The invention relates to a method for preparing high molecular polylactic acid or copolymers of lactic acids using lactide that is purified by extraction with water.

Patent
   4797468
Priority
Dec 19 1986
Filed
Dec 10 1987
Issued
Jan 10 1989
Expiry
Dec 10 2007
Assg.orig
Entity
Large
132
5
EXPIRED
2. Method for preparing the lactide formula I: ##STR3## comprising the polycondensation of l-, D- or D,l-lactic acid followed by decomposition of the low-molecular polylactic acid thus obtained to yield crude lactide I, dissolving the crude lactide I obtained in an organic solvent that is not miscible with water, extracting the solution thus formed with a water solution comprising a basic substance that is sparingly soluble or insoluble in the organic solvent, and isolating the lactide from the organic solvent layer.
1. Method for preparing polylactic acid or copolymers of lactic acid by polymerizing the lactide according to formula I: ##STR2## comprising forming the lactide according to formula I by polycondensation of l-, D- or D, l-lactic acid followed by decomposition of the low-molecular polylactic acid thus obtained to yield crude lactide I, dissolving the crude lactide I in a liquid organic solvent that is not miscible with water, extracting the solution thus formed with a water solution comprising a basic substance that is sparingly soluble or insoluble in the organic solvent, isolating the lactide I from the organic solvent layer and polymerizing the isolated lactide I to the high-molecular polylactic acid or copolymer thereof.
3. Method according to claim 1, wherein the extraction is carried out with water in which a quantity of the basic substance is dissolved which corresponds to approximately 2 to approximately 6 times the quantity of base, expressed in equivalents, which is necessary to titrate an equal quantity of crude lactide with sodium isopropanolate.
4. Method according to claim 1, wherein the organic solvent is selected from the group consisting of dichloromethane and ethyl acetate.
5. Method according to claim 1, wherein the aqueous phase comprises a high concentration of a dissolved inert salt.
6. Method according to claim 5, characterized in that sodium chloride or sodium sulphate is used as the inert salt.
7. Method according to claim 2, wherein the extraction is carried out with water in which a quantity of the basic substance is dissolved which corresponds to approximately 2 to approximately 6 times the quantity of base, expressed in equivalents, which is necessary to titrate an equal quantity of crude lactide with sodium isopropanolate.
8. Method according to claim 2, wherein the organic solvent is selected from the group consisting of dichloromethane and ethyl acetate.
9. Method according to claim 2, wherein the aqueous phase comprises a high concentration of a dissolved inert salt.
10. Method according to claim 9, characterized in that sodium chloride or sodium sulphate is used as the inert salt.

The invention relates to a method for preparing polylactic acid or copolymers of lactic acid, in particular copolymers of lactic acid and glycolic acid.

Polylactic acid can be obtained by polycondensation of lactic acid, a polymer with a relatively low molecular weight being obtained with the elimination of water. Similarly, a copolymer having low molecular weight is obtained on condensing a mixture of lactic acid and glycolic acid. In most cases these polymers are not usable for many applications, and in particular, are not usable for application as a biodegradable polymer.

Polylactic acid having a higher molecular weight can be virtually exclusively obtained by decomposing the above-mentioned low-molecular polylactic acid by thermal treatment, a stable compound consisting of two lactic acid radicals according to the formula: ##STR1## being obtained. A high-molecular polylactic acid can be obtained by polymerizing this compound (I), termed lactide, provided this starting compound does not contain any impurities which interfere with the progress of the polymerization.

The literature therefore recommends recrystallizing this starting substance at least once and, preferably, several times.

Such a recrystallization results, however, in considerable lactide losses. If the lactide has been prepared by thermal decomposition of a polylactic acid obtained by polycondensation of L-lactic acid or of D-lactic acid, the losses still remain limited to the normal losses virtually unavoidable in recrystallization.

