A friction member of the resin mold type comprising brass fiber of 1-10 mm length having a trapezoid in cross figure thereof as a base material of the friction member, and a phenolic resin of cement composition, to obtain excellent qualities such as good durability at high temperature.

Patent
   4420067
Priority
Sep 17 1979
Filed
Apr 08 1983
Issued
Dec 13 1983
Expiry
Dec 13 2000
Assg.orig
Entity
Large
9
9
EXPIRED
1. An asbestos-free friction member of the resin mold type consisting essentially of:
10to 70% by weight, based on the total composition, of brass fiber having a diameter of 0.05 to 0.5 mm and a length of 1 to 10 mm;
6 to 15% by weight, based on the total composition, of phenolic resin as binder agent;
20 to 80% by weight, based on the total composition, of an ingredient improving the frictional qualities selected from the group consisting of rubber dust, cashew dust, graphite, metal sulfide, metal oxide and metal powder; and
less than 30% by weight, based on the total composition, of a filler selected from the group consisting of calcium carbonate and silica.
2. The friction member according to claim 1, wherein said brass fiber has a length of 2 to 7 mm.
3. The friction member according to claim 2, wherein said brass fiber has a length of 3 to 6 mm.
4. The friction member according to claim 1, wherein the shape of said brass fiber is a trapezoid.
5. The friction member according to claim 1, wherein the brass fiber is present in an amount of 30 to 60% by the weight and the phenolic resin is present in an amount of 8 to 13% by weight.
6. The friction member according to claim 5, wherein the brass fiber is present in an amount of 40 to 50% by weight and the phenolic resin is present in an amount of 9 to 11% by weight.

This application is a continuation of application Ser. No. 188,265, filed Sept. 17, 1980, now abandoned.

1. Field of the Invention

This invention relates to an improved friction member, and more particularly to a brake pad of the type used for Motor vehicles.

2. Description of the Prior Art

Friction members of a resin mold type used for motor vehicles (hereinbelow referred to merely as the friction members), are usually made of an asbestos fiber base including a phenolic resin of a cement composition (a binder agent) and some ingredients to improve frictional qualities such as the frictional coefficient and/or durability. The friction members also are contacted with a metal core (a back metal) by an adhesive agent.

The frictional members produced by the conventional method are obtained in the following process which comprises: mixing the asbestos fiber, the binder agent, and some ingredients; preforming with a metal mold at room temperature under pressure contact with the back metal, forming with a metal mold under heat and pressure; smoothing the surface and side face of the formed products to remove the over flowing materials thereform.

However the asbestos fiber is detrimental for our health. Whenever persons produce the friction members, for example in mixing or smoothing steps, a lot of a powdered asbestos is scattered in a factory.

Upon breathing the powdered asbestos, a person's health is impaired and cancer may result.

The friction members comprising steel fiber as a base material have been used recently to remove the problem of asbestos fiber.

However, the friction members comprising the steel fibers easily rust, and portions thereof will peel in the area between the friction member and the back metal.

Thus the aforementioned peeling phenomenon will generate a functional disorder of the brake system.

Accordingly, one object of this invention is to provide friction members which eliminate the problem of asbestos fiber.

Another object is to prevent peeling between the friction member and the back plate.

Further, another object is to prevent rust generation of the friction members.

Briefly, these and other objects of the invention as hereinafter will become more readily apparent may be attained by providing an improvement in friction members, especially used for the brake systems of motor vehicles, which comprises using brass fiber as a base material, a binder agent, and some frictional ingredients.

PAC In the drawings

FIG. 1 is a graph showing the ratio of water and the frictional coefficient of the friction member of the invention in comparison with the conventional ratio of wear and the conventional frictional coefficient;

FIG. 2 is the front view showing the test method of anti-corrosion.

The term "brass fiber" used in the invention, is a fiber obtained by cutting brass materials with an adequate cutting machine such as a lathe. The sectional shape of the brass fiber is generally shown in a trapezoid.

The outer diameter of the brass fiber is about 0.05 to 0.5 mm. The length of the brass fiber is 1 to 10 mm, desirably 2 to 7 mm, most desirably 3 to 6 mm.

The binder agent is one that is suitable on any conventional material, especially a phenolic resin.

The frictional ingredient desirably will be characterized as a lubricant, also improving the frictional coefficient, improving wear durability, and improving heat conductivity. However, the lubricant and improved frictional coefficient are of contradictory qualities. Therefore, when using the frictional material in the invention, some adequate ingredients attaining a geometrical effect are selected and used as required qualities of the friction members. Typical examples of the ingredients improving the frictional qualities are rubber dust, cashew dust, graphite, metal sulfide, a metal oxide, a metal powder and so on.

The friction members of the invention may use cheap materials such as calcium carbonate or a silica to decrease the cost of the filler.

