A process is disclosed for the production of polyalkyl tetrahydronaphthalenes is disclosed wherein a cyclialkylation reaction between an olefinic compound of the general formula ##STR1## wherein r4, r5, and r6 are independently defined and each represents a substituent which does not substantially interfere with a Friedel-Crafts type reaction and where r5 and r6 are other than H, and a substituted benzene compound is carried out in the presence of a hydride abstracting reagent, an alkyl halide or hydrogen halide, a lewis acid, and, optionally, a phase transfer agent. In some embodiments, the subject process is specifically carried out in the absence of elemental iodine. The subject process produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient, or less expensive process methodology than many processes known heretofore.

Patent
   4877910
Priority
Jan 27 1989
Filed
Jan 27 1989
Issued
Oct 31 1989
Expiry
Jan 27 2009

TERM.DISCL.
Assg.orig
Entity
Large
6
2
EXPIRED
43. A process for producing a polyalkyl tetrahydronaphthalene compound of the formulas ##STR24## comprising contracting a partially substituted benzene compound of the formulas ##STR25## with an olefinic compound of the formula ##STR26## in the presence of a reagent of the formula ##STR27## provided that said reagent has greater electron releasing properties than said olefinic compounds,
an alkyl halide or a hydrogen halide,
a lewis acid, and
a phase transfer agent, wherein
r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 and r12, independently, are substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that
(i) r1, r2, r3, r5 and r6 are each other than H,
(ii) no more than one of r7, r8 and r9 are H, and
(iii) no more than one of r10, r11 and r12 are H.
2. A process for producing a polyalkyl tetrahydronaphthalene compound of the formulas ##STR18## comprising contracting a partially substituted benzene compound of the formulas ##STR19## with an olefinic compound of the formula ##STR20## in the presence of a reagent of the formula ##STR21## provided that said reagent has greater electron releasing properties than said olefinic compounds,
an alkyl halide or a hydrogen halide, and
a lewis acid, wherein
r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 and r12, independently, are substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that
(i) r1, r2, r3, r5 and r6 are each other than H,
(ii) no more than one of r7, r8 and r9 are H, and
(iii) no more than one of r10, r11 and r12 are H, wherein said process is carried out in the substantial absence of elemental iodine.
42. A process for producing a polyalkyl tetrahydronaphthalene compound comprising contacting a partially substituted benzene compound, wherein said benzene compound is substituted with two or more substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction said substituents including at least one secondary alkyl group having only one alpha-hydrogen, and wherein said benzene compound is unsubstituted in at least one position adjacent to said secondary alkyl group, with an olefinic compound of the formula ##STR22## in the presence of a reagent of the formula ##STR23## provided that said reagent has greater electron releasing properties than said olefinic compounds,
an alkyl halide or a hydrogen halide,
a lewis acid, and
a phase transfer agent,
wherein
r4, r5, r6,r7, r8, r9, r10, r11 and r12, independently, are substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that
(i) r5 and r6 are each other than H,
(ii) no more than one of r7, r8 and r9 are H, and
(iii) no more than one of r10, r11 and r12 are H.
1. A process for producing a polyalkyl tetrahydronaphthalene compound comprising contacting a partially substituted benzene compound, wherein said benzene compound is substituded with two or more substitutents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction said substituents including at least one secondary alkyl group having only one alpha-hydrogen, and wherein said benzene compound is unsubstituted in at least one position adjacent to said secondary alkyl group, with an olefinic compound of the formula ##STR16## in the presence of a reagent of the formula ##STR17## provided that said reagent has greater electron releasing properties than said olefinic compounds,
an alkyl halide or a hydrogen halide, and
a lewis acid, wherein
r4, r5, r6, r7, r8, r9, r10, r11 and r12, independently, are substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that
(i) r5 and r6 are each other than H,
(ii) no more than one of r7, r8 and r9 are H, and
(iii) no more than one of r10, r11 and r12 are H, wherein said process is carried out in the substantial absence of elemental iodine.
3. A process of claim 2 wherein
r4, r7, r8, r9, r10, r11 and r12, independently, are H, or a C1 -C30 straight chain, branched or cyclical alkyl; and
r1, r2, r3, r5 and r6, independently, are a C1 -C30 straight chain, branched or cyclical.
4. A process of claim 3 wherein said alkyl is a C1 -C5 alkyl.
5. A process of claim 3 wherein said alkyl is a straight chain or branched alkyl.
6. A process of claim 3 wherein said polyalkyl tetrahydronaphthalene compound is of the formula [I].
7. A process of claim 6 wherein
r4 is H or a C1 -C5 straight chain or branched alkyl; and
r1, r2, r3, r5 and r6, independently, are a C1 -C5 straight chain or branched alkyl.
8. A process of claim 7 wherein
r1, r2, r3, r4, r5 and r6 are each methyl.
9. A process of claim 7 wherein
r1 is ethyl; and
r2, r3, r4, r5 and r6 are each methyl.
10. A process of claim 7 wherein
r1 is n-propyl; and
r2, r3, r4, r5 and r6 are each methyl.
11. A process of claim 7 wherein
r1 is tertiary butyl; and
r2, r3, r4, r5 and r6 are each methyl.
12. A process of claim 3 wherein said partially substituted benzene compound is of the formula [IV].
13. A process of claim 12 wherein
r1, r2 and r3, independently, are a C1 -C5 straight chain or branched alkyl.
14. A process of claim 13 wherein
r1, r2 and r3 are each methyl.
15. A process of claim 13 wherein
r1 is ethyl; and
r2 and r3 are each methyl.
16. A process of claim 13 wherein
r1 is n-propyl; and
r2 and r3 are each methyl.
17. A process of claim 13 wherein
r1 is tertiary-butyl; and
r2 and r3 are each methyl.
18. A process of claim 3 wherein
r4 is H or a C1 -C5 straight chain or branched alkyl; and
r5 and r6, independently, are a C1 -C5 straight chain or branched alkyl.
19. A process of claim 18 wherein
r4 is methyl.
20. A process of claim 18 wherein
r4, r5 and r6 are each methyl.
21. A process of claim 2 wherein said alkyl halide is selected from the group consisting of secondary alkyl halides, tertiary alkyl halides, propargyl halides and allyl halides.
22. A process of claim 21 wherein said alkyl halide is a tertiary alkyl halide selected from the group consisting of tertiary-butyl chloride, tertiary-amyl chloride, 2-methyl-2-chloropentane, 3-methyl-3-chloropentane, 1,8-dichloro-para-menthane and homologues thereof having fluorine, bromine or iodine atoms substituted for the chlorine atom.
23. A process of claim 22 wherein said tertiary alkyl halide is tertiary-butyl chloride.
24. A process of claim 2 wherein said lewis acid is selected from the group consisting of metal halides, alkyl metal halides and alkyl metals.
25. A process of claim 24 wherein said lewis acid is metal halide which is an aluminum halide.
26. A process of claim 25 wherein said aluminum halide is aluminum chloride.
27. A process of claim 3 wherein r7, r8, r9, r10, r11 and r12, independently, are H or a C1 -C5 straight chain, branched or cyclical alkyl.
28. A process of claim 27 wherein
r7, r8, r10, r11 and r12 are each methyl; and
r9 is H.
29. A process of claim 2 further comprising a solvent.
30. A process of claim 29 wherein said solvent is selected from the group consisting of unhalogenated aliphatic, unhalogenated alicyclic and unhalogenated aromatic hydrocarbon solvents.
31. A process of claim 30 wherein said unhalogenated alicyclic solvent is cyclohexane.
32. A process of claim 2 further comprising a phase transfer agent.
33. A process of claim 32 wherein said phase transfer agent is selected from the group consisting of ammonium, phosphonium and sulfonium salts.
34. A process of claim 33 wherein said ammonium salt is a quaternary ammonium halide.
35. A process of claim 34 wherein said quaternary ammonium halide is methyltrioctylammonium chloride.
36. A process of claim 34 wherein said quaternary ammonium halide is a mixture of methyltrictylammonium chloride and methyltridecylammonium chloride.
37. A process of claim 32 wherein said phase transfer agent is a tertiary amine compound substituted with hydrocarbons.
38. A process of claim 37 wherein said tertiary amine compound substituted with hydrocarbons is trioctyl amine.
39. A process of claim 32 wherein said phase transfer agent and said lewis acid are present in a molar ratio of less than 1 to 1, phase transfer agent to lewis acid.
40. A process of claim 39 wherein said phase transfer agent and said lewis acid are present in a molar ratio of about 0.5 to 1∅
41. A process of claim 39 wherein said phase transfer agent is in an impure form and said phase transfer agent and said lewis acid are present in a molar ratio of about 0.3 to 1.
44. A process of claim 43 wherein said phase transfer agent is selected from the group consisting of ammonium, phosphonium and sulfonium salts.
45. A process of claim 44 wherein said ammonium salt is a quaternary ammonium halide.
46. A process of claim 45 wherein said quaternary ammonium halide is methyltrioctylammonium chloride.
47. A process of claim 45 wherein said quaternary ammonium halide is a mixture of methyltrioctylammonium chloride and methyltridecylammonium chloride.
48. A process of claim 43 wherein said phase transfer agent is a tertiary amine compound substituted with hydrocarbons.
49. A process of claim 48 wherein said tertiary amine compound substituted with hydrocarbons is trioctyl amine.
50. A process of claim 43 wherein said phase transfer agent and said lewis acid are present in a molar ratio of less than 1 to 1, phase transfer agent to lewis acid.
51. A process of claim 50 wherein said phase transfer agent and said lewis acid are present in a molar ratio of about 0.5 to 1∅
52. A process of claim 50 wherein said phase transfer agent is in an impure form and said phase transfer agent and said lewis acid are present in a molar ratio of about 0.3 to 1.
53. A process of claim 43 further comprising a solvent.
54. A process of claim 43 wherein said solvent is selected from the group consisting of unhalogenated aliphatic, unhalogenated alicyclic and unhalogenated aromatic hydrocarbon solvents.
55. A process of claim 54 wherein said unhalogenated alicyclic solvent is cyclohexane.

