A bone conduction device configured to couple to an abutment of an anchor system anchored to a recipient's skull. The bone conduction device includes a vibrating electromagnetic actuator configured to vibrate in response to sound signals received by the bone conduction device, and a coupling apparatus configured to attach the bone conduction device to the abutment so as to impart to the recipient's skull vibrations generated by the vibrating electromagnetic actuator. The vibrating electromagnetic actuator includes a bobbin assembly and a counterweight assembly. Two axial air gaps are located between the bobbin assembly and the counterweight assembly and two radial air gaps are located between the bobbin assembly and the counterweight assembly. No substantial amount of the dynamic magnetic flux passes through the radial air gaps.
|
10. A device, comprising:
an actuator, the actuator including:
a coil; and
a permanent magnet, wherein
the actuator is a vibrating electromagnetic actuator that is symmetrical.
1. A device, comprising:
an actuator, the actuator including:
a coil; and
a permanent magnet, wherein
the actuator is a balanced electromagnetic actuator, and
the device is a bone conduction device.
2. The device of
the device is attached to a fixture screw implanted into a recipient's skull.
4. The device of
the device is part of a passive transcutaneous bone conduction system.
5. The device of
the device is part of an active transcutaneous bone conduction system.
6. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly during transduction;
two axial air gaps are located between the first assembly and the second assembly;
two radial air gaps are located between the first assembly and the second assembly; and
respective spans of the radial air gaps are about the same as the respective spans of the axial air gaps.
7. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two radial air gaps are located between the first assembly and the second assembly; and
respective spans of the radial air gaps are about the same as a maximum distance that the second assembly moves away from a balance point of the actuator.
8. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two radial air gaps are located between the first assembly and the second assembly; and
respective spans of the radial air gaps are about the same order of magnitude as a maximum distance that the second assembly moves away from a balance point of the actuator.
9. The device of
the coil has a hole in the coil;
the device includes a counterweight assembly that moves relative to the coil when the actuator is actuated;
the actuator includes a radial air gap; and
an amount of static magnetic flux that travels through the hole while the counterweight assembly is away from a balance point of the actuator is significantly reduced due to the presence of the radial air gap compared to actuators that do not have radial air gap(s).
11. The device of
the actuator is configured so that the permanent magnet moves relative to the coil when the actuator is actuated, and the actuator is horizontally symmetrical.
12. The device of
the actuator is implanted in a recipient beneath skin of the recipient, and the actuator is horizontally symmetrical.
13. The device of
the device is held in place on a recipient by pressing the device against skin of the recipient, and the actuator is horizontally symmetrical.
14. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two axial air gaps are located between the first assembly and the second assembly;
two radial air gaps are located between the first assembly and the second assembly;
respective spans of the radial air gaps are about the same order of magnitude as the respective spans of the axial air gaps;
the first assembly includes a bobbin about which the coil is wound;
the second assembly includes at least one yoke; and
all yokes of the second assembly that have portion(s) that are located closer to an axis about which the coils are wound than portion(s) of the bobbin that are furthest away from the coil extend into the bobbin.
15. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two radial air gaps are located between the first assembly and the second assembly; and
the actuator is configured so that movement of surfaces establishing the two radial air gaps does not substantially impact an amount of effective static magnetic flux through the radial air gaps, and the actuator is horizontally symmetrical.
16. The device of
the actuator includes two radial air gaps; and
surfaces creating the radial air gaps are partitioned into a number of smaller mating surfaces, and the actuator is horizontally symmetrical.
17. The device of
the actuator includes a bobbin assembly and a counterweight assembly, the counterweight assembly moving relative to the bobbin assembly;
two radial air gaps are located between the bobbin assembly and the counterweight assembly; and
respective spans of the radial air gaps are effectively constant during the range of movements of the counterweight assembly relative to the bobbin assembly.
18. The device of
two axial air gaps are located between the bobbin assembly and the counterweight assembly; and
as the counterweight assembly moves relative to the bobbin assembly, a span of a first axial air gap of the two axial air gaps increases and a span of a second axial air gap of the two axial air gaps decreases during actuation.
