A focussing transducer for the destruction of objects internal to a patient's body by pulses of ultrasonic waves. The transducer comprises a concave transducer surface which is divided into areas and there is a control means which can selectively activate the areas of the transducer so that the waveform arriving at the focus can adjusted.

Patent
   4888746
Priority
Sep 24 1987
Filed
Sep 14 1988
Issued
Dec 19 1989
Expiry
Sep 14 2008
Assg.orig
Entity
Large
93
29
all paid
1. In a focussing transducer for generating ultrasound pulses for the destruction of objects internal to the patient's body, which comprises a spheroidal cup having a mosaic of piezoelectric transducer elements forming the concave surface of the cup, which piezoelectric elements may be energised into oscillation by means of a control apparatus to generate ultrasound pulses having a waveform, the transducer having its focus located on the transducer axis and being alignable on an object, and the ultrasound pulses generated being transmissible to the patient's body via a coupling fluid, the improvement which comprises:
an active transducer surface which is subdivided into several areas which are each aligned on a transducer focus, and which each have a selected number of transducer elements allocated to them, and
means for adjusting the waveform of the ultrasound pulses, comprising means for optionally energising the transducer areas serially, in parallel, singly, in groups, and all together in order to adjust the waveform of the ultrasound pulses, said optionally energising means operative to energize the transducer areas in a manner adapted to destroy objects internal to the patient's body.
9. In a focussing transducer for generating ultrasound pulses for the destruction of objects internal to a patient's body, wherein the transducer comprises a spheroidal cup having a mosaic of piezoelectric transducer elements forming a concave area of the cup and operative to generate ultrasound pulses having a waveform, the transducer having its focus located on a transducer axis and being alignable on an object, the improvement comprising:
an active transducer surface on said concave area, said transducer surface subdivided into a plurality of areas, each aligned with the transducer focus and each associated with a respective subset of the transducer elements; and
control means, coupled to the transducer element subsets, for adjusting the waveform of the ultrasound pulses by transmitting adjustable energisation pulses to the transducer elements subsets, said control means comprising:
a plurality of switches, each associated with a respective transducer element subset, for selectively transmitting and blocking transmission of energisation pulses to the associated subset;
a plurality of amplifiers, each associated with a respective transducer element subset, for amplifying energisation pulses transmitted to the associated subset by an individually variable amplification factor; and
a plurality of delay devices, each associated with a respective transducer element subset, for delaying energisation pulses transmitted to the associated subset by an individually variable time delay;
at least some of said energisation pulses operative to energize the transducer elements in a manner adapted to destroy objects internal to the patient's body.
2. A transducer according to claim 1, wherein the transducer areas have the form of annular elements which extend around the transducer axis.
3. A transducer according to claim 1, wherein the transducers have the form of sectors of spheroidal areas.
4. A transducer according to claim 1, wherein the transducers have a combination of forms including annular elements which extend around the transducer axis and sectors of spheroidal areas.
5. A transducer according to claim 1, wherein the control means operates to adjust at least one of the amplitude, the duration, and the polarity of the sound pulse acting as a whole in the transducer focus, by serial energisation of transducer areas and by superimposition of the sound pulses generated by the transducer areas in the region of the focus.
6. A transducer according to claim 1, for the destruction of objects in the form of concretions, wherein the control means is adjusted to balance negative halfwaves of the sound pulses generated by reverse oscillation at the focus by means of energisation in phase opposition of other transducer elements.
7. A transducer according to claim 1, for the destruction of objects in the form of tissue sections, wherein the control means is adjusted to balance positive halfwaves of the sound pulses generated at the focus in each case by outward oscillation of transducer elements by means of energisation in phase opposition of other transducer elements.
8. A transducer according to claim 1, wherein the control means is adjusted to increase the amplitudes of positive and negative halfwaves of the sound pulses by equiphasal energisation.
10. A transducer according to claim 9 wherein at least some of the areas are annular in shape extending partially around the transducer axis.
11. A transducer according to claim 9 wherein at least some of the areas are shaped as spheroidal sectors.
12. A transducer according to claim 10 wherein additional ones of the areas are shaped as spheroidal sectors.
13. A transducer according to claim 9 wherein the control means operates to adjust the amplitude, duration and polarity of the sound pulse generated by the transducer at the transducer focus by serial energisation of the transducer element subsets and by superimposition of the sound pulses generated by the transducer element subsets at the focus.
14. A transducer according to claim 9 wherein the control means is adjusted to cause at least one selected subset to be energised in phase opposition to at least one other selected subset to reduce the amplitude of negative pressures generated at the focus by negative halfwaves of sound pulses generated by the at least one other selected subset.
15. A transducer according to claim 9 wherein the control means is adjusted to cause at least one selected subset to be energised in phase opposition to at least one other selected subset to reduce the amplitude of positive pressures generated at the focus by positive halfwaves of sound pulses generated by the at least one other selected subset.
16. A transducer according to claim 9 wherein the control means is adjusted to energise the areas equiphasally to increase the amplitudes of both positive and negative halfwaves of sound pulses at the focus.

