Low toxicity, low pollution potential compositions and methods for inhibiting corrosion of ferrous and non-ferrous metallic parts in aqueous systems. The compositions have no chromate, no polyphosphate and no borate and consist essentially of alkali metal nitrite, alkali metal carbonate or bicarbonate and an azole. Preferably the compositions also include an alkali metal silicate and small amounts of an alkali metal hydroxide. In the corrosion inhibiting method, the aforesaid compositions are added to the system water in amounts sufficient to provide from about 100 to 10,000 parts per million ("ppm") of alkali metal nitrite, the primary inhibitor.

Patent
   4098720
Priority
Aug 05 1971
Filed
Jan 14 1976
Issued
Jul 04 1978
Expiry
Jul 04 1995
Assg.orig
Entity
unknown
35
7
EXPIRED
1. A corrosion inhibiting composition free of any polyphosphate, chromate and borate and consisting essentially of:
______________________________________
Weight Percent based on total
weight, dry weight basis
______________________________________
Alkali metal nitrite
4 to 80
Alkali metal carbonate
2 to 60
Water-soluble
mercaptobenzothiazole
compound 0.1 to 10
Alkali metal hydroxide
0.1 to 20
Alkali metal silicate
0.1 to 30
______________________________________
2. composition as defined in claim 1 containing 40 to 60 percent nitrite, 20 to 40 percent carbonate, 1.5 to 6 percent mercaptobenzothiazole compound, 2 to 6 percent hydroxide and 6 to 12 percent silicate.
3. composition as defined in claim 2 wherein the nitrite is sodium nitrite.
4. composition as defined in claim 3 wherein the mercaptobenzothiazole compound is sodium mercaptobenzothiazole.
5. composition as defined in claim 4 further including from 0.01 to 10 weight percent of a water-soluble acrylic polymer having a molecular weight of from about 200 to 15,000,000 and repeated groups with the formula: ##STR10## wherein R is hydrogen or a methyl group, or a water-soluble salt or ester of such polymer.
6. Method for inhibiting corrosion of metallic parts in contact with an aqueous fluid comprising maintaining in the said fluid sufficient amounts of the composition of claim 1 to provide at least about 100 ppm. of nitrite, as sodium nitrite.
7. Method for inhibiting corrosion of metallic parts in contact with an aqueous fluid comprising maintaining in the said fluid sufficient amounts of the composition of claim 4 to provide at least about 100 ppm. of nitrite, as sodium nitrite.
8. Method for inhibiting corrosion of metallic parts in contact with an aqueous fluid comprising maintaining in the said fluid sufficient amounts of the composition of claim 5 to provide at least about 100 ppm. of nitrite, as sodium nitrite.
9. Method of claim 6 wherein the sodium nitrite concentration is from about 1000 to about 4000 ppm.

This application is a continuation of U.S. Ser No. 409,513, filed Oct. 25, 1973, now abandoned, which is in turn a continuation of U.S. Ser. No. 169,483, filed Aug. 5, 1971, now abandoned.

This invention relates to corrosion inhibiting compositions and methods. In particular, the invention relates to compositions and methods for inhibiting corrosion of metal parts in heat exchangers employing aqueous solutions, for example in the cooling systems of diesel engines.

Metals or metallic parts commonly found in cooling systems of diesel engines and in other heat exchangers or fluid conduits include steel, aluminum, brass, copper, cast iron and solder; all of which are subject to varied forms of corrosive attack from aqueous fluids in contact therewith. The prior art suggests a wide variety of corrosion inhibiting materials or compositions to alleviate such attacks. Sodium nitrite - sodium tetraborate - benzotriazole compositions such as those disclosed in Liddell - U.S. Pat. No. 2,877,188 (Mar. 10, 1959) and in Hatch -- U.S. Pat. No. 3,335,096 (Aug. 8, 1967) have been used for some time. Green et al -- U.S. Pat. No. 2,815,328 (Dec. 3, 1957) discloses similar compositions containing in addition nitrate, silicate and a base to provide solution pH of 8.5 to 10. Thornhill et al -- U.S. Pat. No. 3,340,001 (Sept. 5, 1967) discloses corrosion inhibiting compositions consisting of nitrate, nitrate, an azole and an alkali metal silicate, cyanate or urea. In the past, chromates and polyphosphates have also been widely used to inhibit corrosion of metals in contact with water or other aqueous fluids.

