A freight transportation system is provided and comprises a loading station, an unloading station and a vehicle moveable therebetween to transport freight. The vehicle includes a lower platform for carrying freight and a pair of doors moveable between open and closed positions. In the closed position, the doors constitute side walls to prevent removal of the freight from the vehicle. In the open position, the doors are located to facilitate removal of the freight from the vehicle. The unloading station includes a door moving mechanism for moving the doors of the vehicle to the open position upon its arrival at the station. A freight removal device moves the freight off of one side of the platform when the doors are moved to the open position.

Patent
   5078566
Priority
Apr 30 1990
Filed
Nov 08 1990
Issued
Jan 07 1992
Expiry
Apr 30 2010
Assg.orig
Entity
Large
16
47
EXPIRED
1. A freight discharge apparatus comprising a base, a boom mounted on said base and said boom including a pair of arms pivotally interconnected at one end with one of the arms pivotally connected at its opposite end to said base and pushing means mounted to the opposite end of the other arms, and drive means operable to cause said pushing means to move substantially horizontally across a planar surface and discharge freight therefrom, said drive means including a motor mounted on said base and having a drive shaft rotatable by the motor, a drive member secured to said shaft and rotatable therewith and a driven member having two ends, said driven member pivotally secured at one end to said one arm and pivotally secured at the other end to said drive member at a location spaced from the axis of rotation of said drive shaft to impart reciprocal pivotal movement of said arm relative to said base upon rotation of said drive shaft, and attitude maintaining means to maintain said pushing means in a predetermined disposition relative to said surface.
2. Apparatus according to claim 1 wherein said pushing means is a pusher blade.
3. Apparatus according to claim 1 wherein said attitude maintaining means includes a pair of gear segments operable between adjacent ends of said arms and parallel link means extending from said base to said pushing means.
4. Apparatus according to claim 1 including a load sensor to monitor loads imparted on said boom and to inhibit operation of said motor upon said loads exceeding a predetermined level.
5. Apparatus according to claim 4 wherein said base is resiliently mounted on a support and said load sensor is responsive to relative movement between said base and support.
6. Apparatus according to claim 1 wherein said drive shaft is located relative to the boom to apply tensile force to said driven member upon movement of said boom from a retracted to a deployed position.
7. Apparatus according to claim 6 wherein said one arm pivots downwardly about a transverse horizontal axis in said arm moving between said retracted and deployed position and said drive shaft is located below said boom and between said arms.
8. Apparatus as claimed in claim 1, wherein said planar surface is on a wheeled vehicle and said base is mounted externally of said vehicle.

This is a divisional application of application Ser. No. 07/516,965, filed Apr. 30, 1990, which is a continuation of Ser. No. 07/263,445, filed Oct. 27, 1988, now abandoned.

The present invention relates to freight transportation systems and more particular to arrangements for facilitating the unloading of freight.

Arrangements for transporting freight are well known in the art. For long distance freight transportation, large rail cars or trucks are utilized which are unloaded with specialized equipment such as fork lift trucks. The time taken to unload the freight is small compared with the transportation time and therefore is not of primary concern. There is however a need for transportation systems which convey freight over a relatively short distance and in which the time taken to unload is a significant part of the overall handling time. An example of such an application is in airports when baggage must be transported between terminals. Conveyor belt systems have been typically used to avoid unloading but the speed at which the baggage is transported is slow and the conveyor belt systems are prone to failure. Other baggage handling arrangements have been considered which use gas powered carts for transporting baggage. However, problems exist in these arrangements in that the manpower required to remove the baggage from the carts once the baggage has been transported, is expensive.

It is therefore an object of the present invention to obviate or mitigate the above disadvantages by providing a novel freight transport system.