(a) Field of the Invention

The invention relates to a focussing transducer for generating ultrasound pulses for the destruction of objects internal to the body, such as concretions and tissue sections, of the kind comprising a spheroidal cup having a mosaic of piezoelectric transducer elements forming the concave surface of the cup, which piezoelectric elements may be energised into oscillation by means of a control apparatus, the transducer having its focus lying on the transducer axis and being alignable on the object in question, and the ultrasound pulses generated being transmissible to the patient's body via a coupling fluid.

(b) Description of the Prior Art

Direct-focussing ultrasound transducers of this kind are known. The DE-A1 27 12 341 discloses an ultrasound transducer of piezoelectric material which is appropriate for examinations by ultrasound in medical diagnostics, in which the transducer body has a concave curvature so that acoustic focussing of the sound waves may be obtained in this manner at a fixed focal point which is determined by the curvature of the transducer. Ring electrodes oppositely situated to an electrode extending throughout the active surface and concentrically applied around a central electrode are situated on the outer surface of the transducer body. The setting of the focal point on the axis of the transducer may be varied to the effect of shortening or lengthening the acoustic focal length, predetermined by the geometrical structure, by energisation of the ring electrodes under variable time-lagging, that is to say up to infinity.

A system organised for the destruction of concretions present in body cavities, of analogous structure to that of the system described in the foregoing, is disclosed, furthermore, in the DE-A1 31 19 295. The characterising feature of this system is a focussing ultrasound transducer which is constructed as a direct sound applicator and with so large an area that the sound output density is so small on the transmission path that tissue damage is prevented, but so great at the acoustic focus that it is adequate for destruction of the concretion present at the focus. In this case too, the division of the transducer surface into rings or matrically assembled individual transducers, serves the purpose to enable the transducer focus to be variably adjustable electronically, according to the phased-array principle.

It is then in the nature of the pulse generation by means of the transducers described that a positive pressure pulse is commonly followed by a negative pulse of greater or lesser magnitude. In this connection, cavitational actions may occur in the negative pressure stage which may have a positive effect in the form of an accelerated destruction, provided this occurs directly in the region of the concretion which is to be destroyed. If however, the cavitational threshold in the interposed tissues or in the adjacent tissues is exceeded during a concretion destroying action, this may lead to undesirable tissue destruction and haemorrhages, especially if the focal point of the transducer is not focussed precisely on the concretion.

As apparent for example from the DE-A1 34 25 992, the aim has already been pursued in the case of lithotripsy, to prevent the appearance of negative pressure pulses or at least reduce the same so far that cavitational actions may be prevented. The steps taken to this end are applicable to a special mechanical structure of the transducer which is intended to ensure that the surge impedance of the material forming the carrying cap for the transducer elements largely corresponds to that of the transducer elements and that the rearward cap surface has no focussing action. Thanks to the absence of reflection established thereby, the deformations of the transducer elements may follow the electrically preset pulse form. Measures of this nature render a transducer so devised particularly appropriate for the destruction of concretions, but they cannot be applied for an aimed or precision destruction of tissue cells, for example in cancer therapy.

The main object of the present invention is to provide an ultrasound transducer which is appropriate for the destruction of concretions as well as of tissue cells and which renders it possible to generate the sound pulses practically at will as regards their amplitude, phase setting, polarity, form and duration.