However, the losses become more dramatic if a lactide has been prepared by thermal decomposition of a polylactic acid obtained by polycondensation of D,L-lactic acid (rac-lactic) acid. The reason is that this thermal decomposition produces a lactide which consists of a mixture of DL-lactide, LL-lactide and DD-lactide. For a random chain degradation 50%, 25% and 25% would be expected respectively; as a result of steric effects and/or racemization however, these values turn out to be somewhat different in practice, and a ratio of approximately 40% DL-, 30% LL- and 30% DD-lactide is usually found. It now appears that the solubility of the DL-lactide is many times greater than the solubility of the mixture of LL-lactide and DD-lactide. DL-lactide does not crystallize out if the two other isomers are present. Hence, about half of the lactide available for the polymerization is therefore lost on recrystallizing the lactide (mixture) from D,L-lactic acid.

A method has now been found for preparing high-molecular polylactic acid of polymers in which the yield of lactide available for the polymerization, and therefore of the final polymer, is considerably increased and in many cases is even doubled.

It is one object of the invention to provide a method for preparing polylactic acid or copolymers of lactic acid by polymerizing the lactide according to formula I, optionally in the presence of other poly- or monomers, the said lactide I being obtained by polycondensation of L-, D-, or D,L-lactic acid followed by decomposition of the low-molecular polylactic acid thus obtained, characterized in that the crude lactide is dissolved in an organic solvent which is liquid under the given conditions and which is not miscible with water, and this solution is then extracted with water in which a basic substance is dissolved which is not soluble, or only very sparingly soluble in the said organic solvent, after which the lactide is isolated from the organic solvent layer and (optionally after further purification) is used for polymerization or copolymerization to a high-molecular polylactic acid or copolymer thereof.

Surprisingly, said extraction method according to the invention removes precisely those impurities occurring in the crude lactide according to formula I which apparently influence the course of the polymerization and in one way or another affect the chain length without large losses being produced in relation to the lactide usable and available for the polymerization.

A second object of the invention is to provide a method for the preparation of a lactide of formula I by polycondensation of L-, D- or D,L-lactic acid followed by decomposition of the low-molecular polylactic acid thus obtained, characterised in that the crude lactide thus obtained is dissolved in an organic solvent, which is not miscible or virtually not miscible with water, and this solution is then extracted with water, in which a basic substance is dissolved which is not soluble or only sparingly soluble in said organic solvent, after which the lactide is isolated from the organic solvent layer.

In principle, it is possible to use as organic solvent all organic compounds which, under the given reaction conditions, are able to form a liquid phase which is not miscible with water and in which the crude lactide according to formula I is soluble. Preferably, organic solvents are chosen which do not dissolve water at all or dissolve water only to a very limited extent.

In addition, for practical reasons preference is given to organic liquids which have a boiling point between approximately 35°C and 150°C under atmospheric conditions and whose density differs from that of the aqueous phase to such an extent that a good phase separation is possible on the basis of the difference in density.

Organic solvents which are preferably suitable for use in the present invention are dichloro and trichloro methane, alkyl acetates such as ethyl-, propyl- and n-butyl acetate, ethers such as diethyl ether, ketones such as methyl ethyl ketone and methyl isobutyl ketone and aromatic hydrocarbons such as toluene and o- m- or p-xylene.

Excellently suitable are the solvents dichloromethane and ethyl acetate.

As basic substances to be dissolved in the aqueous phase, all those bases are in principle suitable which are insoluble, or only very sparingly soluble, in the organic solvent described above. In general, preference is given to water-soluble hydroxides, carbonates and hydrogen carbonates of alkaline metals and alkaline earth metals such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, barium hydroxide and calcium hydroxide.

Weakly basic buffer solutions of, for example, sodium hydrogen carbonate or of disodium hydrogen phosphate can also be used satisfactorily.

The quantity of the basic substance in the water phase is not critical, but very good results are obtained if the number of base equivalents in the water phase is roughly equal to 2 to approximately 6 times the quantity of base which is necessary to titrate the same quantity of crude lactide with the base sodium isopropanolate (0.1 molar solution of sodium isopropanolate in isopropanol) until the colour changes according to the procedure specified in more detail under "titration".

The temperature at which the extraction according to the invention is carried out is not critical either, but the temperature must not, of course, be so high that the crude lactide dissolved in the organic liquid decomposes (or hydrolyses). Excellent results are obtained at room temperature but lower or higher temperatures are also quite possible.