According to one aspect of the present invention there is provided a freight transportation system comprising a loading station, an unloading station and a vehicle movable therebetween to transport freight, said vehicle including a support platform to carry said freight and retaining means on the platform, said retaining means being movable from first position in which removal of freight is inhibited and a second position in which removal of freight is permitted, said unloading station including opening means operable on said retaining means to move it between said first and second positions upon arrival of the vehicle at said unloading station and freight discharge means operable to discharge freight from the platform to one side of said vehicle.

In another aspect of the present invention there is provided a freight transportation system comprising a loading station, an unloading station and a vehicle moveable therebetween, said vehicle including a support platform to carry freight and a pair of doors located on opposite sides of the said vehicle, said doors being moveable from a first position in which removal of freight is inhibited to a second position in which removal of freight is permitted, said unloading station including opening means operable upon said doors when said vehicle is stationary to move said doors concurrently to said second position to permit removal of said freight.

In another aspect of the present invention there is provided a freight transportation vehicle comprising a platform, a door located on opposite sides of said platform and each movable from a first position in which they inhibit removal of freight from said platform to a second position in which they permit removal of freight from said platform, said doors being pivotally mounted above their upper edge to cause movement laterally away from said platform upon movement from said first position to said second position.

In still yet another aspect of the present invention there is provided a freight discharge apparatus comprising a base, a boom mounted on said base and drive means operable to cause said boom to move across a planer surface and discharge freight therefrom.

An embodiment of the present invention will now be described by way of example only with reference to the accompanying drawings in which:

FIG. 1 is a perspective view of a freight transportation system;

FIG. 2 is a sectional view of the system illustrated in FIG. 1 taken along line 2--2;

FIG. 3 is a side view of a portion of the system illustrated in FIG. 1;

FIG. 4 is a side view of an element of the portion illustrated in FIG. 3.

FIG. 5 is a rear view of the system illustrated in FIG. 1 taken along line 5--5;

FIG. 6 is a partial sectional view of the system illustrated in FIG. 5 taken along line 6--6; and

FIG. 7 is a sectional view of a portion of the system illustrated in FIG. 6 .

Referring to FIG. 1, a freight transportation system in the form of a baggage transport and removal system is generally shown at reference numeral 10. The system 10 includes a track 12 having a pair of rails 14 for supporting a wheeled baggage cart 16 powered by in track linear induction motors (LIM's) (not shown). A door opening mechanism 18 straddles the track 12 and opens the doors of the baggage cart 16 when the cart is in the unloading station. A baggage removing device 20 is positioned on one side of the track 12 for removing the baggage from the cart 16. A roller set 22 is positioned on the other side of the track 12 and receives the baggage after it has been pushed off of the cart 16. A conveyor belt or carousel 24 receives the baggage from the roller set 22 and transports the baggage at a reduced speed to its desired location.

Referring now to FIGS. 1, 2, 5 and 6 the cart 16 is better illustrated. As can be seen, the cart comprises a support platform 26 for supporting baggage and two axle sets 28. The cart 16 includes a reaction rail 17 secured to the undercarriage of the cart which extends along the longitudinal axis of the cart. Linear Induction Motors primaries (not shown) are located between the rails of the track 12 at spaced intervals for energizing the reaction rail 17 to provide thrust for the cart 16. Guide wheels 29 project forwardly from the leading axle 28 to cooperate with the track 12 and steer the axle sets along the track as shown in FIG. 5.

End walls 30 extend upwardly from either end of the platform and have inclined upper edges 31.