The present invention relates to an improved process for the production of polyalkyl tetrahydronaphthalenes, particularly 1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene, the latter compound referred to herein as "HMT".

HMT and other alkyl-substituted tetrahydronaphthalenes are of significant importance to the perfumery as well as other industries. By conventional acylation processes, HMT, for example, can be converted to 7-acetyl-1,1,3,4,4,6-hexamethal-1,2,3,4-tetrahydronaphthalene, a well known musk perfume. Because of their clean musk fragrance and ability to retain that fragrance over long periods of time, these HMT derivatives are of great commercial value as synthetic musk perfume substitutes for the expensive, natural musk perfumes of the macrocyclic ketone series. Consequently, various synthetic methods have been proposed for the production of HMT, as well as other related intermediates of HMT useful in the perfumery or other industries.

For example, Cobb, U.S. Pat. No. 4,551,573 entitled "Alkylation of Aromatic Compounds," discloses a process for the alkylation of aromatic compounds with olefinic compounds in the presence of a catalyst consisting essentially of aluminum halide and elemental iodine. Examples of aromatic compounds described as suitable for use in the process include para-cymene, and olefinic compounds discussed include 2,3-dimethyl-2-butene, isobutylene and neohexene (3,3-dimethyl-1-butene). A mixture of olefinic compounds can also be employed, in which case it is noted that one of the olefins may function as a sacrificial agent. The products of the alkylation reaction described include indanes and HMT type compounds.

Sato et al., U.S. Pat. No. 4,284,818 entitled "Process for Preparing Hexamethyltetrahydronaphthalenes," describes a process for producing HMT comprising reacting para-cymene with a 2,3-dimethyl butene using a catalytic amount of anhydrous aluminum halide in the presence of a secondary alkyl halide, tertiary alkyl halide, propargyl halide or allyl halide. It is noted that both the 2,3-dimethyl-1-butene and 2,3-dimethyl-2-butene can be employed as the 2,3-dimethyl butene reagent, however, 2,3-dimethyl-1-butene was said to yield better results. The reaction is generally carried out using a solvent, such solvents including aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and halogenated aliphatic hydrocarbons.