To this end, the present invention relates to a focussing transducer for generating ultrasound pulses for the destruction of objects internal to the body, such as concretions and tissue sections, comprising a spheroidal cup having a mosaic of piezoelectric elements forming the concave surface of the cup, which piezoelectric elements may be energised into oscillation by means of a control apparatus, the transducer having its focus lying on the transducer axis and being alignable on the object in question, and the ultrasound pulses being transmissible to the patient's body via a coupling fluid, characterized in that the active transducer surface is subdivided into several areas aligned on the transducer focus, each of which has allocated to it a selected number of transducer elements and that the transducer areas may be energised by means of the control means in optional manner serially and/or in parallel, singly, in groups and as a whole, to generate at least one sound pulse.

To this end, the transducer areas may extend around the transducer axis in the form of concentric angular elements, or assume the form of spheroidal sectors, but they may also have a shape which is characterised by a combination of the aforesaid transducer forms.

This provides the possibility of energising each transducer area singly or in groups in freely selectible manner, that is to say serially and/or in parallel as well as negatively and positively as regards phase and amplitude. Furthermore, the shape of the sound "club" generated may be affected by appropriate circuitry controlling the transducer elements or transducer areas, so that it may for example have an oval or elliptical cross-section, if for example, several transducer areas situated at the edge of the transducer surface are not energised. Amongst others, this has the advantage that the sonic club or fist may be adapted to anatomical conditions which is of importance in the case in which the patient's ribs were to restrict the sound window on a concretion present in the kidney.

The amplitude and/or the duration and/or the polarity of the sound pulse effective as a whole at the transducer focus may moreover be adjusted by serial energisation of transducer areas and by superimposition of the resulting sound pulses in the focal area.

A precise application of the transducer according to the invention as an instrument for the destruction of concretions is possible by particular circuit connection and energisation of transducer elements, in such manner that the negative halfwaves of the sound waves generated at the active transducer surface by momentary reverse oscillation of the transducer areas energised in each case may be balanced by an energisation in phase opposition of other transducer elements, meaning that a positive pressure surge only will substantially be generated at the focal point.

In the same way, the application of the transducer especially as an instrument for the destruction of tissue sections is possible by the fact that the positive halfwaves of the sound pulses generated at the active surface of the transducer elements operated in each case by momentary outward oscillation may be balanced at the focal point by an energisation in phase opposition of other transducer elements. Finally, the possibility is also provided of increasing and adjusting the amplitudes of positive and negative halfwaves of the sound pulses, by performing an equiphasal energisation of several or all transducer areas.

The variable control circuitry and energisation of the transducer areas thus renders it possible, for example, to make use of a part only of the transducer areas to generate the sound pulse, and to utilise the residual transducer areas for a reverse energisation and neutralisation of undesirable pulse portions. As has already been stated furthermore, all the transducer areas may be energised in parallel and driven by different pulse shapes at different times according to requirements, to which end a special form of embodiment may consist in that not only single pulses are generated but for example also a damped oscillation which is adapted to the oscillation buildup behaviour of the transducer. Finally, the transducer areas situated in the region of the marginal portions of the transducer may be energised with a lesser or greater amplitude than the other transducer areas, to obtain a sound pulse shape of particular effectiveness in this manner.

In order that the invention may be more readily understood, an embodiment thereof will now be described, by way of example, with reference to the accompanying drawings, in which:

FIG. 1 shows a transducer diagrammatically in partial section and in axonometric form of illustration,

FIG. 2 shows the energising circuit for the transducer of FIG. 1 as a block circuit diagram, and

FIG. 3 shows the circuit diagram of a multiplexer used in the circuit of FIG. 2, in a simplified form of illustration.

Referring now to FIG. 1 of the drawings, there is shown a piezoelectric ultrasound transducer 2 in the form of a spheroidal cup 3 disposed beneath a reclining surface 1 receiving a patient P. The transducer axis is designated by the reference character A, with the focal point F of the transducer also lying on the axis A. The emitting surfaces of the transducer elements are fixedly aligned on this focal point.