Side frames 32 extend from each end wall 30 to provide support therefor and include sidewall elements 32a, beam elements 32b and a roof element 32c aspanning the beam elements 32b. A pair of gull-winged doors 34 are provided on the cart 16 with each door being located on opposite sides of the cart. Since the doors 34 are identical only one will be described herein. The door 34 includes two longitudinally spaced end wall portions 34a which overly respective ones of the end walls 30. The diverging end of the end wall portions 34a are connected to opposite ends of a side wall member 34b extending the length of the cart 16. The other converging end of the end wall portions 34a are pivotally connected to the respective end wall 30 adjacent the upper portion thereof via a pin to define a hinge. Thus, when the doors 34 are in the closed position as shown in FIG. 1, the side wall members 34b define side walls for the cart and constitute retaining means for inhibiting removal of baggage stored thereon. The doors 34 may be swung upwardly about their hinges to an open position as shown in chain dot lines in FIGS. 2 and 5 to allow access to and egress from platform 26. Air springs 36 are connected between the end walls 30 and the end wall portions 3a of the doors 34 and provide vertical forces to counterbalance the weight of the doors 34 so that they fall in a controlled manner under the influence of gravity to the closed position. The air springs 36 also limit the upward pivoting movement of the doors 34 by the available extent of their travel.

The air springs 36 are located to allow a stable open position for the doors 34 if they are operated manually. In this manner, the person unloading the cart does not have to hold the doors open when unloading the cart 16 once they have been lifted to this position. The air springs 36 allow the doors 34 to move "overcentre" so that their centre of gravity is inboard of the hinge point with the air springs 36 limiting further pivotal movement. To close the doors, the person merely has to push downwardly on the doors until the centre of gravity of the doors 34 moves back outboard of the hinges when the air springs 36 will again counterbalance the door

To control movement of the doors 34, a door release mechanism is provided and generally indicated by reference 38. The mechanism 38 is connected to each door 34 by a plate 44 as shown in FIG. 7. Since each door release mechanism 38 is identical, only one will be described herein. Each of the handles 38 is pivotally connected to a plate 44 by pins 46 and includes a handle 40 which extends forwardly from one end of the cart 16 to be engaged by the door opening mechanism 18 when the doors 34 are to be opened. The handle 40 is connected to a latch 42 that extends through the door 34. The latch 42 includes a vertical portion 48 that terminates in a hook 50 at its lower end for engagement with a latch plate 52. The latch plate 52 is bolted to a bracket 54 secured to the end wall 30 of the cart 16. The latch 42 is biased to the latched position relative to the latch plate 52 by a spring 56 acting between the vertical portion 48 and the plate 44. Thus, with the latch 42 in the latched position as shown in FIG. 7, vertical movement of the door 34 is prevented by engagement of the hook 50 with the plate 52. To release the latches, the latch 42 is rotated about the pins 46 against the bias of the spring 56 so that the hook 50 clears the latch plate 52. Vertical movement of door 34 may then occur. The release of the latch and movement of the doors 34 is induced by the door operating mechanism 18 as will now be described.

Referring now to the door opening mechanism 18 as best illustrated in FIGS. 1, 5, 6 and 7, the mechanism comprises a support frame 60 which straddles the track 12 with sufficient clearance to allow the cart 16 to pass through. The frame 60 supports upper and lower pairs of gears 62 and 64 respectively, the gears of each pair being located on opposite sides of the track 12 and rotatable about horizontal i The track a ax s. upper gears 62 are interconnected via a shaft 66 which extends at one end through the support frame 60. A motor 68 is coupled to the one end of the shaft 66 and imparts rotation thereto via a gear box 69 thereby rotating the upper gears 62. Endless loops of chains 70,72 couple the upper and lower gears 62,64 on each side of the track 12 to cause the lower gears 64 to rotate with the upper gears 62 when the motor 68 is actuated. A horizontal crossbar 74 extends between the chains 70,72 and thus, moves with the chains when the motor 68 is actuated to describe a vertical reciprocating motion along horizontally spaced runs.

The mechanism 18 is positioned at the unloading station so that the crossbar 74 engages the handles 40 of a cart 16 at the unloading station as it moves vertically upward under the influence of motor 68. This causes the latches 42 to pivot about the pins 46 against the bias of the springs 56 and move the hooks 50 out of engagement with the latch plates 52. Continued upward movement of the crossbar 74 lifts the doors 34 concurrently upward about the pivots to the position shown in chain dot line in FIG. 5, with the bar 74 at its upper limit whereupon the motor 68 is interrupted. In this position, the platform 26 may be unloaded by the baggage removing device 20.