A further improvement in the purity of the lactide can also be obtained by dissolving an inert salt, for example sodium chloride or sodium sulphate, to a high concentration in the aqueous phase. Good results are obtained by first shaking or stirring the lactide solution with an almost saturated solution of the salt in water and repeating this after adding (a solution of) the basic substance.

The lactide purified by the extraction method according to the invention is then polymerized in the usual manner (optionally in the presence of another monomer or polymer) to form the desired high-molecular polylactic acid or copolymer of polylactic acid.

In particular, the high-molecular polylactic acid and the copolymer with glycolic acid, which are obtained from a lactide consisting of a mixture of DD-, LL- and a significant percentage of DL-lactide, exhibit clear structural differences from the high-molecular polylactic acid or copolymer obtained after recrystallizing the crude lactide mixture. This difference in structure is ascribed to the proportionately larger number of pairs of two consecutive lactic acid units which have the LD or DL sequence. These differences in structure can be detected by simple physical-chemical methods, for example 13 C nmr.

The high-molecular polylactic acid, and in particular the copolymers of lactic acid and glycolic acid, are preferably used in pharmacy and medicine as biodegradable polymers. Thus, threads of polylactic acid or copolymers thereof find application as surgical sewing threads. In pharmacy, polylactic acid and copolymers of lactic acid and glycolic acid are used in particular as carriers for the controlled release of medicines. By way of example reference is made in this connection to the U.S. Pat. No. 3,773,919 (Boswell).

1-3 g of lactide is accurately weighed out to 0.01 g and dissolved in 25-50 ml of acetone dried over molecular sieve. After adding a few drops of a solution of bromothymol blue in acetone (60 mg in 20 ml) titration is carried out with a 0.1 M solution of sodium isopropanolate in isopropanol until the colour changes to blue and remains blue or bluish green for at least 30 sec. The consumption in mmol of isopropanolate per kg of lactide is hereinafter termed "base consumption" and expressed in miilliequivalents per kg of lactide.

The "base consumption" determined in this manner serves as a measure of the quantity of basic substance which is used in the aqueous phase when using the extraction method according to the invention.

PAC 1. Lactide from rac-lactic acid

A mixture of 3,295 g of 90% rac-lactic acid and 16.4 g of zinc powder was heated to approximately 200°C while stirring and distilling off water. Then the pressure was gradually reduced to approximately 5 mbar with continuous heating. After a leading fraction had first been collected, 1,621 g of lactide was collected as the main fraction. On titration as described above, the base consumption of the lactide thus prepared was 380 meq per kg of lactide.

The lactide was analysed by gas chromatography. For this purpose a packed column having a length of 1.7 m was used. The packing consisted of 4% OV 225 on Chromosorb W-AW-DMCS, 80-100 mesh, and the column temperature was 140°C Two main peaks were found in the chromatogram of unpurified lactide made from rac-lactic acid, retention times 255 and 362 sec. respectively. Making use, inter alia, of the results of the mass spectrometry analysis, it is assumed that the first peak represents the trans-lactide (DL-lactide) and the second peak represents the cis-lactide (DD and/or LL). Approximately 40:60 is always found for the mutual ratio of the integrated signals. It is assumed that this ratio also represents the weight ratio because it is probable that these two compounds, which are very similar to each other, will give virtually the same signal per unit of weight in the flame ionization detector. The quantity of trans-lactide has already fallen to a few percent after recrystallizing once from ethyl acetate, e.g. in the ratio of 1 g lactide/ml of ethyl-acetate.

A solution of 31.3 g of the unpurified lactide in 100 ml of dichloromethane was shaken for 1 minute at 22°C with a solution of 40 g of sodium chloride in 150 ml of water. A solution of 4.74 g of sodium hydrogen carbonate in 70 ml of water was then added (the ratio of the number of meq of base and base consumption per kg of lactide, hereinafter to be termed f, is 4.7) and the mixture was shaken for a further 2 minutes. The dichloromethane layer was separated off and filtered through filter paper. The dichloromethane was then distilled off under reduced pressure, finally approximately 5 mbar, the temperature of the mixture not rising above approximately 25°C The residue weighed 26.8 g. Sublimation at a pressure of approximately 5 mbar produced from this residue 23.8 g of purified lactide (76% of the starting weight). In a check titration of the lactide thus purified, a base consumption of only 3.2 meq per kg of lactide was found.