The concave transducer surface 4 is directed at an aperture 5 situated in the reclining surface 1. This aperture 5 is encircled by a sealing collar 6 which molds itself to the patient's body and ensures an hermetic seal of the aperture 5 with respect to that part of the patient's body which is scheduled for therapy.

The spheroidal cup 3 is surrounded by a bellows 7 which, because of its connection to the underside of the reclining surface 1 in the region of the vicinity of the aperture 51 forms a container 8 together with the surface 4 of the spheroidal cup 3 as a base. The elasticity of the bellows 7 allows of a displacement of the spheroidal cap 3 in three planes, which may be performed in a known manner by means of a spatial displacement table which is not shown as it does not form part of this invention. For the purpose of coupling the shock waves emitted from the spheroidal cup 3 to the patient, the container 8 is filed with water which is degassed and heated to body temperature.

The concave surface 4 of the spheroidal cup 3 is studded with piezoelectric transducer elements. Their arrangement is so made that, for example, the result consists in a structure of concentrically applied spheroidal annular elements 10 and 11 which are positioned around central cup segments 9, the whole transducer surface 4 being divided by separating gaps extending concentrically and radially, into individual electrically and mechanically isolated annular elements 10.1 to 10.5 and 11.1 to 11.5, and cup segments 9.1 to 9.5, respectively.

The active surfaces of the annular elements 10, 11 and of the cup element 9 are electrically connected to an energising circuit which is shown in FIG. 2, in which the annular elements 10 and 11 and the cup segments 9 have been illustrated in simplified manner in the form of block symbols. The electrical voltage energising the ultrasound transducer 2 is applied between these connections and a common areal electrode on the rear side of the transducer elements or areas. To this end, the selection of the transducer elements or areas which are to be energised, the preselection of the monentary pulse intensity and polarity, as well as their chronological application, are performed in each case by means of a multiplexer 12 for a positive pulse forming action and a multiplexer 13 for a negative pulse forming action. The different polarity is provided, to this end, by appropriate pulse generators 14 and 15.

The structure of the multiplexers 12 and 13 will be better appreciated from FIG. 3 which to provide a clearer view, merely shows the circuits for the energisation of the annular elements 11. Each circuit accordingly has a selector switch 16, an adjustable amplifier 17 for setting the momentary amplitude of the pulse, and a timing element 18 for setting the instant of energisation, so that each transducer area 11.1 to 11.5 may be energised singly or jointly with others.

For example, it is thus possible initially to energise some transducer elements or areas with a positive pulse, and then to energise other transducer areas with a negative pulse under consideration of the oscillation build-up behaviour of the transducer elements for the purpose of reverse energisation, so that a positive pressure surge only will occur at the focus F. Moreover, all the transducer elements my be connected in parallel and energised by means of different pulse forms, in which connection it is also possible to adjust the pulse generators 14 and 15 so that a damped oscillation adapted to the oscillation behaviour of the transducer may be generated for example, instead of a single pulse.

It is evidently also possible to energise the annular elements 10, 11 with a lesser amplitude than the cup segments 9. Finally, it is also possible in each case to energise the ultrasound transducer 2 for emission of a damped oscillation with the pulse which the transducer is just set to generate, whereby the amplitude of this pulse may be increased. No single pulse is obtained by doing so, but a pulse sequence in which however the negative or positive portion may in each case be increased compared to the other. A pulse sequence of this nature could be useful in particular in the destruction of tissues.

The individual transducer areas 9, 10 and 11 may well be formed as monolithic piezoelectric oscillators, but this will commonly result in a limitation on the available sonic output. If higher outputs are required, the transducer and thus also the transducer areas, will be built up from transducer elements assembled as a mosaic, for this purpose. Furthermore, all the transducer areas may be formed wholly by annular elements or spherical cup sectors. Finally, it is also possible to have other subdivisions of the whole active surface of the transducer as areas of different configuration.

Although a particular embodiment of the invention has been described, it should be appreciated that the invention is not restricted thereto but includes all modifications and variations falling within its scope.