The mixing ratio of the brass fiber is 10 to 70% by weight of all mixing material, desirably 30 to 60% by weight, most desirably 40 to 60% by weight.

The mixing ratio of the phenolic resin is 6 to 15% by weight of all mixing material, desirably 8 to 13% by weight, most desirably 9 to 11% by weight.

The mixing ratio of the ingredients improving the frictional qualities is 20 to 80% by weight of all mixing materials, desirably 30 to 60% by weight, most desirably 40 to 50% by weight.

It is desirable that the mixing ratio of the aforementioned filler is less than 30% by weight of all mixing materials.

The aforementioned disclosure is consistent with using 100% brass fiber as a base material of the friction members. However, inorganic fibers such as ceramic and steel fibers and/or organic fibers such as phenolic and aromatic polyamido fibers can be used as supplementary fibers.

The manufacturing method of the invention involve conventional methods.

A typical example of the manufacturing method mentioned above is as follows:

placing and mixing the brass fiber, some ingredients improving the frictional qualities, and phenolic resin with an adequate mixing device such as a Twin Shell Blender;

pre-forming the mixed product to a required shape with an adequate pre-forming machine such as a compression molding machine, at room temperature under pressure into a metal mold, forming the pre-formed product with an adequate forming machine such as a compression molding machine under heat and pressure, and contacting the back metal with the adhesive agent simultaneously into a metal mold; smoothing the surface and the side face of the formed product to remove the over flowing material therefrom; and then heating the smoothed product, to thereby get the complete friction member.

Small amounts of a phenolic resin or an organic resin may be added in the mixed product, while pre-forming in order to easily conduct the forming step. The preforming step may be abbreviated.

Another method is as follows;

placing and mixing the brass fiber, with some ingredients improving the frictional qualites, and phenolic resin, if needed, adding small amounts of the organic and/or inorganic fibers; then forming the mixed product to a sheet state under heat and pressure with an adequate forming machine such as an extruding machine; stamping the formed product to the required shape; smoothing the surface and the side face of stamped product; and then heating the stamped product within a heating device, to thereby obtain the complete friction member. The percents (%) of the following Examples and Comparison Examples are by weight.

Brass fiber of 40% having 0.2 mm diameter and 4 mm length, phenolic resins of 7% of powder state and 3% of liquid state, 6% of rubber dust, cashew dust of 6%, 11% of graphite powder, 18% of barium sulfate, 5% of a copper powder and 4% of an alumina, are placed and sufficiently mixed with a Henschel Mixer.

The mixed product was formed with a compression molding machine at 170°C under 300 kg/cm2 for 10 minutes, and simultaneously contacted with the back metal by the phenolic adhesive agent into the metal mold. The formed product was then heated with the heating device at 270°C for 2.5 hours.

The heated product was cooled at room temperature, and the surface and the side face of the cooled product smoothed, to thereby obtain the complete friction member.

Brass fiber of 60% having 0.2 mm diameter and 4 mm length, phenolic resins of 7% of powder state and 3% of liquid state, 3% of rubber dust, 3% of cashew dast, 11% of graphite powder, 9% of the barium sulfate, and 4% of alumina were placed and mixed sufficiently with the Henschel Mixer, and then the complete friction member was obtained in the same manner of Example 1.

The complete friction member was obtained in the same manner of Example 1, except 40% of a steel fiber of soft hardness having 0.2 mm diameter and 4 mm length, was used for 40% of the brass fiber as the base material of the friction member.

The complete friction member was obtained in the same manner of Example 2, except 60% of the steel fiber having 0.2 mm of diameter and 4 mm length was used for 60% of the brass fiber as the base material.

The friction members obtained by Examples 1-2, and Comparison Example 1, 2 were tested.

The rate of wear valve is measured by a testing machine of frictional material based upon SAEJ661a. The value of the friction coefficient valve is measured by a dynamometer on the frictional surface of the type used for the brake system of a passenger car, based upon JASO 6914.

The testing result mentioned above is shown in FIG. 1.

In FIG. 1, the friction coefficient and wear rate of the embodiment of the invention disclosed in Example 1 are represented by the black triangles and white triangles, respectively. The friction coefficient and wear rate of the embodiment of the invention disclosed in Example 2 are indicated by the white squares and black squares, respectively. The friction coefficient and wear rate of the first comparison example are indicated by the black circles and white circles, respectively. The friction coefficient and wear rate of the second comparison example are indicated by the upper curve marked with "x's" and the lower curve marked with "x's".

The test of anti-corrosion between the friction member and a disc member (a opponent member), is carried out as follows;

Pre-removing grease sufficiently from a frictional surface of a disc member with methanol;

piling a frictional surface 2a of the friction member 2 on frictional surface 1a of disc 1 as shown in FIG. 2;

standing the piled members at 20°C, at 80% humidity for 120 hours;

measuring the tensile strength needed to peel between 1a and 2a in the arrowed direction with spring scales as shown in FIG. 2.