After adding a 5% solution of 4.0 mg stannous octanoate in toluene, 20 g of the lactide so obtained was heated at 160°C in a glass tube, sealed at approximately 1 mbar, for 17 hours in a furnace with forced air circulation, the mixture being stirred for the first 20 minutes by slowly rotating the tube about an axis perpendicular to the longitudinal axis. The relative viscosity of the polymer so obtained [i.e., the ratio of the outflow times of a solution of the polymer, in chloroform, concentration 0.500 g per 100 ml, and of chloroform alone, both at a temperature of 30.0°C] was 1.78. To determine the outflow times, a KPG Ubbelohde viscometer with Oc capillary, diameter 0.46 mm was used.

A mixture of 12.06 g of the same lactide and 7.94 g of glycolide (molar ratio 55/45) was polymerized in the same manner as described under 4.; the relative viscosity of the copolymer obtained was 1.66.

3.31 g of the unpurified lactide from Example 1 was extracted in the manner described in 1.3., but with a solution of 180 mg of sodium carbonate (f=2.7) instead of sodium hydrogen carbonate. The residue, 2.91 g (88% of the initial weight), had a base consumption of only 3.0 meq per kg of lactide after sublimation.

In another similar test, starting from 3.33 g of lactide and 180 mg of sodium carbonate, 2.97 g of residue (89%) was obtained, with a base consumption after sublimation of 3.4 meq per kg.

The unpurified lactide from Example 1 (3.32 g) was extracted in the manner described thereunder with a solution of 144 mg of sodium hydroxide (f=2.8) instead of sodium hydrogen carbonate. The evaporation residue was 2.58 g (78% of the starting weight), and the base consumption of the sublimated lactide was only 8.4 meq per kg.

The unpurified lactide from Example 1 was extracted in the same manner as described thereunder (f=2.9), starting, however, from a solution of 2.54 g of lactide in 10 ml of ethyl acetate instead of dichloromethane. After evaporating the ethyl acetate, the residue weighed 2.05 g (81%) and a base consumption of only 3.2 meq per kg was found for the sublimated lactide.

A solution of 60.96 g of unpurified lactide, obtained in the same manner as in Example 1, in 200 ml of dichloromethane was stirred with a sodium chloride solution. A solution of 11.72 g of sodium hydrogen carbonate in water (f=6.0) was then added while stirring in 1/2 minute and finally, stirring was continued for a further 2 minutes.

The dichloromethane was distilled off while carefully heating at a pressure of approximately 0.85 bar. Distillation at a pressure of approximately 5 mbar then produced 31.27 g of lactide (51.3% of the initial weight), for which a base consumption of only 5.7 meq per kg of lactide was found.

293.2 g of unpurified lactide was obtained from 500.2 g of 90% L-lactic acid and 2.50 g of zinc powder in the same manner as in Example 1; the base consumption was 548 meq per kg of lactide. In gas chromatographic analysis, a ratio of 7.4% trans- and 92.6% cis-lactide was found.

Extraction. A solution of 3.00 g of the unpurified lactide in dichloromethane was extracted with a solution of 405 mg of sodium hydrogen carbonate in water (f=2.9) in the manner described in Example 1. The residue was 2.46 g, 82% of the initial weight. After sublimation, 2.32 g of lactide (77%) were obtained and the base consumption had dropped to 3.0 meq per kg of lactide.

A solution of 60.00 g of unpurified lactide, obtained as described in Example 6, in dichloromethane was extracted with a solution of 8.09 g of sodium hydrogen carbonate (f=2.9). The product was distilled at a pressure of approximately 5 mbar, and the boiling point was approximately 115°C The distillate weighed 45.79 g, 76.3% of the initial weight. The base consumption had dropped to the very low value of 2.3 meq per kg. In gas chromatographic analysis, a ratio of 8.5% trans- to 91.5% cis-lactide was found.