Referring to FIGS. 2, 3 and 4, the baggage removing device 20 includes a pushing plate 80 secured at either end to respective ones of a pair of arm assemblies 82. The arm assemblies 82 are extendable and retractable to move the plate 80 across the platform 26 to push the baggage off of the cart 16. The other end of the arm assemblies 82 are pivotally connected to a plinth 84. The plinth 84 is resiliently secured to its support surface G by a bolt 85 and spring 86 to elevate the rear of the plinth 84. A drive assembly 88 is provided on the plinth 84 and is coupled to the arms 82 for extending and retracting the arm assemblies 82.

As shown, each arm assembly 82 comprises a pair of booms 90 and 92 and a pair of attitude maintaining links 94 and 96 respectively. The lower end of the boom 92 and link 96 is pivotally connected at vertically spaced locations to a bracket 98 mounted on the plate 80. A wheel 100 is mounted to the bottom of the bracket 98 and rests on the cart platform 26 when the arm assemblies 82 are extended to push baggage from the cart. Inboard ends of the booms 90,92 are pivotally connected by pins 105 to a housing 106. The housing 106 is provided with lugs 107 to receive pins 109 and to connect pivotally the attitude maintaining links 94,96 to the housing 106. Gear wheels 104,102 are mounted on the inboard ends of booms 90,92 respectively within the housing 106 and mesh to control relative pivotal movement between the booms 90,92.

The lower ends of boom 90 and link 94 are pivotally connected to the plinth 84 in spaced relation so that a parallelogram linkage is defined between the links 94, boom 90, plinth 84 and housing 106. Similarly, the links 96 and boom 92 define a parallelogram linkage between the housing 106 and the bracket 98.

Movement of the arm assemblies is controlled by the drive assembly 88 that comprises a bracket 108 on each boom 90. Each bracket 108 receives a connecting rod 110 that is pivotally connected thereto via a pin 111. Each connecting rod 110 is connected at its other end to a crank 114 keyed to drive shaft 112 extending in opposite directions from a gear box 113. A motor 116 is coupled to the gear box 113 for rotating the shaft 112. Upon rotation of the drive shaft 112, the cranks 114 rotate and cause, through the connecting rods 110, pivotal movement of the booms 90 about their connection with plinth 84. As the booms pivot, the links 94 maintain the attitude of housings 106 and therefore the pins 105. The rotation of the booms 90 about pins 105 induce an opposite rotation of booms 92 about pins 105 through the interaction of gears 102,104, causing an outward movement of the lower end of booms 92. The links 96 act to maintain the vertical attitude of the plate 80 during outward movement of the booms 92 with additional vertical support provided by wheels 100. After 180° of rotation of the drive shaft 112, the arm assemblies 82 reach the limit of their travel and continued rotation causes the arms to retract.

A controller 120 is provided to control operation of the baggage removal device 20 and the door opening mechanism 18. The controller 120 monitors the mechanism 18 and prevents the removal device 20 from operating until the doors of the cart 16 have been moved to the open position and the cart 16 is positioned accurately relative to the frame 60. The controller 120 prevents the cart 16 from moving when the arms of the removal device are in an extended position. Furthermore, the controller 120 prevents the cart 16 from being moved within the frame when the crossbar 74 is in a position below the upper surface of the cart.

A microswitch 118 is provided between the lower edge of the plinth 84 and ground G to isolate the motor 116 if a "jam" occurs in the baggage to prevent advance of the pusher plate 80. This condition is sensed by an increased load on the plinth 84 from the arm assemblies 82 causing compression of spring 86. This moves the elevated lower edge of the plinth 84 toward the ground G to open the microswitch 117 and interrupt power to the motor 116.