There are a number of problems and disadvantages associated with the known corrosion inhibiting compositions and methods. The chromates are highly toxic. This is undesirable both from the viewpoint of the health of handling personnel and also because of the problem of waste disposal. Polyphosphates are non-toxic. However, due to the hydrolysis of polyphosphates to orthophosphates and the limited solubility of calcium orthophosphate which is likely to form, it has not been possible in many instances to maintain adequate concentrations of phosphates. This reversion process of polyphosphates also can create sludge formation and/or scale deposition problems in the system. From a water pollution standpoint, effluent containing a sufficiently high phosphate residual may serve as a nutrient to aquatic life. For these reasons, the use of polyphosphates has not been entirely satisfactory. Extensive data on boron in both well and surface waters in North America show that the amount of boron normally present is less that 1 ppm. The ingestion of large quantities of boron can affect the central nervous system and prolonged ingestion may result in a clinical syndrome known as borism. Boron is an essential element to plant growth, but is toxic to many plants at concentrations as low as 1 ppm. In a report entitled "Water Quality Criteria," to the U.S. Secretary of the Interior, by the Federal Water Pollution Control Administration, Washington, D.C., on Apr. 1, 1968, a limit of 0.05 ppm for hexavalent chromium and 1.0 ppm for boron in public water supplies was established.

It is an object of this invention to overcome the prior art problems. It is a specific object to provide relatively non-toxic, completely phosphate-free, chromate-free and borate-free compositions and processes for inhibiting corrosion in aqueous systems. Still further objects and advantages will be apparent from the following more detailed description.

In accordance with the present invention, a corrosion inhibiting composition is provided consisting essentially of the following materials in the amounts shown:

______________________________________
Weight Percent (Active dry-
Weight basis)
Ingredient Operable Preferred
______________________________________
Alkali metal nitrite
4 to 80 40 to 60
Azole compound 0.1 to 10 1.5 to 6
Alkali metal carbonate
2 to 60 20 to 40
Alkali metal silicate
0.1 to 30 6 to 12
Alkali metal hydroxide
0.1 to 20 2 to 6
Acrylic polymer 0 to 10 0.01 to 3
______________________________________

The composition is completely free of any phosphate, chromate or borate. It is not only relatively non-toxic, but also has very low pollution potential.

In the method of this invention, the aqueous fluid to be rendered less corrosive is treated with sufficient amounts of the composition described above to provide at least about 100 ppm. and preferably from about 1000 to about 4000 ppm. (for example, 2000 ppm.) of the primary nitrite inhibitor, expressed as sodium nitrite (NaNO2). In other words, the method comprises maintaining in the aqueous fluid in contact with the metal parts susceptible to corrosion the following concentrations of the essential or preferred corrosion inhibiting materials:

______________________________________
Corrosion Inhibiting Concentration
in parts per million (ppm.)
Ingredient Minimum Preferred Optimum
______________________________________
Alkali metal nitrite
(as NaNO2)
100 ppm. 1000 to 4000 ppm.
2000 ppm.
Azole compound
10 ppm. 60 to 800 ppm.
400 ppm.
(as such)
Alkali metal
carbonate (as such)
200 ppm. 1000 to 2400 ppm.
1600 ppm.
Alkali metal silicate
(as such) 10 ppm. 80 to 1200 ppm.
600 ppm.
Alkali metal
hydroxide (as such)
10 ppm. 80 to 1200 ppm.
300 ppm.
Acrylic polymer
(as the
sodium salt)
0 ppm. 2 to 600 ppm.
10 ppm.
______________________________________

In practice it will be found that dosages of a 25 percent active aqueous solution of the composition described above in the range of from about 0.5 to about 5 fluid ounces per gallon of the aqueous fluid to be treated will provide the requisite concentration of the corrosion inhibiting ingredients. Typical preferred dosages for such 25 percent active inhibitor solutions are about 1 to 2 fluid ounces per gallon.