Wurster, Helmut, Krauss, Werner

Patent Priority Assignee Title
10071266, Aug 10 2011 The Regents of the University of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
10085722, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
10130828, Jun 21 2005 INSIGHTEC, LTD Controlled, non-linear focused ultrasound treatment
10150893, Jul 23 2014 DDP SPECIALTY ELECTRONIC MATERIALS US, INC; The Dow Chemical Company Structural adhesives having improved wash-off resistance and method for dispensing same
10219815, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
10293187, Jul 03 2013 The Regents of the University of Michigan Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
10321889, Sep 13 2013 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
10743838, Feb 25 2015 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
10780298, Aug 22 2013 The Regents of the University of Michigan Histotripsy using very short monopolar ultrasound pulses
10814147, Jun 13 2014 University of Utah Research Foundation Therapeutic ultrasound breast treatment
10993699, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
11058399, Oct 05 2012 The Regents of the University of Michigan Bubble-induced color doppler feedback during histotripsy
11076241, Dec 28 2017 OOO “GIDROMARINN” Electroacoustic transducer for the parametric generation of ultrasound
11096661, Sep 13 2013 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
11135454, Jun 24 2015 The Regents of the University of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
11154274, Apr 23 2019 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
11191521, Feb 25 2015 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
11364042, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
11432900, Jul 03 2013 HISTOSONICS, INC Articulating arm limiter for cavitational ultrasound therapy system
11520043, Nov 13 2020 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object
11596388, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
11607192, Sep 13 2013 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
11648424, Nov 28 2018 HistoSonics Inc. Histotripsy systems and methods
11701134, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
11737726, Oct 08 2015 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
11813484, Nov 28 2018 HISTOSONICS, INC Histotripsy systems and methods
11813485, Jan 28 2020 The Regents of the University of Michigan; THE UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS Systems and methods for histotripsy immunosensitization
11819712, Aug 22 2013 The Regents of the University of Michigan Histotripsy using very short ultrasound pulses
11839512, Feb 25 2015 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
11957516, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
11980778, Nov 28 2018 HistoSonics, Inc. Histotripsy systems and methods
12121394, Sep 13 2013 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
12150661, Sep 22 2005 The Regents of the University of Michigan Histotripsy for thrombolysis
5031625, Jan 29 1988 GE Yokogawa Medical Systems, Ltd Received ultrasonic phase matching circuit
5076277, Feb 17 1989 Kabushiki Kaisha Toshiba Calculus destroying apparatus using feedback from a low pressure echo for positioning
5316000, Mar 05 1991 Technomed Medical Systems Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
5582578, Aug 01 1995 Duke University Method for the comminution of concretions
5800365, Dec 14 1995 Duke University Microsecond tandem-pulse electrohydraulic shock wave generator with confocal reflectors
6128958, Sep 11 1997 The Regents of the University of Michigan Phased array system architecture
6237419, Aug 16 1999 General Electric Company Aspherical curved element transducer to inspect a part with curved entry surface
6419648, Apr 21 2000 Insightec Ltd Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
6613004, Apr 21 2000 Insightec Ltd Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
6618620, Nov 28 2000 INSIGHTEC, LTD Apparatus for controlling thermal dosing in an thermal treatment system
6626854, Dec 27 2000 Insightec Ltd Systems and methods for ultrasound assisted lipolysis
6645162, Dec 27 2000 Insightec Ltd Systems and methods for ultrasound assisted lipolysis
6770039, Nov 09 2001 Duke University Method to reduce tissue injury in shock wave lithotripsy