Japanese Patent Publication SHO 57-40420 discusses a method of making HMT characterized by reacting para-cymene and neohexene in the presence of anhydrous aluminum halide as catalyst. Suitable anhydrous aluminum halides are said to include aluminum chloride. The reaction is generally carried in a solvent, however, it is noted that it is possible to conduct the reaction without any additional solvent using excess para-cymene. Examples of suitable solvents are methylene chloride, ethylene chloride, chloroform and other inactive fatty hydrocarbon halides. Other solvents such as aromatic hydrocarbon halides, fatty hydrocarbons, aromatic hydrocarbons, etc., can be used, but it is noted that the use of such solvents generally lowers the yield of the desired end product.

Wood et al., U.S. Pat. No. 3,856,875 entitled "Process for Producing 1,1,3,4,4,6-Hexamethyl-1,2,3,4-Tetrahydronapthalene [sic] (HMT)," discusses a process for the preparation of HMT wherein an equivalent or excess amount of para-cymene is reacted with a substantially equal molar solution of neohexene and a tertiary alkyl halide in the presence of an effective amount of an anhydrous aluminum halide catalyst suspended in a reaction-compatible solvent. Although any tertiary alkyl halide can be employed in the disclosed process, tertiary butyl chloride, tertiary amyl chloride and 2,5-dichloro-2,5-dimethylhexane are noted as preferred. The process is described as having a solvent dependency, with the satisfactory solvents being ethylene dichloride, chloroform, methylene dichloride, 1,1,2,2-tetrachloroethane, 1,2-dichloroethylene, 1,2,3-trichloropropane, 1,1,2-trichloroethane, monochlorobenzene, fluorobenzene, ortho-dichlorobenzene, and para-xylene. Numerous solvents are stated to be unsatifactory for use in the disclosed process, such solvents including nitromethane, benzene, nitrobenzene, para-cymene, n-hexane, 1,2,2-trichloroethylene, carbon tetrachloride, 1,1,1-trichloroethane, carbon disulfide, 1,1,2,2,2-pentachloroethane, 1,2-dichloropropane, 1,1-dichloroethylene, and 1,1-dichloroethane. These unsatisfactory solvents are said to yield substantially poorer results.

Kahn, U.S. Pat. No. 3,379,785 entitled "Process for Preparing Polyalkyltetrahydronaphthalenes," relates to a process for preparing polyalkyl tetrahydronaphthalenes, and more specifically, a process for preparing HMT. The process involves the reaction of a substituted styrene and a 2,3-dimethylbutene, said reaction being carried out at elevated temperatures and in the presence of a cation exchange resin. The 2,3-dimethylbutene reactant employed is disclosed as comprising either 2,3-dimethyl-1-butene, 2,3-dimethyl-2-butene, or mixtures thereof. The preferably employed solvent comprises an aromatic hydrocarbon, such as, for example, benzene, toluene, ethylbenzene, or a xylene.

Wood, U.S. Pat. No. 3,246,044 entitled "Process for Making 1,1,3,4,4,6-Hexamethyl-1,2,3,4-Tetrahydronaphthalene," discloses a process for preparing HMT which includes reacting an alpha, para-dimethylstyrene derivative such as dimethyl-para-tolyl-carbinyl halide, and neohexene in the presence of a catalyst such as aluminum chloride, aluminum bromide and ferric chloride, or other Friedel-Crafts catalysts, at low temperatures. Suitable solvents are listed as ethylene dichloride or carbon tetrachloride, or other inert chlorinated hydrocarbon solvents. It is noted that other solvents such as nitrobenzene and nitromethane, may be used, but the yield of desired product is indicated as generally being lower when such solvents are employed.

Suzukama et al., U.S. Pat. No. 4,767,882 entitled "Tetrahydronaphthalene Derivatives and Their Production," discloses a process for preparing a tetrahydronaphthalene derivative in an optically active state which comprises reacting a benzene compound and a pyrocine compound in the presence of a Lewis acid, or, alternatively, reacting the benzene with the pyrocine compound in the presence of an acid catalyst followed by treatment of the resultant product with the Lewis acid.

These prior art processes suffer from various drawbacks, including low conversion of reactants, poor selectivity to the desired products, sluggish reaction rates, unacceptable low temperature requirements, unsafe solvent systems, or oxygen sensitivity. New and/or better processes are needed. The present invention is directed to this important end.

The present invention provides a process for the production of polyalkyl tetrahydronaphthalenes wherein a cyclialkylation reaction between an olefinic compound of the general Formula ##STR2## and a substituted benzene compound is carried out in the presence of a hydride abstracting reagent, an alkyl halide or hydrogen halide, a Lewis acid, and, optionally, a phase transfer agent. In some embodiments, the subject process is specifically carried out in the absence of elemental iodine. The subject process produces the desired compounds in a surprisingly high yield, with a surprisingly high selectivity to the desired product, and at a relatively high rate of reaction, using better, more convenient or less expensive process methodology than many processes known heretofore.

Specifically, the present invention pertains to a process for producing polyalkyl tetrahydronaphthalenes, such as those represented by the Formulas ##STR3## comprising contacting a partially substituted benzene compound, wherein said benzene compound is substituted with two or more substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction said substituents including at least one secondary alkyl group having only one alpha-hydrogen, and wherein said benzene compound is unsubstituted in at least one position adjacent to said secondary alkyl group, such as those compounds of the Formulas ##STR4## with an olefinic compound of the Formula ##STR5## in the presence of a reagent of the Formula ##STR6## provided that said reagent has greater electron releasing properties than said olefinic compound VI, and further in the presence of an alkyl halide or hydrogen halide, and a Lewis acid, wherein said process is carried out in the substantial absence of elemental iodine. In the above Formulas, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 and R12 are, independently, substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that (i) R1, R2, R3, R5 and R6 are each other than H, (ii) no more than one of R7, R8 and R9 are H, and (iii) no more than one of R10, R11 and R12 are H. If desired, the process components may further include a phase transfer agent.