Typical industrial applications in which the present invention may be employed are cooling water treatment; radiator coolants, hydraulic liquids, anti-freeze compositions, heat transfer media and petroleum well treatments.

The term "alkali metal" as used herein means the metals of Group 1A of the Periodic Table of the Elements. The preferred alkali metal compounds used are the sodium or potassium nitrites, carbonates, hydroxides and silicates. The alkali metal silicates used are those having the formula M2 O.(SiO2)n where M represents the alkali metal and n is a number of from 0.5 to 4.5, preferably from 1.6 to 3.6, and most preferably from about 2.9 to about 3.3. The silicates are preferably used in the commercially available form known as liquid alkali metal silicates. One suitable liquid sodium silicate is commercially available from E. I. duPont de Nemours & Co., Wilmington, Delaware under the trade designation "DuPont's Grade F." According to the manufacturer, this product has the following properties:

______________________________________
Weight ratio of SiO2 to Na2 O
3.25
Content of SiO2
28.40% ∓ 0.5%
Content of Na2 O
8.70 % ∓ 0.2%
Specific Gravity at 60° F
40.6° Baume
Viscosity at 68° F
160 ∓ 40 centipoises
Approximate Density at 60° F
11.6 pounds per gallon
______________________________________

Azoles are nitrogen containing heterocyclic 5-membered ring compounds, and azoles which are suitable in the composition of this invention include triazoles, pyrazoles, imidazoles, isoxazoles, oxazoles, isothiazoles, thiazoles and mixtures thereof as disclosed in U.S. Pat. Nos. 2,618,608, 2,742,369 and 2,941,953.

The triazoles which can be employed in the composition of this invention are any water-soluble 1,2,3-triazoles such as 1,2,3-triazole itself having the formula ##STR1## or an N-alkyl substituted 1,2,3-triazole, or a substituted water soluble 1,2,3-triazole where the substitution takes place in the 4- and/or 5-position of the triazole ring. The preferred 1,2,3-triazole is benzotriazole (sometimes known as 1,2,3-benzotriazole) having the structural formula: ##STR2## Other suitable water soluble derivatives include, for example, 4-phenyl-1,2,3-triazole; 1,2-naphthotriazole; 4-nitrobenzotriazole; 1,2,3-tolyltriazole; 4-methyl-1,2,3-triazole; 4-ethyl-1,2,3-triazole; 5-methyl-1,2,3-triazole; 5-ethyl-1,2,3-triazole; 5-propyl-1,2,3-triazole; 5-butyl-1,2,3-triazole; and the like.

The pyrazoles which can be used in the composition of this invention include any water-soluble pyrazoles such as pyrazole itself or a substituted pyrazole where the substitution takes place in the 3, 4, or 5 position (or several of these positions) of the pyrazole ring as shown by the structural formula: ##STR3## Suitable pyrazoles include pyrazole; 3,5-dimethyl pyrazole, 6-nitroindazole; 4-benzyl pyrazole; 4,5-dimethyl pyrazole, 3-allyl pyrazole, and the like.

The imidazoles which can be used in the composition of this invention include any water-soluble imidazoles such as imidazole itself or a substituted imidazole where the substitution takes place in the 2, 4 or 5 position (or several of these positions) of the imidazole ring as shown by the structural formula: ##STR4## Suitable imidazoles which can be employed in the composition of this invention include imidazole; adenine; guanine; benzimidazole; 5-methyl benzimidazole; 2-phenyl imidiazole; 2-benzyl imidazole; 4-allyl imidazole; 4-(betahydroxyethyl)-imidazole; purine; 4-methyl imidazole; xanthine; hypoxanthene; 2-methyl imidazole; and the like.