Polymerization. The purified lactide was polymerized for 17 hours at 160°C in the manner described in Example 1.4; the relative viscosity of the polymer was 2.87. In a second experiment the purified lactide was polymerized for 6 hours at 190°C; the relative viscosity of the final product was now lower, namely 1.62.

De Vries, Klaas S.

Patent Priority Assignee Title
10058513, Aug 09 2013 KIMBERLY-CLARK WORDLWIDE, INC ; Kimberly-Clark Worldwide, Inc Delivery system for active agents
10144825, Feb 10 2012 Kimberly-Clark Worldwide, Inc. Rigid renewable polyester compositions having a high impact strength and tensile elongation
10195157, Aug 09 2013 KIMBERLY-CLARK WORDLWIDE, INC ; Kimberly-Clark Worldwide, Inc Delivery system for active agents
10240260, Jun 12 2013 Kimberly-Clark Worldwide, Inc Absorbent article containing a nonwoven web formed from a porous polyolefin fibers
10286593, Jun 06 2014 Kimberly-Clark Worldwide, Inc Thermoformed article formed from a porous polymeric sheet
10640890, Dec 11 2015 Kimberly-Clark Worldwide, Inc. Multi-stage drawing technique for forming porous fibers
10640898, Nov 26 2014 Kimberly-Clark Worldwide, Inc Annealed porous polyolefin material
10718069, Aug 13 2010 Kimberly-Clark Worldwide, Inc Modified polylactic acid fibers
10752745, Jun 12 2013 Kimberly-Clark Worldwide, Inc Polyolefin film for use in packaging
10753023, Aug 13 2010 Kimberly-Clark Worldwide, Inc Toughened polylactic acid fibers
10815374, Feb 10 2012 Kimberly-Clark Worldwide, Inc. Renewable polyester film having a low modulus and high tensile elongation
10843372, Jun 22 2015 Purdue Research Foundation Methods and compositions for preparing particle boards
10849800, Jan 30 2015 Kimberly-Clark Worldwide, Inc Film with reduced noise for use in an absorbent article
10857705, Jun 12 2013 Kimberly-Clark Worldwide, Inc Pore initiation technique
10858762, Feb 10 2012 Kimberly-Clark Worldwide, Inc Renewable polyester fibers having a low density
10869790, Jan 30 2015 Kimberly-Clark Worldwide, Inc Absorbent article package with reduced noise
10889696, Aug 09 2013 Kimberly-Clark Worldwide, Inc Microparticles having a multimodal pore distribution
10919229, Aug 09 2013 KIMBERLY-CLARK WORDLWIDE, INC ; Kimberly-Clark Worldwide, Inc Polymeric material for three-dimensional printing
11001944, Jun 12 2013 Kimberly-Clark Worldwide, Inc Porous polyolefin fibers
11028246, Jun 12 2013 Kimberly-Clark Worldwide, Inc Absorbent article containing a porous polyolefin film
11084916, Jun 12 2013 Kimberly-Clark Worldwide, Inc Polymeric material with a multimodal pore size distribution
11148347, Nov 26 2014 Kimberly-Clark Worldwide, Inc Biaxially stretched porous film
11155688, Jun 12 2013 Kimberly-Clark Worldwide, Inc Polyolefin material having a low density
11155935, Dec 11 2015 Kimberly-Clark Worldwide, Inc. Method for forming porous fibers
11186927, Jun 04 2014 Kimberly-Clark Worldwide, Inc Hollow porous fibers
11286362, Jun 12 2013 Kimberly-Clark Worldwide, Inc Polymeric material for use in thermal insulation
11377525, Dec 17 2015 Kimberly-Clark, Worldwide, Inc. Color-changing polymeric material
11434340, Aug 09 2013 Kimberly-Clark Worldwide, Inc Flexible polymeric material with shape retention properties
11767615, Jun 04 2014 Kimberly-Clark Worldwide, Inc. Hollow porous fibers
5011946, May 26 1989 Boehringer Ingelheim GmbH Process for preparing D,L-Lactide
5041529, Nov 07 1988 Mitsui Chemicals, Inc Preparation process for bioabsorbable polyester
5076983, Jul 16 1990 NatureWorks LLC Polyhydroxy acid films
5089632, Jan 30 1991 NatureWorks LLC Process for preparing cyclic esters using a fluorocarbon
5091544, May 08 1990 NatureWorks LLC Process for rapid conversion of oligomers to cyclic esters