The result of the anti-corrosion test is as follows concerning the tensile strength:

(1) 3.5 g/cm2 in Example 1

(2) 4.0 g/cm2 in Example 2

(3) 12.0 g/cm2 in Comparison Example 1

(4) 16.5 g/cm2 in Comparison Example 2

Corrosion on the surface of the friction members obtained by Example 1 and Example 2 scarely arised.

Corrosion on the surface of the friction members obtained by Comparison Example 1 and Comparison Example 2 was confirmed clearly.

FIG. 1 and the test of anti-corrosion clearly show that the friction members are improved and demonstrate excellent qualities concerning the ratio of wear at high temperature (more than 300°C), anti-corrosion, and do not decrease the friction coefficient.

Yamamoto, Yasunobu, Ishii, Masami, Tomikawa, Ryoichi

Patent Priority Assignee Title
4605105, Sep 03 1982 AKEBONO BRAKE INDUSTRY CO , LTD Brake system
4708226, Mar 12 1987 Autoipari Kutato es Fejleszto Vallalat Brake lining, particularly for a vehicle drum brake
4926978, May 25 1989 HONDA MOTOR CO , LTD , 1-1, 2-CHOME, MINAMIAOYAMA, MINATO-KU, TOKYO JAPAN; Honda Giken Kogyo Kabushiki Kaisha Friction pad for use with disc brake
4944373, Jun 03 1988 Mitsubishi Gas Chemical Company, Inc. Disc brake pad
5323883, Sep 20 1988 Nissan Motor Company, Limited Friction device
5325941, Sep 11 1990 Composite brake rotors and clutches
5428081, Oct 19 1992 SONG, YOUNG HUM Non-asbestos, frictional material composition and method of making same
5556078, Dec 16 1992 Elephant Chain Block Company Limited Manual hoist and traction machine
7441636, Apr 12 2006 Shimano, Inc. Bicycle disk brake pad with titanium fiber friction material
Patent Priority Assignee Title
2861964,
3210303,
3269976,
3585102,
4197223, Aug 10 1977 Ferodo Limited Asbestos free friction materials
4197352, Dec 22 1977 Occidental Chemical Corporation Composite friction assemblies and methods of making such assemblies
4364997, May 24 1980 Aisin Seiki Kabushiki Kaisha; Aisin Kako Kabushiki Kaisha Clutch facing material and method for manufacturing the same
4385682, Oct 26 1979 AISIN SEIKI COMPANY,LIMITED; Aisin Kako Kabushiki Kaisha Motor vehicle clutch facing and friction property modifier therefor
GB505922,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 03 1980YAMAMOTO, YASUNOBUAISIN KAKO KABUSHIKI 5, SHOWA-MACHI, 2-CHOME, KARIYA CITY, JAPANASSIGNMENT OF ASSIGNORS INTEREST 0041720966 pdf
Sep 03 1980TOMIKAWA, RYOICHIAISIN KAKO KABUSHIKI 5, SHOWA-MACHI, 2-CHOME, KARIYA CITY, JAPANASSIGNMENT OF ASSIGNORS INTEREST 0041720966 pdf
Sep 03 1980ISHII, MASAMIAISIN KAKO KABUSHIKI 5, SHOWA-MACHI, 2-CHOME, KARIYA CITY, JAPANASSIGNMENT OF ASSIGNORS INTEREST 0041720966 pdf
Apr 08 1983Aisin Seiki Kabushiki Kaisha(assignment on the face of the patent)
Apr 08 1983Aisin Kako Kabushiki Kaisha(assignment on the face of the patent)
Date Maintenance Fee Events
Mar 07 1986ASPN: Payor Number Assigned.
Jun 01 1987M173: Payment of Maintenance Fee, 4th Year, PL 97-247.
Jun 03 1991M174: Payment of Maintenance Fee, 8th Year, PL 97-247.
Jul 18 1995REM: Maintenance Fee Reminder Mailed.
Dec 10 1995EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 13 19864 years fee payment window open
Jun 13 19876 months grace period start (w surcharge)
Dec 13 1987patent expiry (for year 4)
Dec 13 19892 years to revive unintentionally abandoned end. (for year 4)
Dec 13 19908 years fee payment window open
Jun 13 19916 months grace period start (w surcharge)
Dec 13 1991patent expiry (for year 8)
Dec 13 19932 years to revive unintentionally abandoned end. (for year 8)
Dec 13 199412 years fee payment window open
Jun 13 19956 months grace period start (w surcharge)
Dec 13 1995patent expiry (for year 12)
Dec 13 19972 years to revive unintentionally abandoned end. (for year 12)