Isoxazoles which can be employed in the composition of this invention include any water-soluble isoxazole such as isoxazole itself or a substituted isoxazole where the substitution takes place in the 3, 4, or 5 position (or several of these positions) of the isoxazole ring as shown by the structural formula: ##STR5## Suitable isoxazoles include isoxazole, 3-mercaptoisoxazole, 3-mercaptobenzisoxazole, benzisoxazole, and the like.

The oxazoles which can be employed in the composition of this invention include any water-soluble oxazoles such as oxazole itself or a substituted oxazole where the substitution takes place in the 2, 4 or 5 position (or several of these positions) of the oxazole ring as shown here by the structural formula: ##STR6## Suitable oxazoles include oxazole, 2-mercaptoxazole, 2-mercaptobenzoxazole, and the like.

The isothiazoles which can be employed in the process of this invention include any water-soluble isothiazoles such as isothiazole itself or a substituted isothiazole where the substitution takes place in either the 3, 4 or 5 position (or several of these positions) of the isothiazole ring as shown by the structural formula: ##STR7## suitable isothiazoles include isothiazole, 3-mercaptoisothiazole, 3-mercaptobenzisothiazole, benzisothiazole, and the like.

The thiazoles which can be used in the composition of this invention include any water-soluble thiazole such as thiazole itself or a substituted thiazole where the substitution takes place in the 2, 4 or 5 position (or several of these positions) of the thiazole ring as shown here by the structural formula: ##STR8## Suitable thiazoles include thiazole, 2-mercaptothiazole, 2-mercaptobenzothiazole, benzothiazole, and the like.

In the above azole compounds, the constituents substituted in the azole rings can be alkyl, aryl, aralkyl, alkylol, and alkenyl radicals so long as the substituted azole is water-soluble in the aqueous system in which the corrosion inhibiting composition is ultimately used at the ultimate use concentration.

The preferred azoles for the present compositions are benzotriazole and mercaptobenzothiazole, and these are preferably used in the form of their water soluble alkali metal (e.g., sodium) salts. It will be obvious that other water soluble salts may also be used if desired.

As noted, the composition of this invention may also contain minor amounts of a water-soluble acrylic polymer. Such polymers may have a molecular weight of from 200 to 15,000,000 and include those having repeated groups with the formula: ##STR9## wherein R is hydrogen or a methyl group. Water-soluble salts or esters of the acrylic polymers are also suitable.

Suitable polymers for use in this invention are the polymers of acrylic or methacrylic acid and their derivatives, for example, acrylic acid, the alkali metal and ammonium salts of acrylic acid, esters of acrylic acid with lower (C1 to C4) alkanols, methacrylic acid, the alkali metal and ammonium salts of methacrylic acid, esters of methacrylic acid with lower (C1 to C4) alkanols, and copolymers of these acids and derivatives with each other. Such polymers include, for example, polyacrylic acid, ammonium polyacrylate, sodium polyacrylate, ammonium polymethacrylate, guanidinium polyacrylate, dimethylaminoethyl polymethacrylate, methacrylic acid-dimethylaminoethyl methacrylate copolymer, acrylic acid-methacrylic acid copolymer, and the like. The preferred polymers are polyacrylic acid, polymethacrylic acid, or water-soluble salts of these polymers having a molecular weight within the range of from 1000 to 200,000, calculated as the free acid, e.g., polyacrylic acid.

The compositions of this invention inhibit corrosion of ferrous and non-ferrous metals (inlcuding, for example, aluminum, tin, copper, copper alloys, lead, solder alloys and the like.) They are effective as corrosion inhibitors in closed recirculating water systems, at either high or low temperatures. The compositions may be used in hot or chilled water systems, hot water and steam heating boiler systems and in diesel and other internal combustion gasoline engine jacket systems. The compositions are compatible with both permanent type anti-freeze solutions and commonly used alcohols, and provide excellent corrosion control of water jackets, pumps, heat exchange surfaces and other components of closed systems. The compositions may be sold and used in the form of a dry powder or briquette or in the form of an aqueous solution containing from 50 to 95 percent by weight of water.