20. The device of
the actuator includes a first assembly and a second assembly, the second assembly movable relative to the first assembly;
the actuator is configured so that when the coil is in a non-energized state, the second assembly is at a balance point relative to the first assembly; and
the actuator is configured so that an electromagnetic force of at least 1 Newton is necessary to move the second assembly at least 20 micrometers from the balance point.
21. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two axial air gaps are located between the first assembly and the second assembly;
two radial air gaps are located between the first assembly and the second assembly; and
a static magnetic force of the actuator sufficient to reduce a span of at least one of the axial air gaps by about 85 micrometers is at least 35% less than the static magnetic force required to move by that same distance in the absence of the radial air gaps.
22. The device of
the actuator includes a first assembly and a second assembly, the first assembly moving relative to the second assembly;
two axial air gaps are located between the first assembly and the second assembly;
two radial air gaps are located between the first assembly and the second assembly; and
the actuator is configured so that if the radial air gaps were not present, a static magnetic force required to move the first assembly relative to the second assembly would be at least 50% higher to obtain a comparable movement.
23. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two axial air gaps are located between the first assembly and the second assembly;
two radial air gaps are located between the first assembly and the second assembly; and
the actuator is configured so that if the radial air gaps were not present, a core about which the coil is wound would be thicker to achieve comparable actuator performance vis-à-vis force required to move the second assembly relative to the first assembly.
24. The device of
the actuator is configured so that the permanent magnet moves relative to the coil when the actuator is actuated, the coil has a hole therethrough, the actuator includes another permanent magnet in addition to the permanent magnet, and the device is horizontally asymmetrical.
25. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly;
two axial air gaps are located between the first assembly and the second assembly;
two radial air gaps are located between the first assembly and the second assembly; and
the actuator is configured so that the two radial air gaps reduce a static magnetic flux directed through a hole in the col by at least 25% of that which would be present in the absence of the radial air gaps and instead two more axial air gaps.
26. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly during transduction;
only two axial air gaps are located between the first assembly and the second assembly; and
two radial air gaps are located between the first assembly and the second assembly.
27. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly during transduction;
a magnetic flux circuit of which the permanent magnet is a part is closed by a radial air gap.
28. The device of
the actuator includes a first assembly and a second assembly, the second assembly moving relative to the first assembly during transduction;
all radial air gaps of the actuator are established by a combination of surfaces of yokes and a bobbin about which the coil is wound.
29. The device of
the permanent magnet has a north-south polarity axis that is parallel to an axis about which the coil is wound; and
the permanent magnet is completely in-between a top and a bottom of a bobbin about which the coil is wound; and
there are only four air gaps across which static magnetic flux crosses.
|
The present application is a Continuation of U.S. patent application Ser. No. 16/240,894, filed Jan. 7, 2019, which is a Continuation of U.S. patent application Ser. No. 15/262,786, filed on Sep. 12, 2016, which is a Divisional Application of U.S. patent application Ser. No. 14/589,475, filed Jan. 5, 2015, naming Kristian ASNES as an inventor, which is a Continuation Application of U.S. application Ser. No. 13/804,404, filed Mar. 14, 2013, now U.S. Pat. No. 8,929,577, which in turn is a Continuation Application of U.S. application Ser. No. 13/049,535, filed Mar. 16, 2011, now U.S. Pat. No. 8,565,461. The entire contents of these applications are incorporated herein by reference in their entirety.
The present invention relates generally to hearing prostheses, and more particularly, to a bone conduction device having an electromagnetic actuator having radial and axial air gaps.
Hearing loss, which may be due to many different causes, is generally of two types: conductive and sensorineural. Sensorineural hearing loss is due to the absence or destruction of the hair cells in the cochlea that transduce sound signals into nerve impulses. Various hearing prostheses are commercially available to provide individuals suffering from sensorineural hearing loss with the ability to perceive sound. For example, cochlear implants use an electrode array implanted in the cochlea of a recipient to bypass the mechanisms of the ear. More specifically, an electrical stimulus is provided via the electrode array to the auditory nerve, thereby causing a hearing percept.
Conductive hearing loss occurs when the normal mechanical pathways that provide sound to hair cells in the cochlea are impeded, for example, by damage to the ossicular chain or ear canal. Individuals suffering from conductive hearing loss may retain some form of residual hearing because the hair cells in the cochlea may remain undamaged.