The unloading sequence will now be described assuming the arm assemblies 82 are retracted as shown in FIG. 1 and the crossbar 74 is elevated as indicated in chain dot line in FIG. 5. The LIM driven cart 16 is moved through the frame 60 until it is properly located relative to the baggage removal device 20 as determined by controller 120. When the cart 16 is in the proper position, the motor 68 is actuated to move the crossbar 74 from the elevated position to a position below the handles 40. This movement occurs on the rearward vertical run of the chains 70,72 so that the crossbar 74 is clear of the handles 40, as it moves down. Continued rotation of the shaft 66 moves the crossbar 74 forwardly and upwardly to engage the underside of the handles 40 to release the latches and open the doors 34 as described above.

When the doors 34 are in the open position, the motor 68 is stopped so that the crossbar 74 supports the handles 40. The controller 120 detects this condition and allows the motor 116 to be actuated to extend and retract the arm assemblies 82. This causes the plate 80 to sweep the platform 26, thereby forcing the baggage off of the other side of the cart 16 and onto the roller set 22. From the roller set 22, the baggage is conveyed to the conveyor belt 24 where it can be transported at a reduced speed.

When the baggage has been removed from the cart 16 and the arm assemblies 82 of the removal device 20 have been fully retracted, the controller 120 inhibits further operation of the motor 116 and allows the motor 68 to be actuated until the crossbar 74 rotates over the upper gears 62. As this occurs, the crossbar 74 moves away from the cart and is removed from engagement with the underside of the handles 40 thereby allowing the doors 34 to fall closed into locking engagement. With the crossbar 74 positioned above the cart, the controller 120 allows the cart 16 to be driven through the support frame 60 so that the next cart can be unloaded in a similar manner.

It should be apparent that the cart need not be LIM driven but may be powered by other sources. Furthermore, the doors of the cart need not be "gull-wing" shape so long as they do not impede with the movement of the arms of the removal device 20 when lifted to the open position. However, the "gull-wing" doors and the vertical lifting action to open the doors ensures that they cannot accidentally open when moving between loading and unloading stations. The pusher mechanism also provides a robust unit with the drive being in-line with the loads imposed and all disposed to one side of the cart 16.

Ferrence, David N.