The invention will be further understood from the following specific, but non-limiting, examples. In the examples and elsewhere in the description, all parts are parts by weight unless otherwise specifically indicated.

In this example the corrosion inhibiting composition was prepared as an aqueous concentrate containing

______________________________________
Weight Percent
______________________________________
Demineralized water 74.6
Potassium hydroxide (flake)
0.7
Potassium carbonate (anhydrous)
7.0
Sodium mercaptobenzothiazole
0.7
Liquid sodium silicate*
5.3
Sodium nitrite 11.7
______________________________________
*DuPont's "Grade F" liquid sodium silicate

In order to demonstrate the corrosion inhibiting efficacy of this concentrate, 165 milliliters of a test solution consisting of distilled water containing 100 ppm. of chloride ion (Cl-), sulfate ion (SO4--) and of bicarbonate ion (HCO3-), each introduced as the sodium salt, was poured into a 300 milliliter beaker. The corrosion inhibiting concentrate was added to the test solution in an amount corresponding to 1.14 fluid ounces per gallon. Cleaned and weighed test specimens of cast iron, mild steel, copper, brass, and a 30 percent tin/70 percent lead solder were placed in the beaker, which was then closed with a rubber stopper fitted with a condenser return and an aerator assembly. The beaker is then placed in an oil bath maintained at 160° F and the test conducted at an aerator flow rate of 100 milliliters per minute for a total test period of 336 hours. The volume of the test solution was maintained substantially constant by periodic additions of distilled water. At the conclusion of the test, the metal test specimens are removed, cleaned and dried and corrosion rates are determined by the weight loss.

The results of this test are shown in the following Table I. For comparison, results are also shown for a blank run (no corrosion inhibitor added) conducted under identical conditions.

TABLE I
______________________________________
Corrosion Rate in Mils per
Year for
Cast Mild
Run Additive Iron Steel
Copper
Brass
Solder
______________________________________
A None (blank run)
35.1 14.1 0.2 0.1 13.9
B 1.14 fluid ounces of
the concentrate of
Example I per gallon
of test solution
0.4 0.3 0.2 0.1 1.0
______________________________________

Similar corrosion inhibiting properties are obtained with the following composition:

PAC Aqueous Concentrate
______________________________________
Weight Percent
______________________________________
Water 90.6
Sodium hydroxide
0.3
Sodium carbonate
2.5
Benzotriazole 0.6
Sodium metasilicate
2.0
Sodium nitrite 4.0
______________________________________
PAC Solid Compositions
______________________________________
Weight Percent
Ex. 3 Ex. 4 Ex. 5 Ex. 6
______________________________________
Sodium carbonate
29.0 -- 45.0 40.0
Potassium carbonate
-- 40.0 -- --
Sodium hydroxide
1.0 -- -- --
Mercaptobenzothiazole
3.0 -- 5.0 --
Benzotriazole -- 2.0 -- --
Tolyltriazole -- -- -- 0.3
Sodium nitrite 60.0 58.0 -- 50.0
Potassium nitrite
-- -- 50.0 --
Sodium metasilicate
pentahydrate 7.0 -- -- 9.7
______________________________________

Another liquid concentrate of a corrosion inhibiting composition according to the present invention has the following formula:

______________________________________
Weight Percent
______________________________________
Demineralized water 73.56
Potassium hydroxide (flake)
0.8
Potassium carbonate (anhydrous)
7.0
Sodium mercaptobenzothiazole
(50% solution) 1.6
Liquid sodium silicate
(DuPont's Grade F) 5.3
Sodium nitrite 11.7
Sodium polymethacrylate
(25% solution - molecular
weight about 10,000,
as the free acid) 0.04
______________________________________

This composition has a pH of about 11.7 and a freezing point of about 8° F. The corrosion inhibiting efficacy of this composition was tested at a dosage of 2 fluid ounces per gallon in the test described in Example 1 for 200 hours at 190° F. with aeration. The test water was Chicago tap water to which 100 ppm. chloride ion (Cl-), sulfate ion (SO4--) and bicarbonate ion (HCO3-) had been added prior to the test. The results are shown in Table II.