Individuals suffering from conductive hearing loss typically receive an acoustic hearing aid. Hearing aids rely on principles of air conduction to transmit acoustic signals to the cochlea. In particular, a hearing aid typically uses an arrangement positioned in the recipient's ear canal or on the outer ear to amplify a sound received by the outer ear of the recipient. This amplified sound reaches the cochlea causing motion of the perilymph and stimulation of the auditory nerve.
In contrast to hearing aids, which rely primarily on the principles of air conduction, certain types of hearing prostheses commonly referred to as bone conduction devices, convert a received sound into vibrations. The vibrations are transferred through the skull to the cochlea causing generation of nerve impulses, which result in the perception of the received sound. Bone conduction devices are suitable to treat a variety of types of hearing loss and may be suitable for individuals who cannot derive sufficient benefit from acoustic hearing aids, cochlear implants, etc, or for individuals who suffer from stuttering problems.
In accordance with one aspect of the present invention, there is a bone conduction device comprising a first assembly configured to generate a dynamic magnetic flux and a second assembly configured to generate a static magnetic flux. The assemblies are constructed and arranged such that a radial air gap is located between the first assembly and the second assembly and such that during operation of the bone conduction device, the static magnetic flux flows through the radial air gap, whereby the dynamic magnetic flux and the static magnetic flux generate relative movement between the first assembly and the second assembly. No substantial amount of the dynamic magnetic flux flows through the radial air gap.
In accordance with another aspect of the present invention, there is a bone conduction device comprising a means for generating a dynamic magnetic flux, a means for generating a static magnetic flux, and a means for directing the dynamic magnetic flux and the static magnetic flux between the means for generating the dynamic magnetic flux and the means for generating the static magnetic flux to generate relative movement between the means for generating the dynamic magnetic flux and the means for generating the static magnetic flux.
In accordance with another aspect of the present invention, there is a method of imparting vibrational energy comprising moving a first assembly relative to a second assembly in an oscillatory manner via interaction of a dynamic magnetic flux and a static magnetic flux, directing the static magnetic flux through an air gap having a span that is constant with the movement of the first assembly relative to a second assembly, wherein a substantial amount of the dynamic magnetic flux does not flow through the at least one second air gap.
Embodiments of the present invention are described below with reference to the attached drawings, in which:
Embodiments of the present invention are generally directed towards a bone conduction device configured to impart vibrational energy to a recipient's skull. The bone conduction device includes an electromagnetic actuator configured to vibrate in response to sound signals received by the bone conduction device. This imparts, to the recipient's skull, vibrations generated by the vibrating electromagnetic actuator. The electromagnetic actuator includes a bobbin assembly configured to generate a dynamic magnetic flux when energized by an electric current. The bobbin assembly includes a bobbin and a coil wrapped around the bobbin. The electromagnetic actuator further includes a counterweight assembly including two permanent magnets configured to generate a static magnetic flux. The two assemblies move relative to one another when the electromagnetic actuator vibrates.
In an embodiment, two axial air gaps and two radial air gaps are located between the bobbin assembly and the counterweight assembly. The electromagnetic actuator is configured such that during operation of the bone conduction device, both the dynamic magnetic flux and the static magnetic flux flow through at least one of the axial air gaps. However, during operation, only the static magnetic flux flows through one or more of the radial air gaps. The dynamic magnetic flux does not flow through the radial air gaps.
Thus, in accordance with this embodiment, the radial air gaps serve to close the static magnetic field generated by the permanent magnets. Further, as will be discussed in more detail below, the electromagnetic actuator may be configured such that the span of the radial air gap remains constant during operation of the bone conduction device, in contrast to the axial air gaps.
Further in accordance with this embodiment, the radial air gaps are implemented in the vibrating electromagnetic actuator such that a spring connecting the bobbin assembly to the counterweight assembly may be of a configuration such that the resonant frequency of the electromagnetic actuator is reduced relative to the electromagnetic actuator absent the radial air gaps. Moreover, a tendency of the static magnetic flux to drive the counterweight assembly away from a balance point of the vibrating electromagnetic actuator is reduced relative to the vibrating electromagnetic actuator absent the radial air gaps. Also, in accordance with this embodiment, the percentage of magnetic saturation in a core of the bobbin during operation of the vibrating electromagnetic actuator is reduced relative to the electromagnetic actuator absent the radial air gaps.