The present invention also pertains to a process for producing polyalkyl tetrahydronaphthalenes, such as those represented by the Formulas ##STR7## comprising contacting a partially substituted benzene compound, wherein said benzene compound is substituted with two or more substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction said substituents including at least one secondary alkyl group having only one alpha-hydrogen, and wherein said benzene compound is unsubstituted in at least one position adjacent to said secondary alkyl group, such as those compounds of the Formulas ##STR8## with an olefinic compound of the Formula ##STR9## in the presence of a reagent of the Formula ##STR10## provided that said reagent has greater electron releasing properties than said olefinic compound VI, and further in the presence of an alkyl halide or hydrogen halide, a Lewis acid and a phase transfer agent. In the above Formula, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11 and R12 are, independently, substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that (i) R1, R2, R3, R5 and R6 are each other than H, (ii) no more than one of R7, R8 and R9 are H, and (iii) no more than one of R10, R11 and R12 are H.

Using the foregoing processes, one is able to produce a variety of alkyl-substituted tetrahydronaphthalene compounds for use as chemical intermediates and/or chemical products, particularly intermediates such as HMT, which is a compound of extreme importance to the fragrance industry.

As noted above, the present invention pertains to a novel and particularly useful process for the production of polyalkyl tetrahydronaphthalenes including, but not limited to, those of Formulas I, II or III: ##STR11##

In the above Formulas, R1, R2, R3, R4, R5 and R6 are defined, independently, as substituents that do not sub-stantially interfere with a Friedel-Crafts-type alkylation reaction, provided that R1, R2, R3, R5 and R6 are each other than H. Suitable R1, R2, R3, R4, R5 and R6 substituents will be readily apparent to those skilled in the art of Friedel-Crafts-type alkylation reactions. Such alkylation reactions and non-interfering substituents are discussed, for example, in George A. Olah, Friedel-Crafts and Related Reactions, Vols. 1 and 2 (Interscience Publishers, John Wiley and Sons, 1964) (hereinafter referred to as "Friedel-Crafts Reactions"), as well as in other journal and textbook references. The disclosures of Friedel-Crafts Reactions are incorporated herein by reference. Examples of suitable substituents include those wherein R4 is H, or a C1 -C30 straight chain, branched or cyclical alkyl, and R1, R2, R3 , R5 and R6, independently, are a C1 -C30 straight chain, branched or cyclical alkyl. The alkyl is preferably a C1 -C20, more preferably a C1 -C10, and most preferably a C1 -C5, alkyl. Preferably, the alkyl is a straight chain or branched alkyl. In a generally preferred embodiment, R1, R2, R3, R4, R5 and R6, independently, are a C1 -C5 straight chain or branched alkyl.

In a most preferred embodiment, the polyalkyl tetrahydronaphthalenes are of the Formula I. The Formula I compounds are preferably:

1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (that is, HMT, a compound of Formula I wherein R1, R2, R3, R4, R5 and R6 are each methyl);

6-ethyl-1,1,3,4,4-pentamethyl-1,2,3,4-tetrahydronaphthalene (that is, a compound of Formula I wherein R1 is ethyl, and R2, R3, R4, R5 and R6 are each methyl);

6-tertiary-butyl-1,1,3,4,4-pentamethyl-1,2,3,4-tetrahydronaphthalene (that is, a compound of Formula I wherein R1 is tertiary butyl, and R2, R3, R4, R5 and 6 are each methyl); and

6-propyl-1,1,3,4,4-pentamethyl-1,2,3,4-tetra-hydronaphthalene (that is, a compound of Formula I wherein R1 is n-propyl, and R2, R3, R4, R5 and R6 are each methyl).

The compounds of Formulas I, II and III are produced by contacting a partially substituted benzene compound, wherein said benzene compound is substituted with two or more substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction said substituents including at least one secondary alkyl group having only one alpha-hydrogen, and wherein said benzene compound is unsubstituted in at least one position adjacent to said secondary alkyl group, such substituted benzene compoundsincluding, but not limited to, those of the Formula IV or V ##STR12## with an olefinic compound of the Formula VI ##STR13##

Reacting a benzene compound of Formula IV with an olefinic compound of Formula VI will yield the tetrahydronaphthalene compounds of Formula I. Alternatively, contacting a benzene compound of Formula V with an olefinic compound of Formula VI will yield the tetrahydronaphthalene compounds of Formulas II and III. The Formula I, II or III compounds may isomerize under the reaction conditions to also form compounds of one or more of the other Formula I, II or III compounds.

In the above Formulas IV, V and VI, R1, R2, R3, R4, R5 and R6 are defined, independently, as previously described, that is, as substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that R1, R2, R3, R5 and R6, are each other than H. Suitable substituents are discussed in various journal and textbook references, such as Friedel-Crafts Reactions. Suitable substituents include those wherein R4 is H, or a C1 -C30 straight chain, branched or cyclical alkyl, and R1, R2, R3, R5 and R6, independently, are a C1 -C30 straight chain, branched or cyclical alkyl. The alkyl is preferably a C1 -C20, more preferably a C1 -C10, and most preferably a C1 -C5, alkyl. Preferably, the alkyl is a straight chain or branched alkyl.

With respect to the benzene compounds of Formulas IV and V, a generally preferred embodiment includes those compounds wherein R1, R2 and R3, independently, are a C1 -C5 straight chain or branched alkyl. In a most preferred embodiment, the substituted benzene compounds are of Formula IV. The Formula IV compounds are preferably isopropyl toluene (that is para-cymene, a compound of Formula IV wherein R1, R2 and R3 are each methyl), 1-ethyl-4-isopropylbenzene (that is, a compound of Formula IV wherein R1 is ethyl, and R2 and R3 are each methyl), 1-n-propyl-4-isopropylbenzene (that is, a compound of Formula IV wherein R1 is n-propyl, and R2 and R3 are each methyl), and 1-tertiary-butyl-4-isopropylbenzene (that is, a compound of Formula IV wherein R1 is tertiary-butyl, and R2 and R3 are each methyl).