Table II
______________________________________
Weight Loss in 200 hours
Metal Test Specimen
(milligrams per square inch)
______________________________________
Cast Iron 0.0
Steel 0.08
Copper 0.7
Yellow Brass (70% Copper,
30% Zinc) 0.6
Red Brass (85% Copper,
15% Zinc) 0.8
Solder (70% Lead,
30% Tin) 3.0
______________________________________

The composition of this example provides corrosion inhibition in diesel and other internal combustion engines, in hot water heating systems and chilled water circuits. It does not adversely affect non-metal components or seals. Typical dosages are 2 fluid ounces per gallon of system water (approximately 11/2 gallons per 100 gallons of system capacity). In use, inhibiting strength is regulated by maintaining a minimum of 100 ppm. and preferably from about 1000 to about 4000 ppm. of the primary nitrite inhibitor, as sodium nitrite (NaNO2). In the treatment of internal combustion engines, it is preferable to use premixed solutions of make-up water and the above concentrate to best assure proper treatment level to the jacket water; however, the concentrate may be added directly to the engine cooling system if necessary or desirable. In chilled and hot water systems, the concentrate may be added directly to closed recirculating waters by pumping from the shipping container or by use of by-pass feeders or any other means suitable for assuring complete system distribution at the desired dosage level.

Hwa, Chih M.