6821274, Mar 07 2001 GENDEL LTD Ultrasound therapy for selective cell ablation
7087023, Feb 14 2003 Siemens Medical Solutions USA, Inc Microfabricated ultrasonic transducers with bias polarity beam profile control and method of operating the same
7618373, Feb 14 2003 Siemens Medical Solutions USA, Inc Microfabricated ultrasonic transducer array for 3-D imaging and method of operating the same
7635332, Feb 14 2003 Siemens Medical Solutions USA, Inc System and method of operating microfabricated ultrasonic transducers for harmonic imaging
7780597, Feb 14 2003 Siemens Medical Solutions USA, Inc Method and apparatus for improving the performance of capacitive acoustic transducers using bias polarity control and multiple firings
7850613, May 30 2003 SJ STRATEGIC INVESTMENTS, LLC Apparatus and method for three dimensional ultrasound breast imaging
7942809, May 26 2006 LEBAN, STANLEY G Flexible ultrasonic wire in an endoscope delivery system
7955281, Sep 07 2006 Nivasonix, LLC External ultrasound lipoplasty
8002706, May 22 2003 InSightec Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
8057408, Sep 22 2005 The Regents of the University of Michigan Pulsed cavitational ultrasound therapy
8088067, Dec 23 2002 Insightec Ltd Tissue aberration corrections in ultrasound therapy
8235901, Apr 26 2006 Insightec Ltd Focused ultrasound system with far field tail suppression
8251908, Oct 01 2007 InSightec Ltd. Motion compensated image-guided focused ultrasound therapy system
8262591, Sep 07 2006 Nivasonix, LLC External ultrasound lipoplasty
8323201, Aug 06 2007 SJ STRATEGIC INVESTMENTS, LLC System and method for three-dimensional ultrasound imaging
8368401, Nov 10 2009 Insightec Ltd Techniques for correcting measurement artifacts in magnetic resonance thermometry
8409099, Aug 26 2004 Insightec Ltd Focused ultrasound system for surrounding a body tissue mass and treatment method
8425424, Nov 19 2008 INSIGHTEC, LTD Closed-loop clot lysis
8539813, Sep 22 2009 The Regents of the University of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
8548561, Oct 01 2007 Insightec Ltd Motion compensated image-guided focused ultrasound therapy system
8608672, Nov 23 2005 Insightec Ltd Hierarchical switching in ultra-high density ultrasound array
8617073, Apr 17 2009 Insightec - Image Guided Treatment LTD Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
8661873, Oct 14 2009 Insightec Ltd Mapping ultrasound transducers
8932237, Apr 28 2010 INSIGHTEC, LTD Efficient ultrasound focusing
8939909, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound imaging
9049783, Apr 13 2012 HISTOSONICS, INC Systems and methods for obtaining large creepage isolation on printed circuit boards
9061131, Aug 17 2009 HISTOSONICS, INC Disposable acoustic coupling medium container
9144694, Aug 10 2011 The Regents of the University of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
9177543, Aug 26 2009 Insightec Ltd Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
9289154, Aug 19 2009 Insightec Ltd Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
9412357, Oct 14 2009 Insightec Ltd Mapping ultrasound transducers
9420999, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
9526923, Aug 17 2009 HistoSonics, Inc.; The Regents of the University of Michigan Disposable acoustic coupling medium container
9541621, Nov 10 2009 INSIGHTEC, LTD Techniques for correcting measurement artifacts in magnetic resonance thermometry
9623266, Aug 04 2009 Insightec Ltd Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
9636133, Apr 30 2012 The Regents of the University of Michigan Method of manufacturing an ultrasound system
9642634, Sep 22 2005 The Regents of the University of Michigan Pulsed cavitational ultrasound therapy
9808219, Sep 13 2013 Decision Sciences Medical Company, LLC Coherent spread-spectrum coded waveforms in synthetic aperture image formation
9844359, Sep 13 2013 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
9852727, Apr 28 2010 INSIGHTEC, LTD Multi-segment ultrasound transducers
9872667, Oct 28 2011 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
9901753, Aug 26 2009 HISTOSONICS, INC Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
9936969, Mar 30 2011 EDAP TMS FRANCE; INSERM INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE Method and apparatus for generating focused ultrasonic waves with surface modulation