In a fully functional human hearing anatomy, outer ear 101 comprises an auricle 105 and an ear canal 106. A sound wave or acoustic pressure 107 is collected by auricle 105 and channeled into and through ear canal 106. Disposed across the distal end of ear canal 106 is a tympanic membrane 104 which vibrates in response to acoustic wave 107. This vibration is coupled to oval window or fenestra ovalis 110 through three bones of middle ear 102, collectively referred to as the ossicles 111 and comprising the malleus 112, the incus 113 and the stapes 114. The ossicles 111 of middle ear 102 serve to filter and amplify acoustic wave 107, causing oval window 110 to vibrate. Such vibration sets up waves of fluid motion within cochlea 139. Such fluid motion, in turn, activates hair cells (not shown) that line the inside of cochlea 139. Activation of the hair cells causes appropriate nerve impulses to be transferred through the spiral ganglion cells and auditory nerve 116 to the brain (not shown), where they are perceived as sound.
Also, bone conduction device 100 comprises a sound processor (not shown), a vibrating electromagnetic actuator and/or various other operational components. More particularly, sound input device 126 (e.g., a microphone) converts received sound signals into electrical signals. These electrical signals are processed by the sound processor. The sound processor generates control signals which cause the actuator to vibrate. In other words, the actuator converts the electrical signals into mechanical motion to impart vibrations to the recipient's skull.
As illustrated, bone conduction device 100 further includes a coupling apparatus 140 configured to attach the device to the recipient. In the embodiment of
It is noted that while the embodiments presented herein are described with respect to a percutaneous bone conduction device, some or all of the teachings disclosed herein may be utilized in transcutaneous bone conduction devices and/or other devices that utilize a vibrating electromagnetic actuator. For example, embodiments of the present invention include active transcutaneous bone conduction systems utilizing the electromagnetic actuators disclosed herein and variations thereof where at least one active component (e.g. the electromagnetic actuator) is implanted beneath the skin. Embodiments of the present invention also include passive transcutaneous bone conduction systems utilizing the electromagnetic actuators disclosed herein and variations thereof where no active component (e.g., the electromagnetic actuator) is implanted beneath the skin (it is instead located in an external device), and the implantable part is, for instance a magnetic pressure plate. Some embodiments of the passive transcutaneous bone conduction systems according to the present invention are configured for use where the vibrator (located in an external device) containing the electromagnetic actuator is held in place by pressing the vibrator against the skin of the recipient. In an exemplary embodiment, an implantable holding assembly is implanted in the recipient that is configured to press the bone conduction device against the skin of the recipient. In other embodiments, the vibrator is held against the skin via a magnetic coupling (magnetic material and/or magnets being implanted in the recipient and the vibrator having a magnet and/or magnetic material to complete the magnetic circuit, thereby coupling the vibrator to the recipient).
Coupling apparatus 340 includes a coupling 341 in the form of a snap coupling configured to “snap couple” to an anchor system on the recipient. As noted above with reference to
Coupling apparatus 340 is mechanically coupled to vibrating electromagnetic actuator 350 configured to convert electrical signals into vibrations. In an exemplary embodiment, vibrating electromagnetic actuator 350 corresponds to vibrating electromagnetic actuator 250 detailed above. In operation, sound input element 126 (
As illustrated in
It is noted that while embodiments presented herein are described with respect to a bone conduction device where counterweight assembly 355 includes permanent magnets 358a and 358b that surround coil 354b and moves relative to coupling apparatus 340 during vibration of vibrating electromagnetic actuator 350, in other embodiments, the coil may be located on the counterweight assembly 355 as well, thus adding weight to the counterweight assembly 355 (the additional weight being the weight of the coil).
As noted, bobbin assembly 354 is configured to generate a dynamic magnetic flux when energized by an electric current. In this exemplary embodiment, bobbin 354a is made of a soft iron. Coil 354b may be energized with an alternating current to create the dynamic magnetic flux about coil 354b. The iron of bobbin 354a is conducive to the establishment of a magnetic conduction path for the dynamic magnetic flux. Conversely, counterweight assembly 355, as a result of permanent magnets 358a and 358b, in combination with yokes 360a, 360b and 360c, which are made from a soft iron, generate, due to the permanent magnets, a static magnetic flux. The soft iron of the bobbin and yokes may be of a type that increase the magnetic coupling of the respective magnetic fields, thereby providing a magnetic conduction path for the respective magnetic fields.
