451 serves the UE subscriber data for UE 404 to AMF 454.
AMF 454 interacts with PCF 453 to obtain policy for UE 404 for the eMBB slice. UDM 451 interacts with UDR SCP 433 to obtain the UE policy for the eMBB slice. UDR SCP 433 selects eMBB UDR 441 to obtain the UE policy for the eMBB slice. In some examples, multiple eMBB UDRs are available and UDR SCP 433 selects eMBB UDR 441 based on the SUPI or group ID for UE 404. UDR SCP 433 interacts with eMBB UDR 441 to obtain the UE policy for the eMBB slice over SEPPs 471 and 473. In particular, eMBB UDR 441 serves UE quality-of-service criteria and roaming rules for the SUPI for UE 404 to PCF 453 over UDR SCP 433 and SEPPs 471 and 473. PCF 453 serves the UE policy data for UE 404 and the eMBB slice to AMF 451.
AMF 451 develops UE context for the eMBB slice for UE 404 based on the UE subscriber and policy data. AMF 451 signals the UE context for the eMBB slice for UE 404 to SMF 456. AMF 451 signals the UE context for the eMBB slice for UE 404 to 5GNR AN 412. AMF 451 signals the UE context for the mMTC slice for UE 404 to UE 404 over 5GNR AN 414. SMF 456 drives eMBB UPF 463 to serve UE 404 per the UE context for the eMBB slice. UE 404 and external systems exchange user data over 5GNR AN 412 and eMBB UPF 463 per the UE context for the eMBB slice.
UE 401 wirelessly attaches to 5GNR AN 411 and registers with AMF 454. UE 401 reports a SUCI and MVNO slice capability. The same authentication process is used as above with UDR SCP 433 selecting and using MVNO UDR 442 over SEPPs 471-472 based on the SUCI and MVNO capability of UE 401. UDM 451 and PCF 453 obtain UE subscription and policy data, and AMF 454 determines UE context for UE 401 over the MVNO slice. MVNO UPF 462 serves UE 401 over 5GNR AN 411 for the MVNO slice.
AF 457 interacts with an external MVNO application server (not shown for clarity) to receive a packet flow instruction for UE 401. AF 457 calls an Application Programming Interface (API) for the packet flow instruction for UE 401 on NEF 452. NEF 452 exposes the packet flow instruction for UE 401 to UDR SCP 433 for UDR delivery. UDR SCP 433 selects MVNO UDR 442 for the packet flow instruction for the MVNO slice for UE 401. In some examples, multiple MVNO UDRs are available and UDR SCP 433 selects MVNO UDR 442 based on the SUPI or group ID for UE 401. UDR SCP 433 interacts with MVNO UDR 442 over SEPPs 471-472 to transfer the packet flow instruction. MVNO UDR 442 transfers the packet flow instruction to serving PCF 453 over SEPPs 471-472 and UDR SCP 433. PCF 453 directs SMF 456 to modify the UE bearer, and SMF 456 drives MVNO UPF 462 based on the packet flow instruction. For example, UE 401 may receive a large data rate boost based on an MVNO promotion.
The wireless data network circuitry described above comprises computer hardware and software that form special-purpose PLMN circuitry to use UDRs to serve wireless UEs over wireless network slices. The computer hardware comprises processing circuitry like CPUs, DSPs, GPUs, transceivers, bus circuitry, and memory. To form these computer hardware structures, semiconductors like silicon or germanium are positively and negatively doped to form transistors. The doping comprises ions like boron or phosphorus that are embedded within the semiconductor material. The transistors and other electronic structures like capacitors and resistors are arranged and metallically connected within the semiconductor to form devices like logic circuitry and storage registers. The logic circuitry and storage registers are arranged to form larger structures like control units, logic units, and Random-Access Memory (RAM). In turn, the control units, logic units, and RAM are metallically connected to form CPUs, DSPs, GPUs, transceivers, bus circuitry, and memory.