5117008, Oct 23 1990 NatureWorks LLC Solvent scrubbing recovery of lactide and other dimeric cyclic esters
5136057, Jul 13 1990 NatureWorks LLC High yield recycle process for lactide
5142023, Jan 24 1992 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
5149833, May 26 1989 Boehringer Ingelheim GmbH Process for preparing D,L-Lactide
5180765, Aug 08 1988 NatureWorks LLC Biodegradable packaging thermoplastics from lactides
5229528, Nov 22 1991 Ecological Chemical Products Rapid depolymerization of polyhydroxy acids
5236560, Mar 13 1992 NatureWorks LLC Solventless dimeric cyclic ester distillation process
5247058, Jan 24 1992 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
5247059, Jan 24 1992 Cargill, Incorporated Continuous process for the manufacture of a purified lactide from esters of lactic acid
5258488, Jan 24 1992 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
5264614, Nov 22 1991 NatureWorks LLC Recovery of polyhydroxy acids
5264617, Nov 22 1991 NatureWorks LLC Preparation of alkyl esters by depolymerization
5264626, Nov 22 1991 NatureWorks LLC Rapid depolymerization of polyhydroxy acids
5268507, Nov 22 1991 Ecological Chemical Products Preparation of amide derivatives of hydroxy acids
5274073, Jan 24 1992 Cargill, Incorporated Continuous process for manufacture of a purified lactide
5274127, Sep 18 1990 BIOPAK TECHNOLOGY, LTD Lactide production from dehydration of aqueous lactic acid feed
5278256, Sep 16 1992 E. I. du Pont de Nemours and Company Rapidly degradable poly (hydroxyacid) compositions
5319107, Sep 18 1990 NatureWorks LLC Method to produce cyclic esters
5332839, Sep 18 1990 BIOPAK TECHNOLOGY, LTD Catalytic production of lactide directly from lactic acid
5338822, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
5357035, Jan 24 1992 Cargill, Incorporated Continuous process for manufacture of lactide polymers with purification by distillation
5420304, Mar 19 1992 BIOPAK TECHNOLOGY, LTD Method to produce cyclic esters
5424346, Aug 08 1988 NatureWorks LLC Biodegradable replacement of crystal polystyrene
5475080, Oct 02 1992 Cargill, Incorporated Paper having a melt-stable lactide polymer coating and process for manufacture thereof
5484881, Oct 02 1992 Cargill, Incorporated Melt-stable amorphous lactide polymer film and process for manufacturing thereof
5525706, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
5536807, Oct 02 1992 Cargill Incorporated Melt-stable semi-crystalline lactide polymer film and process for manufacture thereof
5539081, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
5543494, Aug 04 1992 Ministero Dell'Univerita' E Della Ricerca Scientifica E Tecnologica Process for the production of poly(lactic acid)
5545681, Dec 20 1993 The Procter & Gamble Company pH-Modified polymer compositions with enhanced biodegradability
5556895, Aug 08 1988 NatureWorks LLC Degradable polydioxaneone-based materials
5585191, Oct 02 1992 Cargill, Incorporated Melt-stable amorphous lactide polymer film and process for manufacture thereof
5631066, Jan 25 1993 NatureWorks LLC Process for making metalized films and films produced therefrom
5639466, Feb 24 1994 NatureWorks LLC Method for packaging foodstuffs
5665474, Oct 02 1992 Cargill, Incorporated Paper having a melt-stable lactide polymer coating and process for manufacture thereof
5675021, Mar 19 1992 NatureWorks LLC Method to produce and purify cyclic esters
5686630, Apr 05 1995 NatureWorks LLC Purifying cyclic esters by aqueous solvent extraction
5750732, Mar 19 1992 NatureWorks LLC Method to produce cyclic esters
5763564, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
5767222, Aug 08 1988 BIOPAK TECHNOLOGY, LTD Degradable polydioxaneone-based materials