In a generally preferred embodiment, the olefinic compounds of Formula VI include those compounds wherein R4 is H or A C1 -C5 straight chain or branched alkyl, and R5 and R6, independently, are a C1 -C5 straight chain or branched alkyl. A more preferably embodiment is wherein R4 is methyl. Of the Formula VI compounds, 2,3-dimethyl-1-butene (a compound of Formula VI wherein R4, R5 and R6 are each methyl) is most preferred. As an alternative to adding the terminal olefinic compounds of Formula VI to the reaction mixture in carrying out the process of the invention, one may instead add the internal olefinic isomer of those compounds, that is, compounds of the Formula ##STR14## wherein R4, R5 and R6 are as previously described. Such compounds are capable of rearranging by isomerization under the process conditions of the invention to form the Formula VI compounds believed to be required for polyalkyl tetrahydronaphthalene formation. A preferable internal olefinic isomer is 2,3-dimethyl-2-butene.

In accordance with the present invention, the compounds of Formulas IV or V are contacted with compounds of Formula VI in the presence of a reagent of the Formula ##STR15## provided that said reagent has greater electron releasing properties than said olefinic compound, and in the presence of an alkyl halide or hydrogen halide, a Lewis acid, and, optionally, a phase transfer agent. In the above Formula VII, R7, R8, R9, R10, R11 and R12 are defined, as previously described, that is, as substituents that do not substantially interfere with a Friedel-Crafts-type alkylation reaction, provided that no more than one of R7, R8 and R9 are H, and no more than one of R10, R11 and R12 are H. Suitable substituents include those wherein R7, R8, R9, R10, R11 and R12 are, independently, H or a C1 -C30 straight chain, branched or cyclical alkyl. The alkyl is preferably a C1 -C20, more preferably a C1 -C10 and most preferably a C1 -C5 alkyl. Preferably the alkyl is a straight chain or branched alkyl. In a most preferred embodiment, the Formula VII compound is 2,4,4-trimethyl-2-pentene (that is, diisobutylene-2, a compound of Formula VII wherein R7, R8, R10, R11 and R12 are methyl and R9 is H). The particular reagents defined in Formula VII have been found to be surprisingly effective hydride abstractors. These compounds are capable of preferentially carrying out the hydride abstraction function, rather than participating in the alkylation step. This results in a process which has a smaller amount of side reactions occurring, and thus a higher selectivity to and yield of the desired end product.

As noted above, the Formula VII compounds employed in a process of the invention must have greater electron releasing properties than the olefinic compounds VI also utilized in that process. Any of the Formula VII compounds wherein the R7 through R12 substituents are selected from H or alkyl, will have greater electron releasing properties than any of the Formula VI compounds wherein the R4 through R6 substituents are also selected from H or alkyl. Accordingly, it is believed that the Formula VII compounds will function in the present process as the primary hydride abstracting agents, relieving the olefinic compounds VI of this task and enabling the Formula VI olefins to instead function as alkylating agents. In addition, as those skilled in the art will recognize, by utilizing the Formula VII compounds in accordance with the present process, a non-productive reduction (hydride abstraction) step employs a more readily available, less expensive reagent VII, in lieu, at least in part, of the less readily available, more expensive alkyl halide compounds consumed in accordance with certain prior art procedures. As a result, it is possible to avoid excessive formation of hydrogen halides and accumulation of such compounds in the product stream, an undesirable result associated with some art processes. Moreover, the potential for corrosion problems within the reaction system concomitant with the formation of the hydrogen halides may be lessened, and the need for complex procedures for the separation of the desired products from the hydrogen halide by-products may be minimized.

Suitable alkyl halides include, but are not limited to, secondary alkyl halides, tertiary alkyl halides, propargyl halides and allyl halides. Exemplary secondary alkyl halides include isopropyl chloride, secondary-butyl chloride, secondary-amyl chloride, cyclohexyl chloride, and homologues thereof having fluorine, bromine or iodine atoms substituted for the chlorine atom, as well as various secondary alkyl dihalides. Examples of tertiary alkyl halides include tertiary-butyl chloride, tertiary-amyl chloride, 2-methyl-2-chloropentane, 3-methyl-3-chloropentane, as well as various other tertiary alkyl dihalides such as 1,8-dichloro-para-menthane, and homologues thereof having fluorine, bromine or iodine atoms substituted for the chlorine atom. Representative propargyl halides include propargyl chloride, 1-chloro-2-butyne, 1-chloro-2-pentyne, and homologues thereof having fluorine, bromine or iodine atoms substituted for the chlorine atom, as well as various propargyl dihalides. Suitable allyl halides include allyl chloride, 1-chloro-2-butene, 1-chloro-3-methyl-2-butene, 1-chloro-2-pentene, 1-chloro-2-hexene and homologues thereof having fluorine, bromine or iodine atomes substituted for the chlorine atom, as well as various allyl dihalides. Other suitable alkyl halides will be readily apparent to those skilled in the art. Of the foregoing alkyl halides, tertiary alkyl halides, and in particular tertiary-butyl chloride, tertiary-amyl chloride, 2-methyl-2-chloropentane, 3-methyl-3-chloropentane and 1,8-dichloro-para-menthane, are preferred. A most preferred alkyl halide is the tertiary alkyl halide which is tertiary-butyl chloride. Although any of the halogen halides may be used, preferable hydrogen halides are hydrogen chloride or hydrogen bromide, most preferably hydrogen chloride. Preferably, an alkyl halide rather than a hydrogen halide is employed.

Any Lewis acid, that is, any non-protonic compound capable of accepting an electron pair, is suitable for use in the present process. Exemplary Lewis acids include metal halides such as aluminum halides (including aluminum chloride, aluminum bromide, aluminum iodide, monofluorodichloroaluminum, monobromodichloroaluminum and monoiododichloroaluminum), alkyl metal halides and alkyl metals. Alkyl metals and alkyl metal halides suitable for use as Lewis acids in the present process are disclosed, for example, in Kennedy, Joseph P., Carbocationic Polymerization, p. 221 (Wiley-Interscience Publishers (1982)), the disclosures of which are incorporated herein by reference. In the process of the present invention, aluminum halides are preferred. Of the aluminum halides, aluminum chloride and aluminum bromide, particularly aluminum chloride, are most preferred.