Patent Priority Assignee Title
10632044, Aug 02 2013 CORMED LTD Compounding systems and methods for safe medicament transport
11174054, Sep 28 2016 Bobst Mex SA Device for spacing a flap before filling for packaging containers such as cardboard boxes and equipped filling stations
11485375, Jun 12 2018 Autostore Technology AS Unloading arrangement and unloading station, as well as method of unloading an item from a storage container
11498757, Jun 12 2018 Autostore Technology AS Storage system
11505198, Jun 12 2018 Autostore Technology AS Vehicle tilting device, an access station, a delivery system and a method of accessing a storage container
11572231, Jun 12 2018 Autostore Technology AS Storage system with modular container handling vehicles
11603107, Jun 12 2018 Autostore Technology AS Unloading arrangement and unloading station, as well as method of unloading an item from a storage container
11628849, Jun 12 2018 Autostore Technology AS Express bin lift for automated storage system
11691635, Jun 12 2018 Autostore Technology AS Storage grid with container accessing station with locking device to lock remotely operated vehicle
11697422, Jun 12 2018 Autostore Technology AS Delivery vehicle, an automated storage and retrieval system and a method of transporting storage containers between an automated storage and retrieval grid and a second location
11801874, Jun 12 2018 Autostore Technology AS Vehicle tilting device, an access station, a delivery system and a method of accessing a storage, etc
11820389, Jun 12 2018 Autostore Technology AS Container accessing station with lifting device
11834268, Jun 12 2018 Autostore Technology AS Storage system with modular container handling vehicles
11912314, Jun 12 2018 Autostore Technology AS Express bin lift for automated storage system
7232285, Nov 26 2003 Vehicle loader mechanism
7351027, Nov 26 2003 Vehicle loader mechanism
Patent Priority Assignee Title
1405301,
19523,
2248725,
2672249,
2800236,
2975868,
3144925,
3184898,
3458075,
3638809,
3785462,
3960280, Mar 15 1974 KEURO Maschinenbau Gesellschaft mit beschrankter Haftung & Co. Storage system
4005787, Jul 03 1975 SI Handling Systems, Inc. Apparatus and method for unloading driverless vehicles
4016991, Apr 10 1974 Railway loading and unloading system
4125196, Dec 17 1975 TOCCOA METAL TECHNOLOGIES, INC Methods for handling refuse containers
4147264, Dec 17 1975 TOCCOA METAL TECHNOLOGIES, INC Apparatus for latching and unlatching refuse containers
4183707, Mar 15 1978 American Technical Industries, Inc. Door for a mail sorting bin
4221536, Jan 09 1978 Method of handling baggage
4231697, Jul 21 1978 Bottle packaging and unpackaging machine
4249852, Dec 18 1978 Storage apparatus
4373611, Oct 01 1980 Conveyor to interfit with a loaded shopping cart and to move portions of the load, on demand of a checker, to the front of the cart, for removal, price scanning, and bagging, by the checker at a checkout stand
4402644, Mar 03 1981 STOLTZ, WILLIAM R , JR , AND HANKAMER, EARL, TRUSTEE FOR PINEHAVEN ASSOCIATES, A TX GENERAL PARTNERSHIP COMPRISING OF I MICHAEL GINN, EARL C HANKAMER, III, AND HOWARD T TELLEPSEN, JR , 715 PINEHAVEN, HOUSTON, TX 77024 Power operated fork extensions and pallet unloading attachment for a fork lift truck
4415302, Aug 27 1981 STEINER TURF EQUIPMENT INC Pallet retrieving mechanism for forklift vehicle
4431360, Jul 22 1981 Container for the loading and transporting of goods
4548544, Dec 30 1982 Prince Machine Corporation Robot apparatus particularly adapted for removing and handling die cast parts
4682811, Nov 05 1984 Sanyo Mikawa Body Corp. Van body used with container car, freight car and truck
4832562, May 03 1985 Integrated air bearing slip sheet material handling system and slip sheet employed therein
4975016, Nov 05 1986 ETABLISSEMENTS PELLENC ET MOTTE; CENTRE NATIONAL DU MACHINISME AGRICOLE DU GENIE RURAL, DES EAUX ET DES FORETS CEMAGREF , GROUPEMENT DE MONTPELLIER, DOMAINE DE LAVALETTE Automated machine for detection and grasping of objects
935754,
956189,
CH663056,
193387,
D276326, Nov 06 1981 Un-Common Carrier Corp. Load body
FR777078,
GB185606,
GB2106070,
GB2152448,
IT684252,
JP2496,
JP15176,
JP171715,
JP247115,
JP56149909,
JP5922825,
JP5992803,
SU1260329,
SU132557,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 08 1990UTDC, Inc.(assignment on the face of the patent)
Mar 10 1994UTDC INC Bombardier IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0071090920 pdf
Date Maintenance Fee Events
Aug 15 1995REM: Maintenance Fee Reminder Mailed.
Jan 07 1996EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 07 19954 years fee payment window open
Jul 07 19956 months grace period start (w surcharge)
Jan 07 1996patent expiry (for year 4)
Jan 07 19982 years to revive unintentionally abandoned end. (for year 4)
Jan 07 19998 years fee payment window open
Jul 07 19996 months grace period start (w surcharge)
Jan 07 2000patent expiry (for year 8)
Jan 07 20022 years to revive unintentionally abandoned end. (for year 8)
Jan 07 200312 years fee payment window open
Jul 07 20036 months grace period start (w surcharge)
Jan 07 2004patent expiry (for year 12)
Jan 07 20062 years to revive unintentionally abandoned end. (for year 12)