5773562, Oct 02 1992 Cargill, Incorporated Melt-stable semi-crystalline lactide polymer film and process for manufacture thereof
5798436, Oct 02 1992 Cargill, Incorporated Melt-stable amorphous lactide polymer film and process for manufacture thereof
5801223, Aug 08 1988 NatureWorks LLC Degradable polydioxaneone-based materials
5807973, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
5852166, Oct 02 1992 Cargill, Incorporated Paper having a melt-stable lactide polymer coating and process for manufacture thereof
5856523, Mar 19 1992 Chronopol, Inc. Purifying cyclic esters by aqueous solvent extraction and further purification
5900491, Oct 04 1996 Mitsubishi Gas Chemical Co., Inc. Preparation process and purification process of cyclic ester
5981694, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
6005067, Jan 24 1992 Cargill Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
6005068, Oct 02 1992 Cargill Incorporated Melt-stable amorphous lactide polymer film and process for manufacture thereof
6025458, Aug 08 1988 NatureWorks LLC Degradable polydioxaneone-based materials
6093791, Oct 02 1992 Cargill, Incorporated Melt-stable semi-crystalline lactide polymer film and process for manufacture thereof
6111060, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
6121410, Oct 02 1992 Cargill, Incorporated Melt-stable semi-crystalline lactide polymer film and process for manufacture thereof
6143863, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer composition and process for manufacture thereof
6207792, Oct 02 1992 Cargill, Incorporated Melt-stable amorphous lactide polymer film and process for manufacture thereof
6277951, Jan 24 1992 Cargill, Incorporated Continuous process for manufacture of lactide polymers with controlled optical purity
6310218, Feb 17 1993 NatureWorks LLC Melt crystallization purification of lactides
6323307, Aug 08 1988 NatureWorks LLC Degradation control of environmentally degradable disposable materials
6326458, Jan 24 1992 Cargill, Incorporated Continuous process for the manufacture of lactide and lactide polymers
6355772, Oct 02 1992 Cargill, Incorporated Melt-stable lactide polymer nonwoven fabric and process for manufacture thereof
6362308, Aug 10 2000 ALKERMES, INC Acid end group poly(d,l-lactide-co-glycolide) copolymers high glycolide content
6703477, Aug 10 2000 ALKERMES, INC Acid end group poly(D,L-lactide-co-glycolide) copolymers with high glycolide content
7074883, Aug 10 2000 ALKERMES, INC Acid end group poly(D,L-lactide-co-glycolide) copolymers with high glycolide content
7998888, Mar 28 2008 Kimberly-Clark Worldwide, Inc Thermoplastic starch for use in melt-extruded substrates
8147965, May 14 2008 Kimberly-Clark Worldwide, Inc Water-sensitive film containing thermoplastic polyurethane
8188185, Jun 30 2008 Kimberly-Clark Worldwide, Inc Biodegradable packaging film
8227658, Dec 14 2007 Kimberly-Clark Worldwide, Inc Film formed from a blend of biodegradable aliphatic-aromatic copolyesters
8268738, May 30 2008 Kimberly-Clark Worldwide, Inc Polylactic acid fibers
8268913, Jun 30 2008 Fina Technology, Inc Polymeric blends and methods of using same
8283006, Dec 18 2008 Kimberly-Clark Worldwide, Inc Injection molding material containing starch and plant protein
8329601, Dec 18 2008 Kimberly-Clark Worldwide, Inc Biodegradable and renewable film
8334327, Aug 31 2006 Kimberly-Clark Worldwide, Inc Highly breathable biodegradable films
8338508, May 14 2008 Kimberly-Clark Worldwide, Inc Water-sensitive film containing an olefinic elastomer
8445110, May 14 2008 Kimberly-Clark Worldwide, Inc Water-sensitive film containing thermoplastic polyurethanes
8461262, Dec 07 2010 Kimberly-Clark Worldwide, Inc Polylactic acid fibers
8518311, Aug 22 2007 Kimberly-Clark Worldwide, Inc Multicomponent biodegradable filaments and nonwoven webs formed therefrom