In a preferable embodiment, the reaction is carried out in the presence of a phase transfer agent. Suitable phase transfer agents include onium salts such as ammonium, phosphonium and sulfonium salts. Other phase transfer agents suitable for use in the present process will be readily apparent to those skilled in the art, once having been made aware of the present disclosure.

Examples of ammonium phase transfer agents include quaternary ammonium halides such as methyltrioctylammonium chloride, methyltrinonylammonium chloride, methyltridecyl-ammonium chloride, hexadecyltrihexylammonium bromide, ethyltrioctylammonium bromide, didodecyldimethylammonium chloride, tetraheptylammonium iodide, dioctadecyl-dimethylammonium chloride, tridecylbenzylammonium chloride, ditricosylmethylammonium chloride, and homologues thereof having chlorine, fluorine, bromine or iodine atoms substituted for the enumerated halide atom. Also suitable for use in the present invention as phase transfer agents are tertiary amine compounds substituted with hydrocarbons, such as trioctyl amine, which, under the conditions of the subject process may be converted to form quaternary ammonium salts.

Exemplary phosphonium phase transfer agents include quaternary phosphonium halides such as tributyldecyl-phosphonium iodide, triphenyldecylphosphonium iodide, tributylhexadecylphosphonium iodide, and homologues thereof having chlorine, fluorine or bromine atoms substituted for the iodine atom. In addition, trisubstituted phosphine compounds substituted with hydrocarbons, such as tri-n-butyl phosphine, may be converted to quaternary phosphonium salts under the present reaction conditions, and as such, are also suitable for use in the subject process as phase transfer agents.

Representative sulfonium phase transfer agents include ternary sulfonium halides such as lauryldimethylsulfonium iodide, lauryldiethylsulfonium iodide and tri(n-butyl)sulfonium iodide, and homologues thereof having chlorine, fluorine or bromine atoms substituted for the iodine atom. In addition, disubstituted sulfur compounds substituted with hydrocarbons may be converted to ternary sulfonium salts under the present reaction conditions, and as such, are also suitable for use in the subject process as phase transfer agents.

These and other suitable phase transfer agents are described, for example, in U.S. Pat. No. 3,992,432 and in Kondo et al., Synthesis, pp. 403-404 (May 1988), the disclosures of which are incorporated herein by reference.

Preferable phase transfer agents are ammonium or sulfonium salts, particularly quaternary ammonium or ternary sulfonium halides. Most preferred are quaternary ammonium halides, particularly methyltrioctylammonium chloride (referred to herein as "MTOAc"), and a mixture of methyltrioctylammonium chloride and methyltridecylammonium chloride. The latter mixture is marketed under the tradename Adogen-464®, by Sherex Co., located in Dublin, Ohio.

In general, the molar proportions of the reagents employed in the present process can be varied over a relatively wide range. However, where phase transfer agents are employed in the process, it is important, for the best results, to maintain a ratio of less than one mole of phase transfer agent per mole of Lewis acid. Preferably, the molar ratio is about 0.8 to 1.0, more preferably 0.5 to 1.0, phase transfer agent to Lewis acid. It should be noted that some phase transfer agents sold commercially are sold in an impure form. Such impurities generally comprise water or an alcohol species. Water and alcohol, as well as other impurities which will react adversely with the Lewis acid, thereby lowering the amount of active Lewis acid available for the process of the present invention. Accordingly, where the phase transfer agent added contains such impurities, the amount of Lewis acid should be increased to account for these impurities. In such a situation the ratio of transfer agent to Lewis acid might be about 0.3 to 1∅ Such impure agent-containing mixtures are referred to herein as mixtures in an "impure form".

It is preferable to use a mixture of alefinic compound VI, hydride abstracting reagent VII, alkyl halide and hydrogen halide, wherein these components are present in a molar range of about 1.0 to about 5.0 moles of olefin VI per mole of combined halides plus reagent VII. More preferably, the olefin VI, and the combined halides plus reagent VII are present in nearly equimolar amounts, that is, about 1.0 mole of olefin VI per mole of combined halides plus reagent VII.

Preferably, the substituted benzene compound is present in a range of about 0.5 to about 10 moles per mole of olefin VI. More preferably, the substituted benzene compound is present in a range of about 0.5 to about 5.0 per mole of olefin VI.

In a most preferred embodiment, each of the benzene compound, olefin VI, and the combination of alkyl halide, hydrogen halide plus hydride abstracting reagent VII, are present nearly in equimolar amounts, that is, about 1.0 mole of benzene compound, to about 1.0 mole of olefin VI, to about 1.0 mole of combined halides plus hydride abstracting reagent VII.

The amount of Lewis acid utilized is preferably in the range of about 2% to about 10% by weight of the Lewis acid based on the combined weight of the substituted benzene, olefin VI, alkyl halide, hydrogen halide plus hydride abstracting reagent VII.

As noted above, in certain embodiments, the present process must be conducted in the substantial absence of elemental iodine (I2). By "substantial absence", it is meant that only a deminimus amount of iodine (such as, for example, less than 1% by weight of I2 based on the weight of the Lewis acid), if any, is present in the reaction medium. Preferably, in the embodiments which require a substantial absence of iodine, the reaction medium is devoid of any elemental iodine.