9943708, Aug 26 2009 HISTOSONICS INC Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
9981148, Oct 22 2010 INSIGHTEC, LTD Adaptive active cooling during focused ultrasound treatment
ER2490,
RE43901, Nov 28 2000 InSightec Ltd. Apparatus for controlling thermal dosing in a thermal treatment system
Patent Priority Assignee Title
2645727,
4012952, Nov 22 1973 Realization Ultrasoniques Ultrasonic system
4103677, Nov 24 1975 Commissariat a l'Energie Atomique Ultrasonic camera
4112411, Dec 11 1975 U.S. Phillips Corporation Device for echography by means of focussed ultrasonic beams
4119938, Nov 28 1974 Agence Nationale de Valorisation de la Rechere (ANVAR) Methods and devices for ultrasonic imaging
4155259, May 24 1978 General Electric Company Ultrasonic imaging system
4156863, Apr 28 1978 The United States of America as represented by the Secretary of the Navy Conical beam transducer array
4159462, Aug 18 1977 General Electric Company Ultrasonic multi-sector scanner
4183249, Mar 07 1975 DIASONICS DELAWARE, INC , A CORP OF DE Lens system for acoustical imaging
4241611, Mar 02 1979 Elscint, Limited; ELSCINT IMAGING INC Ultrasonic diagnostic transducer assembly and system
4270546, Dec 05 1977 U.S. Philips Corporation Device for ultrasonic examination of biological structures
4281550, Dec 17 1979 North American Philips Corporation Curved array of sequenced ultrasound transducers
4307613, Jun 14 1979 University of Connecticut, The Electronically focused ultrasonic transmitter
4455872, Mar 03 1978 Commonwealth of Australia, The Department of Health Rotating ultrasonic scanner
4457177, Feb 09 1982 U S PHILIPS CORPORATION Ultrasonic transmitter
4471785, Sep 29 1982 SRI International Ultrasonic imaging system with correction for velocity inhomogeneity and multipath interference using an ultrasonic imaging array
4487073, Mar 15 1982 Tokyo Shibaura Denki Kabushiki Kaisha Ultrasonic system
4526168, May 14 1981 Siemens Aktiengesellschaft Apparatus for destroying calculi in body cavities
4534221, Sep 27 1982 Technicare Corporation Ultrasonic diagnostic imaging systems for varying depths of field
4537074, Sep 12 1983 Technicare Corporation Annular array ultrasonic transducers
4541435, Feb 28 1980 Tokyo Shibaura Denki Kabushiki Kaisha Ultrasonic imaging apparatus
4570488, Mar 20 1982 Fujitsu Limited Ultrasonic sector-scan probe
4582065, Jun 28 1984 PICKER INTERNATIONAL, INC , A CORP OF NY Ultrasonic step scanning utilizing unequally spaced curvilinear transducer array
4617931, Dec 14 1983 TECHNOMED MEDICAL SYSTEMS, S A Ultrasonic pulse apparatus for destroying calculuses
4622972, Oct 05 1981 Varian Associates, Inc. Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
4651850, Jun 10 1982 Matsushita Electric Industrial Co., Ltd. Acoustic lens
4725989, Dec 20 1985 Siemens Aktiengesellschaft Method controlling the focusing of an ultrasonic field and apparatus for performing said method
4771787, Dec 12 1985 RICHARD WOLF GMBH, KNITTLINGEN, GERMANY Ultrasonic scanner and shock wave generator
4787394, Apr 24 1986 Kabushiki Kaisha Toshiba Ultrasound therapy apparatus
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 14 1988Richard Wolf GmbH(assignment on the face of the patent)
Oct 27 1988WURSTER, HELMUTRichard Wolf GmbHASSIGNMENT OF ASSIGNORS INTEREST 0049690857 pdf
Oct 27 1988KRAUSS, WERNERRichard Wolf GmbHASSIGNMENT OF ASSIGNORS INTEREST 0049690857 pdf
Date Maintenance Fee Events
Sep 28 1990ASPN: Payor Number Assigned.
Feb 22 1993M183: Payment of Maintenance Fee, 4th Year, Large Entity.
May 22 1997M184: Payment of Maintenance Fee, 8th Year, Large Entity.
May 29 2001M185: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 19 19924 years fee payment window open
Jun 19 19936 months grace period start (w surcharge)
Dec 19 1993patent expiry (for year 4)
Dec 19 19952 years to revive unintentionally abandoned end. (for year 4)
Dec 19 19968 years fee payment window open
Jun 19 19976 months grace period start (w surcharge)
Dec 19 1997patent expiry (for year 8)
Dec 19 19992 years to revive unintentionally abandoned end. (for year 8)
Dec 19 200012 years fee payment window open
Jun 19 20016 months grace period start (w surcharge)
Dec 19 2001patent expiry (for year 12)
Dec 19 20032 years to revive unintentionally abandoned end. (for year 12)