Further as may be seen in
As may be seen in
As just noted,
As may be seen from
In vibrating electromagnetic actuator 350 of
As used herein, the phrase “effective amount of flux” refers to a flux that produces a magnetic force that impacts the performance of vibrating electromagnetic actuator 350, as opposed to trace flux, which may be capable of detection by sensitive equipment but has no substantial impact (e.g., the efficiency is minimally impacted) on the performance of the vibrating electromagnetic actuator. That is, the trace flux will typically not result in vibrations being generated by the electromagnetic actuator 350.
Further, as may be seen in
As may be seen from
As counterweight assembly 355 moves downward relative to bobbin assembly 354, as depicted in
Referring to
Upon reversal of the direction of the dynamic magnetic flux, the dynamic magnetic flux will flow in the opposite direction about coil 354b. However, the general directions of the static magnetic flux will not change. Accordingly, such reversal will magnetically induce movement of counterweight assembly 355 upward (represented by the direction of arrow 600b in
Some specific configurations of an exemplary embodiment of a vibrating electromagnetic actuator such as actuator 350 will now be described.
In an exemplary embodiment, the span of the radial air gaps (i.e., distance between the surfaces forming the radial air gaps) is about the same as the span of the axial air gaps and/or about the same as the maximum distance that counterweight assembly 355 moves away from the balance point. In an alternate exemplary embodiment, the span of the radial air gaps is about the same order of magnitude as the span of the axial air gaps and/or about the same order of magnitude as the maximum distance that counterweight assembly 355 moves away from the balance point.
In an exemplary embodiment, the span of the radial air gaps is about the same as the span of the axial air gaps.
In an exemplary embodiment of the present invention, the resonant frequency of vibrating electromagnetic actuator 355 is about 200 kHz to 1000 kHz. In some embodiments, the resonant frequency is about 200 kHz to 300 kHz, about 300 kHz to 400 kHz, about 400 kHz to 500 kHz or about 500 kHz to 600 kHz. This permits a spring 356 having a relatively low spring constant to be utilized, thus improving efficiency as compared to a vibrating electromagnetic actuator 355 having spring with a relatively higher spring constant.
Because the radial air gaps have a relatively lower tendency to collapse as compared to the axial air gaps, the spring constant need not be as high as might be the case in the absence of the radial air gaps (i.e., only axial air gaps being present, discussed in greater detail below). The spring 356 serves to provide a driving force on the counterweight assembly 355 back towards the balance point (it resists movement away from the balance point), and also permits movement of counterweight assembly 355 relative to bobbin assembly 354 subject to the spring constant of spring 356. Some embodiments of vibrating electromagnetic actuator 350 are configured such that there is less tendency for counterweight assembly 355 to move away from the balance point (in the absence of a dynamic magnetic flux), relative to other vibrating electromagnetic actuator designs. That is, while the permanent magnets will impart a static magnetic flux that will tend to push counterweight assembly 355 away from the balance point, a force required to counter this static magnetic flux will be relatively low, thus permitting a relatively flexible spring 356 to be utilized in vibrating electromagnetic actuator 350, thereby improving the efficiency of the vibrating electromagnetic actuator 350. Alternatively or in addition to this, as will be discussed in greater detail below, the use of the radial air gaps as disclosed herein decreases the tendency for the counterweight assembly 355 to stick at the top and bottom of its travel relative to the bobbin assembly 354. Accordingly, the decrease in tendency permits the use of a more flexible spring 356. The ability to adequately utilize a relatively flexible spring 356 permits a design in which the resonant frequency of vibrating electromagnetic actuator 350 is relatively lower to that with a stiffer spring 356.