Patent Priority Assignee Title
10577507, Mar 16 2013 PRC-DESOTO INTERNATIONAL, INC Alkaline cleaning compositions for metal substrates
10800929, Mar 31 2015 Commonwealth Scientific and Industrial Research Organisation Composition for inhibiting corrosion
11560483, Mar 31 2015 The Boeing Company Compositions for inhibiting corrosion
11987726, Mar 31 2015 The Boeing Company Compositions for inhibiting corrosion
4235838, Aug 09 1978 Baker Hughes Incorporated Use of benzazoles as corrosion inhibitors
4237090, Nov 15 1978 The United States of America as represented by the United States Method for inhibiting corrosion in aqueous systems
4277359, Apr 04 1979 MOGUL CORPORATION, THE Water treatment to inhibit corrosion and scale and process
4452715, Oct 25 1982 Ashland Licensing and Intellectual Property LLC High pH coolant containing carbonate ion
4508569, Mar 10 1981 Toyo Seikan Kaisha, Ltd. Sealing compound for cans
4728452, Jan 17 1986 PONY INDUSTRIES, INC , A CORP OF DE Metal corrosion inhibition in closed cooling systems
4734257, May 31 1985 Henkel Kommanditgesellschaft auf Aktien Method of inhibiting corrosion of nonferrous metals in aqueous systems using 3-amino-5-(ω-hydroxyalkyl)-1,2,4-triazoles
4770805, Dec 19 1986 SEIKEN KAGAKU CO , LTD Composition and method for removing photosensitive resin film from baseboard for integrated circuit
5294400, Mar 30 1993 Nalco Chemical Company Corrosion prevention in boilers using 1,3-imidazole
5342578, Feb 23 1993 Gas Technology Institute Corrosion inhibition of ammonia-water absorption chillers
5395309, Oct 08 1993 XOMED SURGICAL PRODUCTS, INC Nasal pack applicator
5496590, Aug 11 1993 MEC Co., Ltd. Composition for treating copper and copper alloy surfaces and method for the surface treatment
5500288, Nov 23 1990 Nippondenso Co., Ltd. Aluminum surface having chemical conversion coating and method of forming the coating
5736495, Sep 23 1994 Church & Dwight Co., Inc. Aqueous metal cleaner having an anticorrosion system
5747439, Apr 02 1996 Church & Dwight Co, Inc. Aqueous sodium salt metal cleaner
5755706, Sep 16 1993 XOMED SURGICAL PRODUCTS, INC Flexible stranded sponge pack
5871668, Oct 21 1994 Elisha Holding LLC Corrosion resistant buffer system for metal products
5888280, Jun 18 1997 PPG Industries Ohio, Inc Protective coating composition with early water resistance
5902415, Apr 02 1996 Church & Dwight Co., Inc. Aqueous sodium salt metal cleaner and method of using same
6248701, May 13 1994 Henkel Corporation Aqueous metal coating composition and process with reduced staining and corrosion
6261336, Aug 01 2000 Rutgers, The State University of New Jersey Stable aqueous iron based feedstock formulation for injection molding
6399021, Oct 21 1994 Elisha Holding LLC Method of treating concrete structures
7261839, Jan 22 2002 Northern Technologies International Corporation Tarnish inhibiting composition and article containing it
7270775, Jan 22 2002 Northern Technologies International Corporation Corrosion inhibiting composition and article containing it
7531022, Nov 04 2004 Zschimmer & Schwarz GmbH & Co. KG Chemische Fabriken Liquid and its use for the preparation of hard metals
7708939, Apr 24 2007 WATER CONSERVATION TECHNOLOGY INTERNATIONAL, INC Cooling water corrosion inhibition method
7955553, Apr 24 2007 Water Conservation Technology International, Inc. Cooling water corrosion inhibition method
7988775, Jun 25 2009 Hyundai Motor Company; Kia Motors Corporation; Korea Houghton Corporation White rust inhibiting composition for aluminum parts
8008373, Jan 22 2002 Northern Technologies International Corp. Biodegradable polymer masterbatch, and a composition derived therefrom having improved physical properties
8038898, Aug 31 1998 Renesas Electronics Corporation Abrasive liquid for metal and method for polishing
8491807, Aug 31 1998 Renesas Electronics Corporation Abrasive liquid for metal and method for polishing
Patent Priority Assignee Title
2877188,
2941953,
3272736,
3340001,
3425954,
3553137,
3578589,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 14 1976Chemed Corporation(assignment on the face of the patent)
Mar 10 1982CHEMED CORPORATION, A CORP OF DEDEARBORN CHEMICAL COMPANY, A CORP OF DEASSIGNMENT OF ASSIGNORS INTEREST 0039630418 pdf
Dec 19 1985Dearborn Chemical CompanyW R GRACE & CO MERGER SEE DOCUMENT FOR DETAILS 0045280776 pdf
May 25 1988W R GRACE & CO , A CORP OF CONN MERGED INTO W R GRACE & CO -CONN MERGER SEE DOCUMENT FOR DETAILS EFFECTIVE DATE: MAY 25, 1988 CONNECTICUT0049370001 pdf
May 25 1988GRACE MERGER CORP , A CORP OF CONN CHANGED TO W R GRACE & CO -CONN MERGER SEE DOCUMENT FOR DETAILS EFFECTIVE DATE: MAY 25, 1988 CONNECTICUT0049370001 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jul 04 19814 years fee payment window open
Jan 04 19826 months grace period start (w surcharge)
Jul 04 1982patent expiry (for year 4)
Jul 04 19842 years to revive unintentionally abandoned end. (for year 4)
Jul 04 19858 years fee payment window open
Jan 04 19866 months grace period start (w surcharge)
Jul 04 1986patent expiry (for year 8)
Jul 04 19882 years to revive unintentionally abandoned end. (for year 8)
Jul 04 198912 years fee payment window open
Jan 04 19906 months grace period start (w surcharge)
Jul 04 1990patent expiry (for year 12)
Jul 04 19922 years to revive unintentionally abandoned end. (for year 12)