The reaction is generally carried out using a solvent, although, if desired, substituted benzene, one of the starting materials, may be employed in large excess in lieu of an additional solvent. A number of different solvents may be utilized in the present invention, including halogenated and unhalogenated aliphatic, alicyclic and aromatic hydrocarbon solvents. Representative of the halogenated solvents are the aliphatic solvents methylene chloride, chloroform, carbon tetrachloride, ethylene chloride, ethylidene chloride, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,2,2-tetrachloroethane, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, 1,2,3-trichloropropane, amyl chloride, and ethylene bromide, and the aromatic solvents monochlorobenzene, orthodichlorobenzene, bromobenzene and fluorobenzene. Exemplary of the unhalogenated solvents are the aliphatic solvents n-hexane, n-heptane and n-octane, the alicyclic solvent cyclohexane, and the aromatic solvents benzene, toluene, ethylbenzene and xylene. Preferred for reasons of yield, safety and/or process engineering are the unhalogenated aliphatic and unhalogenated alicyclic hydrocarbons. Other suitable halogenated and unhalogenated solvents are described, for example, in U.S. Pat. Nos. 4,284,818, 3,856,875 and 3,379,785, the disclosures of which are incorporated herein by reference.

The alkylation reaction of the invention can be carried out in any suitable vessel which provides efficient contacting between the Lewis acid and the other reactants. For simplicity, a stirred batch reactor can be employed. Although stirring is recommended to provide efficient contact between reactants, it has been found that with the addition of the phase transfer agent pursuant to one embodiment of the present invention, the Lewis acid is able to solubilize rather quickly, thereby obviating the need for the stringent stirring requirements of many of the art processes utilized to produce HMT. The reaction vessel used should be resistant to the possibly corrosive nature of the catalyst. Glass-lined vessels would be suitable for this purpose, as well as other vessel materials well known in the art.

The reagents of the present process may be added in any order, although where the process is carried out with a phase transfer agent, a preferred mode is to add the solvent, the Lewis acid and the phase transfer agent first, allow sufficient time for the Lewis acid to become substantially dissolved in the solvent, and then add the remaining reagents. Generally, 15 to 30 minutes are needed for the Lewis acid to become substantially dissolved in the solvent.

Ideally, the reaction is carried out at temperatures ranging from about -30°C to about 50°C, preferably at temperatures ranging from about -10°C to about 40°C, and most preferably at temperatures ranging from about 0°C to about 30°C

The pressure at which the reaction is carried out is not critical. If the reaction is carried out in a sealed vessel, autogenous pressure is acceptable, although higher or lower pressures, if desired, may be employed. The reaction can also be carried out at atmospheric pressure in an open reaction vessel, in which case the vessel is preferably equipped with a moisture trap to prevent significant exposure of Lewis acid to moisture. The reaction can take place in an oxygen atmosphere, or an inert atmosphere as in the presence of a gas such as nitrogen, argon and the like, the type of atmosphere also not being critical.

Reaction time is generally rather short and is often dictated by the kind of equipment employed. Sufficient time must be provided, however, for thorough contacting of the substituted benzene compound, the olefinic compound, the Lewis acid and the phase transfer agent. Generally the reaction proceeds to completion in about 1 to about 7 hours.

Product can be recovered by first quenching the reaction mixture in cold water or on crushed ice, preferably on ice, and then processing the mixture in the usual manner for Friedel-Crafts reactions to extract the desired alkyl-substituted tetrahydro-naphthalene compounds. Suitable extraction protocol is described, for example, in Friedel-Crafts Reactions. Typically, following quenching and the resultant phase separation, the organic layer is washed an additional time with water to aid in removal of the Lewis acid. One or more additional washings can be carried out with dilute alkali solution to further aid Lewis acid removal. Pure product can then be recovered by subjecting the washed reaction mixture to reduced pressure fractional distillation.

The polyalkyl tetrahydronaphthalenes prepared in accordance with the processes of the invention, as hereinbefore indicated, may, for example, be acylated to obtain acylated polyalkyl tetrahydronaphthalene having very fine, musk-like fragrances, a characteristic which renders them highly valuable for use in the perfumery industry. Such products, acylated or otherwise, may alternatively or additionally have utility in the pharmaceutical and/or agrochemical industries, either as intermediates or as end products, as generally discussed in French Patent Publication No. 2601670, and U.S. Pat. No. 4,551,573. The acylation process may be carried out using conventional methods, such as by reacting the polyalkyl tetrahydro-naphthalene with an acyl halide or acid anhydride in the presence of an acid-acting catalyst. Suitable acylation methods are well known in the art and are disclosed, for example, in U.S. Pat. No. 4,284,818. Examples of acylated polyalkyl tetrahydronaphthalenes include 7-acetyl-1,1,3,4,4,6-hexammethyl-1,2,3,4-tetrahydronaphthalene, 7-acetyl-1,1,3,4,4-pentamethyl-6-ethyl-1,2,3,4-tetrahydronaphthalene, 7-acetyl-1,1,3,4,4-pentamethyl-6-n-propyl-1,2,3,4-tetrahydronaphthalene, and 7-acetyl-1,1,3,4,4-pentamethyl-6-tertiary-butyl-1,2,3,4-tetrahydronaphthal ene.

The present invention is further described in the following Examples. These Examples are not to be construed as limiting the scope of the appended Claims.

In each Example, the reaction flasks were equipped with a condenser, mechanical stirrer, addition funnel and thermocouple/temperature controller connected to an automatic laboratory jack. The flasks were cooled, when necessary, with a dry ice/isopropanl bath. The flask contents were continuously stirred throughout the reaction.

Results were analyzed on both polar and non-polar gas chromatography columns. All gas chromatography analyses were carried out on capillary columns using a weight percent internal standard method of analysis. Structure identifications were assigned based on GCMS fragmentation patterns compared to standards.

Examples 1, 2 and 5 are provided for comparative purposes only, and do not illustrate processes of the present invention. Specifically, Example 1 was carried out substantially in accordance with the procedures set forth in U.S. Pat. No. 4,284,818. Example 2 is similar to Example 1, except that methyltrioctylammonium chloride was added. Example 5 is similar to Example 3 except that diisobutylene-2 was omitted. Examples 3 and 4 are examples of processes of the present invention.