The effects of the use of the radial air gaps may be seen in an exemplary embodiment where the radial air gaps are annular radial air gaps having a diameter when measured from about the middle of the span of the radial air gaps 472a/472b of about 12 mm and having a height of about 4 mm, the collective spring has a spring constant of about 140 N/mm. As used herein, the “height” of a radial air gap is defined as the distance in the direction of relative movement of the counterweight assembly 355 relative to the bobbin assembly 354 along which the surfaces (e.g., 454c and 460d with respect to radial air gap 472a) of the counterweight assembly 355 and bobbin assembly 354 that form the radial air gaps face each other (represented by H5 in
In the embodiment of
In an exemplary embodiment, with reference to
As previously noted, counterweight assembly 355 includes a yoke assembly 355a comprising one or more yokes (360a, 360b and 360c). These yokes may be made of iron conducive to the establishment of a magnetic conduction path for the static magnetic flux. As may be seen from
In a further exemplary embodiment, all permanent magnets of counterweight assembly 355 that are configured to generate the static magnetic flux 582 are located to the sides of the bobbin assembly 355. Along these lines, such permanent magnets may be annular permanent magnets with respective interior diameters that are greater than the maximum outer diameter of the bobbin 354a, when measured on the plane normal to the direction (represented by arrow 300a in
In some embodiments of the present invention, the configuration of the counterweight assembly 354 reduces or eliminates the inaccuracy of the distance (span) between faces of the air gaps due to the permissible tolerances of the dimensions of the permanent magnets. In this regard, the respective spans of the axial air gaps 470a and 470b are not dependent on the thicknesses of the permanent magnets 358a and 358b when measured when the bobbin assembly 354 and the counterweight assembly 355 are at the balance point.
It is noted that while the surfaces creating the radial air gaps (e.g., surfaces 454c and 460d with respect to air gap 472a) are depicted as uniformly flat, in other embodiments, the surfaces may be partitioned into a number of smaller mating surfaces. It is further noted that the use of the radial air gaps permits relative ease of inspection of the radial air gaps from the outside of the vibrating electromagnetic actuator 350, in comparison to, for example the axial air gaps.
Certain performance features of some exemplary embodiments of the present invention will now be described.
As previously noted, the use of the radial air gaps may reduce the static magnetic force associated with a given movement relative to that which would be required in the absence of the radial air gaps and the radial air gaps being substituted with additional axial air gaps to close the static magnetic field between the bobbin assembly 354 and the counterweight assembly 355. Along these lines,
Because of the radial air gaps, a significant air gap is always present between the yokes of the counterweight assembly 355 and the bobbin of the bobbin assembly 354, and, therefore, the amount of the static magnetic flux directed though the hole 354d of the coil 354b and through the core 354c of the bobbin 354 is substantially less. This increases the efficiency because the magnetic material of the core 354c is not as magnetically saturated as it otherwise might be, and the dynamic flux produced by the bobbin assembly is not as inhibited as it otherwise might be (inhibition due to the increased magnetic saturation). In an exemplary embodiment, the relative reduction in the amount of static magnetic flux directed thorough the hole 354d permits a core 354c of relative reduced thickness (measured in the horizontal direction relative to
It is noted that in some embodiments, the reluctance at the radial air gaps is substantially constant through the range of movements of the counterweight assembly 355 relative to the bobbin assembly 354. In some embodiments, this is because, unlike the axial air gaps, the distance between the radial air gaps (span) is effectively constant during the range of movements of the counterweight assembly 355 relative to bobbin assembly 354. This may prevent magnetic saturation in the core of the bobbin. However, in other embodiments, the reluctance at the radial air gaps may increase with movement of the counterweight assembly 355 away from the balance point. In this regard, the faces of the radial air gaps move with respect to one another, and proper dimensioning of the yoke assembly 355a and the bobbin 355a can limit the amount of overlap between the faces during movement. By way of example, if the facing surfaces forming the radial air gaps (e.g., 454c and 460d with respect to radial air gap 372a) have a sufficiently small height (i.e., the dimension of the surfaces in the direction of arrow 300a of
As noted above, in some embodiments of the present invention, the use of the radial air gaps reduce the amount of static magnetic flux flowing through the core.
In an embodiment of the present invention, the collective distance of the spans of all axial air gaps through which effective amounts of static and dynamic magnetic flux flow are substantially no more than a maximum distance of the generated relative movement of the counterweight assembly 355 to the bobbin assembly 354. In an exemplary embodiment, this has the effect of reducing the total volume of fluid (e.g., air) that is displaced from the axial air gaps during movement of the counterweight assembly 355 relative to the bobbin assembly 354. Because the fluid in the axial air gaps acts to provide resistance to the relative movement of the counterweight assembly 355 relative to the bobbin assembly 354, this has an effect analogous to stiffening the spring 356, thus increasing the resonant frequency of the vibrating electromagnetic actuator 350.