8545971, Jun 30 2008 Fina Technology, Inc Polymeric compositions comprising polylactic acid and methods of making and using same
8609808, Jul 14 2006 Kimberly-Clark Worldwide, Inc Biodegradable aliphatic polyester for use in nonwoven webs
8637130, Feb 10 2012 Kimberly-Clark Worldwide, Inc Molded parts containing a polylactic acid composition
8710172, Jul 14 2006 Kimberly-Clark Worldwide, Inc Biodegradable aliphatic-aromatic copolyester for use in nonwoven webs
8759279, Jun 30 2008 Kimberly-Clark Worldwide, Inc Fragranced biodegradable film
8759446, Jun 30 2008 Fina Technology, Inc Compatibilized polypropylene and polylactic acid blends and methods of making and using same
8927617, Jun 30 2008 Kimberly-Clark Worldwide, Inc Fragranced water-sensitive film
8936740, Aug 13 2010 Kimberly-Clark Worldwide, Inc Modified polylactic acid fibers
8968787, May 24 2010 Micro Powders, Inc. Composition comprising biodegradable polymers for use in a cosmetic composition
8975305, Feb 10 2012 Kimberly-Clark Worldwide, Inc Rigid renewable polyester compositions having a high impact strength and tensile elongation
8980964, Feb 10 2012 Kimberly-Clark Worldwide, Inc Renewable polyester film having a low modulus and high tensile elongation
9040598, Feb 10 2012 Kimberly-Clark Worldwide, Inc Renewable polyester compositions having a low density
9091004, Jul 14 2006 Kimberly-Clark Worldwide, Inc Biodegradable polylactic acid for use in nonwoven webs
9150699, Dec 14 2007 Kimberly-Clark Worldwide, Inc Film formed from a blend of biodegradable aliphatic-aromatic copolyesters
9260802, Jul 14 2006 Kimberly-Clark Worldwide, Inc Biodegradable aliphatic polyester for use in nonwoven webs
9394629, Jul 14 2006 Kimberly-Clark Worldwide, Inc Biodegradable aliphatic-aromatic copolyester for use in nonwoven webs
9518149, Nov 07 2008 SAMYANG HOLDINGS CORPORATION Highly purified polylactic acid or a derivative thereof, a salt of the same, and purification method thereof
9518181, Feb 10 2012 Kimberly-Clark Worldwide, Inc. Renewable polyester compositions having a low density
9617400, Jun 30 2008 Kimberly-Clark Worldwide, Inc Fragranced water-sensitive film
9957366, Aug 09 2013 Kimberly-Clark Worldwide, Inc Technique for selectively controlling the porosity of a polymeric material
9957369, Aug 09 2013 Kimberly-Clark Worldwide, Inc Anisotropic polymeric material
Patent Priority Assignee Title
3435008,
3457280,
3597449,
4650851, Mar 19 1986 DEKNATEL TECHNOLOGY CORPORATION A CORPORATION OF DE Purification of glycolide
4727163, Jul 11 1985 E I DU PONT DE NEMOURS AND COMPANY Process for preparing highly pure cyclic esters
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 01 1987DE VRIES, KLAAS S Akzo nvASSIGNMENT OF ASSIGNORS INTEREST 0048430278 pdf
Dec 10 1987Akzo N.V.(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 25 1992M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 05 1996M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 01 2000REM: Maintenance Fee Reminder Mailed.
Jan 07 2001EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 10 19924 years fee payment window open
Jul 10 19926 months grace period start (w surcharge)
Jan 10 1993patent expiry (for year 4)
Jan 10 19952 years to revive unintentionally abandoned end. (for year 4)
Jan 10 19968 years fee payment window open
Jul 10 19966 months grace period start (w surcharge)
Jan 10 1997patent expiry (for year 8)
Jan 10 19992 years to revive unintentionally abandoned end. (for year 8)
Jan 10 200012 years fee payment window open
Jul 10 20006 months grace period start (w surcharge)
Jan 10 2001patent expiry (for year 12)
Jan 10 20032 years to revive unintentionally abandoned end. (for year 12)