PAC Example 1 (Comparative Example)

A 100 ml four-necked round bottom flask was charged with cyclohexene (19.10 g) and cooled to 20°C with a dry ice/isopropanol bath. Anhydrous aluminum chloride (1.803 g) was added, with stirring, to the cyclohexene. Next, a mixture containing para-cymene (25.13 g), 2,3-dimethyl-1-butene (7.63 g), and tertiary-butyl chloride (9.52 g) was added to the flask over a period of about 2 hours and 45 minutes. At 3 hours, the reaction was quenched with 10 ml of deionized water. The organic phase was washed with, in order, 5% HCl, 10% Na2 CO3, and 50% (half-saturated) brine solution. The aqueous layers were individually extracted with ethyl ether, and the ether layers combined with the organic phase. The organics were then dried over K2 CO3, filtered, and evaporated to yield a crude product (29.10 g) containing 28.57 weight % HMT (42.46% molar yield of HMT based on the amount of 2,3-dimethyl-1-butene charged).

A 100 ml four-necked round bottom flask was charged with cyclohexene (19.10 g). To this was added methyltri-octylammonium-chloride (2.735 g) and anhydrous aluminum chloride (1.803 g). The mixture was cooled to 20°C and allowed to stir for thirty minutes. A mixture of para-cymene (25.13 g), 2,3-dimethyl-1-butene (7.63 g), and tertiary-butyl chloride (9.52 g) was then added to the flask over a period of three hours. When the addition was complete, the reaction was quenched with 15 ml of deionized water. The organic phase was washed with, in order, 5% HCl, 10% Na2 CO3, and 50% brine solution. Each aqueous layer was extracted with ethyl ether, and the ether combined with the organic phase. The organics were then dried over K2 CO3 and evaporated to yield a crude product (33.78 g) containing 29.22 weight % HMT (50.40% molar yield of HMT based on the amount of 2,3-dimethyl-1-butene charged).

A 100 ml four-necked round bottom flask was charged with cyclohexane (19.10 g) and cooled to 20°C with a dry ice/isopropanol bath. Anhydrous aluminum chloride (1.830 g) was added, with stirring, to the cyclohexane. A solution containing a mixture of para-cymene (25.13 g), 2,3-dimethyl-1-butene (7.65 g), tertiary-butyl chloride (0.95 g), and diisobutylene-2 (10.38 g) was added, with rapid stirring, to the flask over a period of about 2 hours and 45 minutes. At 3 hours, the reaction was quenched with 10 ml of deionized water. The reaction product was washed with, in order, 5% HCl, 10% Na2 CO3, and 50% brine solution, and the aqueous layers each extracted with ethyl ether. The ether layers were then combined with the initial organic phase, and the organics were dried over K2 CO3 and evaporated to give a crude product (32.41 g) containing 34.28 weight % HMT (56.59% molar yield of HMT based on the amount of 2,3-dimethyl-1-butene charged).

A 100 ml four-necked round bottom flask was charged with cyclohexane (19.10 g) and methyltrioctylammonium chloride (2.73 g), and cooled to 20° C. Anhydrous aluminum chloride (1.803 g) was added and the mixture was stirred at 20°C for 0.5 hours. A solution containing a mixture of para-cymene (25.13 g), 2,3-dimethyl-1-butene (7.63 g), tertiary-butyl chloride (0.95 g), and diisobutylene-2 (10.38 g) was added to the flask over a 3 hour period while maintaining the temperature at 20°C The reaction was then quenched with deionized water (15 ml). The organic phase was washed with, in order, 5% aqueous HCl, 10% Na2 CO3 and 50% brine solution. The aqueous layers were each extracted with ethyl ether, the ether layers combined with the initial organic phase, dried over K2 CO3, filtered and evaporated to give a crude product (33.77 g) containing 34.19 weight % HMT (58.96% molar yield of HMT based on the amount of 2,3-dimethyl-1-butene charged).

The experiment was carried out substantially in accordance with Example 3, except that diisobutylene-2 was omitted. Following the workup, a crude product (26.80 g) containing 22.50 weight % HMT (30.71% molar yield of HMT based on the amount of 2,3-dimethyl-1-butene charged) was recovered.

Various modifications of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended Claims.

Frank, Walter C.

Patent Priority Assignee Title
5068479, Mar 17 1990 BASF Aktiengesellschaft Preparation of 1,1,3,4,4,6-hexamethyl-1,2,3,4-tetra-hydronaphthalene
5292719, Jun 18 1993 Union Camp Corporation Tetralin formate ester aroma chemicals
5396014, Aug 13 1991 Firmenich S.A. Process for the preparation of 4,4-dimethyl-2-pentene
5401720, Jun 18 1993 Union Camp Corporation Alkyl tetralin aldehyde compounds
5403823, Jun 18 1993 Union Camp Corporation Alkyl indane aldehyde compounds
5457239, May 25 1994 Union Camp Corporation Process for formylation of aromatic compounds
Patent Priority Assignee Title
3856875,
4551573, Oct 01 1984 Phillips Petroleum Company Alkylation of aromatic compounds
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 27 1989Union Camp Corporation(assignment on the face of the patent)
Jan 27 1989FRANK, WALTER C UNION CAMP CORPORATION, A CORP OF VA ASSIGNMENT OF ASSIGNORS INTEREST 0050120862 pdf
Date Maintenance Fee Events
Apr 27 1993M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 03 1996ASPN: Payor Number Assigned.
Apr 21 1997M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 08 2001ASPN: Payor Number Assigned.
Jan 08 2001RMPN: Payer Number De-assigned.
May 22 2001REM: Maintenance Fee Reminder Mailed.
Oct 31 2001EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 31 19924 years fee payment window open
May 01 19936 months grace period start (w surcharge)
Oct 31 1993patent expiry (for year 4)
Oct 31 19952 years to revive unintentionally abandoned end. (for year 4)
Oct 31 19968 years fee payment window open
May 01 19976 months grace period start (w surcharge)
Oct 31 1997patent expiry (for year 8)
Oct 31 19992 years to revive unintentionally abandoned end. (for year 8)
Oct 31 200012 years fee payment window open
May 01 20016 months grace period start (w surcharge)
Oct 31 2001patent expiry (for year 12)
Oct 31 20032 years to revive unintentionally abandoned end. (for year 12)