In some exemplary embodiments, a viscous fluid may be located in the radial air gaps. Because the span of the radial air gaps does not change, only shear effects are seen in the radial air gaps as a result of movement of the counterweight assembly 355 relative to the bobbin assembly 354. This permits fluid damping, which may reduce the risk of acoustic feedback problems in the bone conduction device. In this regard, the teachings of U.S. Pat. No. 7,242,786 with respect to fluid damping may be implemented with respect to the radial air gaps to achieve some and/or all of the results detailed in that patent. For example, a ferromagnetic fluid may be interposed in the radial air gaps, the magnetic fields holding the ferromagnetic fluid in place.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4129187, | Dec 27 1977 | KOLLSMAN, INC | Electro-mechanical vibrator |
4425482, | Mar 08 1982 | AT & T TECHNOLOGIES, INC , | Ring armature electroacoustic transducer |
4476451, | Jan 09 1981 | SMC Corporation | Solenoid actuator |
5338287, | Dec 23 1991 | Electromagnetic induction hearing aid device | |
5535097, | Nov 23 1993 | Medtronic, Inc | Implantable medical device including a first enclosure portion having a feedthrough in a second interior surface |
5809157, | Apr 09 1996 | Victor, Lavrov | Electromagnetic linear drive |
5814907, | May 05 1997 | Moog Inc. | Electromagnetic force motor with internal eddy current damping |
5913815, | Jul 01 1993 | MED-EL Elektromedizinische Geraete GmbH | Bone conducting floating mass transducers |
5947155, | Dec 28 1996 | Aisin AW Co., Ltd. | Linear solenoid valve |
5960875, | Mar 29 1996 | Elf Exploration Production | Electric pump having a linear motor |
6002184, | Sep 17 1997 | Coactive Drive Corporation; HOUSTON-DELSON PARTNERSHIP | Actuator with opposing repulsive magnetic forces |
6751334, | Mar 09 2000 | Osseofon AB | Electromagnetic vibrator |
6985599, | Jun 02 2000 | Osseofon AB | Vibrator for bone conducted hearing aids |
7319771, | Jun 02 2000 | Osseofon AB | Vibrator for bone conducted hearing aids |
8565461, | Mar 16 2011 | Cochlear Limited | Bone conduction device including a balanced electromagnetic actuator having radial and axial air gaps |
8929577, | Mar 16 2011 | Cochlear Limited | Bone conduction device including a balanced electromagnetic actuator having radial and axial air gaps |
905781, | |||
20030034705, | |||
20040032962, | |||
20040057588, | |||
20050135651, | |||
20060045298, | |||
20060208600, | |||
20070053536, | |||
20090064484, | |||
20090209806, | |||
20100054509, | |||
20100145135, | |||
20100284554, | |||
20110268303, | |||
20120237067, | |||
20120302822, | |||
20140270297, | |||
20140275731, | |||
CN101931837, | |||
DE102006026288, | |||
DE19541882, | |||
DE202004006117, | |||
EP1965604, | |||
JP2010118877, | |||
JP2012044245, | |||
KR100872762, | |||
TW201215174, | |||
WO167813, | |||
WO3096744, | |||
WO2009110705, | |||
WO2012030270, | |||
WO2012160542, | |||
WO9834320, | |||
WO9909785, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 12 2021 | Cochlear Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 12 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Date | Maintenance Schedule |
Feb 27 2027 | 4 years fee payment window open |
Aug 27 2027 | 6 months grace period start (w surcharge) |
Feb 27 2028 | patent expiry (for year 4) |
Feb 27 2030 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 27 2031 | 8 years fee payment window open |
Aug 27 2031 | 6 months grace period start (w surcharge) |
Feb 27 2032 | patent expiry (for year 8) |
Feb 27 2034 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 27 2035 | 12 years fee payment window open |
Aug 27 2035 | 6 months grace period start (w surcharge) |
Feb 27 2036 | patent expiry (for year 12) |
Feb 27 2038 | 2 years to revive unintentionally abandoned end. (for year 12) |