In the computer hardware, the control units drive data between the RAM and the logic units, and the logic units operate on the data. The control units also drive interactions with external memory like flash drives, disk drives, and the like. The computer hardware executes machine-level software to control and move data by driving machine-level inputs like voltages and currents to the control units, logic units, and RAM. The machine-level software is typically compiled from higher-level software programs. The higher-level software programs comprise operating systems, utilities, user applications, and the like. Both the higher-level software programs and their compiled machine-level software are stored in memory and retrieved for compilation and execution. On power-up, the computer hardware automatically executes physically-embedded machine-level software that drives the compilation and execution of the other computer software components which then assert control. Due to this automated execution, the presence of the higher-level software in memory physically changes the structure of the computer hardware machines into special-purpose PLMN circuitry to use UDRs to serve wireless UEs over wireless network slices.
The above description and associated figures teach the best mode of the invention. The following claims specify the scope of the invention. Note that some aspects of the best mode may not fall within the scope of the invention as specified by the claims. Those skilled in the art will appreciate that the features described above can be combined in various ways to form multiple variations of the invention. Thus, the invention is not limited to the specific embodiments described above, but only by the following claims and their equivalents.
Sharma, Anuj, Mariyani, Anil Kumar, Belwal, Deepesh, Kadalbal, Sriharsha Nagaraja
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10524166, | Jan 09 2017 | LG Electronics Inc | Method for interworking between networks in wireless communication system and apparatus thereof |
10531420, | Jan 05 2017 | HUAWEI TECHNOLOGIES CO , LTD | Systems and methods for application-friendly protocol data unit (PDU) session management |
10652098, | Jul 11 2017 | Samsung Electronics Co., Ltd. | Method and apparatus for discovering and chaining network exposure functions |
10742396, | Jun 08 2018 | Cisco Technology, Inc. | Securing communications for roaming user equipment (UE) using a native blockchain platform |
10764789, | Aug 11 2017 | Comcast Cable Communications, LLC | Application-initiated network slices in a wireless network |
10791508, | Nov 18 2016 | LG Electronics Inc | Method for selecting network node in wireless communication system and device therefor |
10999787, | Feb 17 2018 | HUAWEI TECHNOLOGIES CO , LTD | System and method for UE context and PDU session context management |
11576056, | May 10 2021 | T-MOBILE INNOVATIONS LLC | Unified data repository (UDR) messaging in a wireless communication network |
7860167, | Jul 30 2004 | SENSIO TECHNOLOGIES INC | Apparatus and method for adaptive 3D artifact reducing for encoded image signal |
20190053147, | |||
20210099905, | |||
20220346188, | |||
EP3863272, | |||
EP4087215, | |||
WO2021141440, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 21 2021 | KADALBAL, SRIHARSHA NAGARAJA | T-MOBILE INNOVATIONS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057891 | /0823 | |
Oct 21 2021 | MARIYANI, ANIL KUMAR | T-MOBILE INNOVATIONS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057891 | /0823 | |
Oct 22 2021 | T-MOBILE INNOVATIONS LLC | (assignment on the face of the patent) | / | |||
Oct 22 2021 | SHARMA, ANUJ | T-MOBILE INNOVATIONS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057891 | /0823 | |
Oct 22 2021 | BELWAL, DEEPESH | T-MOBILE INNOVATIONS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 057891 | /0823 |
Date | Maintenance Fee Events |
Oct 22 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Jan 02 2027 | 4 years fee payment window open |
Jul 02 2027 | 6 months grace period start (w surcharge) |
Jan 02 2028 | patent expiry (for year 4) |
Jan 02 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 02 2031 | 8 years fee payment window open |
Jul 02 2031 | 6 months grace period start (w surcharge) |
Jan 02 2032 | patent expiry (for year 8) |
Jan 02 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 02 2035 | 12 years fee payment window open |
Jul 02 2035 | 6 months grace period start (w surcharge) |
Jan 02 2036 | patent expiry (for year 12) |
Jan 02 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |