The disclosure describes an arrangement which comprises a porous filter layer and a porous support layer. The porous support layer has first and second surfaces and the porous filter layer is positioned near the first surface of the porous support layer. The filter arrangement further comprises several polymeric beads disposed in parallel strips on the second surface of the porous support layer. The filter arrangement is corrugated to form pleats which extend generally perpendicular to the polymeric beads. Each pleat includes an open end, a bight end, and first and second opposing sides which extend between the open end and the bight end and include a portion within each pleat in which the opposing sides are in essentially parallel relationship. Each bead extends from the open end of the pleat along the first side to the bight end and from the bight end of the pleat along the second side to the open end. The portions of each bead which extend along the parallel portions of the opposing sides of the pleat are joined to one another.

Patent
   5084178
Priority
Jun 15 1988
Filed
Mar 15 1989
Issued
Jan 28 1992
Expiry
Jan 28 2009
Assg.orig
Entity
Large
104
21
EXPIRED
1. A filter arrangement comprising a porous support layer which has first and second surfaces, a porous filter layer which is positioned near the first surface of the porous support layer, and a plurality of polymeric beads which are disposed in parallel strips on the second surface of the porous support layer, the filter arrangement being corrugated to define pleats extending generally perpendicular to the polymeric beads wherein each pleat includes an open end, a bight end, and first and second opposing sides and includes a portion within each pleat in which the opposing sides are in essentially parallel relationship, and wherein each bead extends from the open end of the pleat along the first side to the bight end and from the bight end of the pleat along the second side to the open end and the portions of each bead which comprise a hot-melt adhesive material and which extend along the essentially parallel portions of the opposing sides of the pleat having been joined to one another by heat-setting.
17. The filter arrangement for removing one or more substances from a fluid flowing through the filter arrangement, the filter arrangement comprising a layer of a porous filter medium which consists essentially of glass fibers and a resin binder, the porous filter layer having a downstream surface, a layer of a porous support medium which principally includes cellulose fibers and has a rated pore size greater than the rated pore size of the porous filter layer, the porous support layer having an upstream surface and a downstream surface, the upstream surface lying adjacent to the downstream surface of the porous filter layer, and a plurality of polyamide beads which comprise a hot-melt adhesive material and which are disposed in continuous, parallel strips on the downstream surface of the porous support layer, the filter arrangement being corrugated to define pleats extending generally perpendicular to the polymeric beads wherein each pleat includes an open end, a bight end, and first and second opposing sides and includes a portion within each pleat in which the opposing sides are in essentially parallel relationship, and each bead extends from the open end of the pleat along the first side to the bight end and from the bight end of the pleat along the second side to the open end and the portions of each bead which extend along the essentially parallel portions of the opposing sides of the pleat having been fused to one another by heat-setting.
15. A filter arrangement for removing one or more substances from a fluid flowing through the filter arrangement, the filter arrangement comprising a layer of a porous filter medium which principally includes cellulose fibers and further includes glass fibers, polyester fibers, and a resin binder, the porous filter layer having a downstream surface, a layer of a porous support medium which principally includes cellulose fibers and has a rated pore size greater than the rated pore size of the porous filter layer, the porous support layer having an upstream surface and a downstream surface, the upstream surface of the porous support layer lying adjacent to the downstream surface of the porous filter layer, and a plurality of polyamide beads which comprise a hot-melt adhesive material and which are disposed in continuous, parallel strips on the downstream surface of the porous support layer, the filter arrangement being corrugated to define pleats extending generally perpendicular to the polymeric beads wherein each pleat includes an open end, a bight end, and first and second opposing sides and includes a portion within each pleat in which the opposing sides are in essentially parallel relationship, and wherein each bead extends from the open end of the pleat along the first side to the bight end and from the bight end of the pleat along the second side to the open end and the portions of each bead which extend along the essentially parallel portions of the opposing sides of the pleat having been fused to one another by heat-setting.
2. The filter arrangement of claim 1 wherein the porous support layer principally comprises cellulose fibers.
3. The filter arrangement of claim 1 wherein the porous support layer comprises a nonwoven web of fibers.
4. The filter arrangement of claim 1 wherein the porous support layer has a larger rated pore size than the porous filter layer.
5. The filter arrangement of claim 1 wherein the first and second surfaces of the porous support layer respectively comprise upstream and downstream surfaces.
6. The filter arrangement of claim 1 wherein the porous filter layer principally comprises cellulose fibers.
7. The filter arrangement of claim 1 wherein the porous filter layer consists essentially of glass fibers and a resin binder.
8. The filter arrangement of claim 1 wherein the rated pore size of the porous filter layer is no greater than 50 microns.
9. The filter arrangement of claim 1 wherein the porous filter layer has a first surface disposed immediately adjacent to the first surface of the porous support layer.
10. The filter arrangement of claim 1 wherein each bead comprises a continuous strip.
11. The filter arrangement of claim 1 wherein each bead is formed from a material which comprises a polyamide.
12. The filter arrangement of claim 1 wherein each bead is joined to the second surface of the porous support layer.
13. The filter arrangement of claim 1 wherein each bead has a generally circular cross section.
14. The filter arrangement of claim 1 wherein the bead portions are fused to one another.
16. The filter arrangement of claim 15 wherein the porous filter layer has a rated pore size in the range from about 3 to about 25 microns.
18. The filter arrangement of claim 17 wherein the porous filter layer has a rated pore size in the range from about 1 to about 50 microns.

This application is a continuation of application Ser. No. 07/206,676, filed June 15, 1988, now abandoned.

The present invention relates to a filter arrangement, in particular, a corrugated filter arrangement, for removing one or more substances from a fluid flowing through the filter arrangement.

According to the present invention, a filter arrangement may comprise a porous filter layer and a porous support layer. The porous support layer has first and second surfaces, and the porous filter layer is positioned near the first surface of the porous support layer. The filter arrangement further comprises several polymeric beads disposed in parallel strips on the second surface of the porous support layer. The filter arrangement is corrugated to form pleats which extend generally perpendicular to the polymeric beads. Each pleat includes an open end, a bight end, and first and second opposing sides which extend between the open end and the bight end and include a portion in which the opposing sides are essentially parallel. Each bead extends down into and out from the pleat. Thus, each bead extends from the open end of the pleat along the first side to the bight end and from the bight end of the pleat along the second side to the open end. The portions of each bead which extend along the essentially parallel portions of the opposing sides of the pleat are joined to one another.

The support layer preferably has greater mechanical strength or toughness than the filter layer, which is frequently delicate. Consequently, by disposing the beads on the surface of the support layer rather than directly on the filter layer, the filter layer is protected from tearing or excessive distortion when the filter arrangement is corrugated or used to filter fluids. Further, by joining the opposing portions of each bead with the pleats, flow channels are defined within each pleat. These flow channels are maintained relatively open by the joined portions of the beads even when the filter arrangement is subjected to high pressure liquids or pulsating flow. Thus, a filter arrangement according to the present invention provides more reliable service and a greater service life than many conventional filters.

FIG. 1 is an elevation view of a corrugated filter arrangement embodying the present invention.

FIG. 2 is a cross-sectional plan view of the corrugated filter arrangement of FIG. 1 as viewed long lines II--II.

FIG. 3 is a perspective view of an uncorrugated filter arrangement.

FIGS. 4a-4f are cross-sectional views of various modifications of the polymeric beads of the filter arrangement of FIG. 1.

As shown in FIGS. 1 and 2, one example of a filter arrangement 10 embodying the present invention generally comprises a porous filter layer 11, a porous support layer 12, and several polymeric beads 13 disposed in parallel strips along the support layer 12. The exemplary filter arrangement 10 is corrugated to form pleats 14 which extend generally perpendicular to the beads 13. Within each pleat 14 the beads 13 are joined to themselves to define flow channels 15 within the pleat 13 and ensure proper fluid flow through the pleat 13.

The filter layer 11 may be any suitable filter medium. For example, the filter medium may be fashioned as a membrane or a woven or nonwoven fibrous sheet and may be fabricated from a natural or synthetic polymer or glass. Thus, the filter medium may comprise a nonwoven sheet principally including cellulose fibers or essentially consisting of glass fibers with a resin binder. Further, the filter medium may have any desired pore structure, including a graded pore structure, and any desired rated pore size.

The support layer 12 may be formed from a variety of suitable porous materials. For example, the support layer 12 may be fashioned from a woven or, preferably, nonwoven fibrous sheet and may be fabricated from a natural or synthetic polymer or glass. The rated pore size of the support layer 12 is preferably greater than the rate pore size of the filter layer 11. In accordance with one aspect of the invention, the support layer 12 has greater mechanical strength than the filter layer 11 and, therefore, serves to protect the typically delicate filter layer 11 from tearing or distortion during corrugation or use.

The filter layer 11 and the support layer 12 form a composite, as shown in FIG. 3. In the exemplary filter arrangement 10, one surface of the filter layer 11 is disposed immediately adjacent to a first surface of the support layer 12. Alternatively, the composite may include one or more intermediate layers interposed between the filter layer and the support layer. Further, in the exemplary filter arrangement 10, the support layer 12 and beads 13 are disposed along only one surface, preferably the downstream surface, of the filter layer 11. Alternatively, the composite may include a support layer and beads provided along both the upstream surface and the downstream surface of the filter layer.

The polymeric beads may be formed from a variety of materials including many thermoplastic or thermosetting materials. Thus, the polymeric beads may be formed from a material comprising a polyester, polyamide, or polyolefin resin. Further, the polymeric beads 13 may be applied in parallel strips along the second surface of the support layer 12 in any suitable manner. For example, the polymeric beads may be formed from a hot melt adhesive and applied continuously from an evenly spaced multi-orifice dispensing head with the support layer 12 moving under the dispensing head, preferably at a constant velocity, producing several continuous, parallel beads. The hot melt adhesive may be applied to the support layer 12 either before or, preferably, after the support layer 12 and the filter layer 11 have been formed into the composite.

In a modification of this method, the hot melt adhesive may be applied intermittently from the dispensing head or from an unevenly spaced multi-orifice dispensing head to produce several discontinuous, parallel beads or several unevenly spaced parallel beads. In other alternatives, a granular polymeric material may be applied by extrusion from a multi-orifice extrusion head; a plastisol or polyurethane may be applied from a multi-orifice dispenser and then cured with an in-line heating device; or a solvent based adhesive or potting compound may be applied from a multi-orifice dispenser and the solvent may then be flashed by a heating/ventilation device.

As applied to the surface layer 12, the bead material preferably has a surface tension high enough to prevent excessive wetting of the support layer 12 or wicking through the support layer 12 but not so high as to prevent adhesion between the bead 13 and the support layer 12. This minimizes flow restriction through the exemplary filter arrangement since the surface of the support layer 12 which is in contact with the bead 13 is effectively blocked. The contact angle between the bead 13 and the support layer 12, as measured by the Sessile method, may preferably be in the range from about 100° to about 120°.

Various suitable cross-sectional shapes of the beads 13 are shown in FIGS. 4a-4f. The most preferred shape is the needle-like cross-section shown in FIG. 4a. This shape minimizes the contact area between the bead 13 and the support layer 12. However, this shape is difficult to produce at reasonable production rates. For large scale production, the circular cross-section shown in FIG. 4b is preferred. Other suitable shapes include the triangular, diamond, square, and rectangular cross-sections shown in FIGS. 4c-4f, respectively.

The size of each bead and the spacing between the beads may vary without departing from the scope of the invention. The size of the beads is determined by the size of the orifice in the dispensing head, the relative velocity between the dispensing head and the support layer 12, and the viscosity of the bead material. For many applications, the diameter of the beads may preferably be in the range from about 4 to about 20 mils.

The spacing between beads is preferably selected so that the stress deformation, i.e., deflection, of the pleated composite does not exceed either of two conditions: (1) the elastic limit of the filter medium comprising the filter layer 11, i.e., the maximum unit of stress beyond which the filter medium will not return to its original shape, is not exceeded and (2) the deflection of the composite during normal operation does not increase the flow resistance in the flow channels 15 more than 10 percent. For many applications, the spacing between evenly spaced beads is preferably such that about 5 to about 20 beads per inch or, most preferably, about 8 to about 15 beads per inch are applied to the support layer 12.

Once the beads 13 have been applied to the support layer 12, the filter layer 11 and the support layer 12 with the beads 13 are fed into a corrugator, e.g., a Chandler "grab and fold" type corrugator or a Rabofsky "cam actuated blade" type corrugator. The filter layer 11 and the support layer 12 may be formed into the composite before being fed into the corrugator or, preferably, the filter layer 11 and the support layer 12 with the beads 13 may be fed individually into the corrugator which then forms the composite at the same time it forms the pleats 14 in the filter arrangement 10.

As shown in FIG. 1, each pleat 14 extends generally perpendicular to the beads 13 and includes an open end 20, a bight end 21, and first and second opposing sides 22, 23. In accordance with another aspect of the invention, the portions of each bead 13 which extend along the opposing sides 22, 23 of each pleat are joined to one another, defining flow channels 15 within each pleat 14 between adjacent beads 13 and the opposing sides 22, 23. Because the support layer 12 and beads 13 are preferably positioned on the downstream surface of the filter layer 11 to resist the pressure drop across the filter arrangement 10 during normal operation, the flow channels 15 are preferably drainage channels.

Care should be taken in the alignment of the support layer 12 within the corrugator to ensure that the beads 13 oppose themselves in the pleats 14. If the beads 13 are formed from a hot melt adhesive, heated panels in the corrugator may be used to tack the beads together. Beads comprising other types of materials may require coating by an adhesive or softening by a solvent for this purpose. After the filter arrangement 10 has been corrugated, it may be desirable to set the tacked beads in a forced convection oven. It may also be desirable to cure any binders in the filter medium of the filter layer 11 at the same time the beads 13 are being set. Alternatively, the beads 13 may be set and the filter medium may be cured in a tunnel oven during a continuous production process. Of course, the setting of the beads and the curing of the filter medium should be done at temperatures which are not deleterious to the other components of the filter arrangement. Further, all of the cured components of the filter arrangement should be compatible with the fluid to be filtered.

In corrugating the filter arrangement 10, and setting the beads 13, each bead 13 in the pleat 14 is preferably joined to itself the entire distance from the bight end 21 to the open end 20 of the pleat 14. Further, the radius at the bight end 21 of the pleat 14 is preferably as small as possible, preferably zero, to maximize resistance to fatigue failure which may result from flexure of the filter arrangement 10 during pulsating flow conditions. However, the beads 13 must not be over-compressed which would cause excessive blinding of the filter arrangement 10 and would reduce the cross-sectional area of the flow channel 15. Thus, when corrugating the filter arrangement 10, it may be desirable to secure the filter arrangement 10 in a spring-loaded fixture with positive stops to prevent over-compression and a slight reverse-curve to ensure the minimum radius at the bight end 21 of the pleat 13.

By joining the opposing portions of each bead 13, the flow channels 15 within each pleat 14 remain relatively open even when the filter arrangement 10 is used to filter a pulsating flow or liquids at high differential pressures, e.g., 50 to 500 psi, across the filter arrangement 10. Thus, a filter arrangement according to the present invention has a greater resistance to flow fatigue and, therefore, provides more reliable service and a greater service life than many conventional filters.

The filter arrangement according to the present invention may be incorporated into a wide variety of filters. For example, the filter arrangement may be incorporated into a flat pack or panel-type filter which could be utilized in in-line or axial flow applications. Alternatively, the filter arrangement may be formed into a generally cylindrical configuration and incorporated, along with any necessary end caps, core, spacers, or exterior restraints, into the cylindrical filter for radial outside-in or inside-out flow applications.

Two specific examples of a filter arrangement according to the present invention are set forth below. These examples are expected to prove particularly effective in use.

The filter layer is formed from a filter medium principally comprising cellulose fibers such as cotton fibers and further comprising glass fibers to improve efficiency and polyester fibers to improve its strength. These fibers may be bound by a phenolic resin. Such a filter medium is available from James River Corporation. Preferably, the filter medium is not cured prior to corrugation and has a rated pore size in the range from about 3 micron to about 25 microns.

The support layer is a cellulose paper available from Pallflex Corporation under the trade designation D4D. The beads are formed from a polyamide hot melt adhesive available from Henkle Inc. under the trade designation Macromelt 6300 and are continuously applied to the downstream surface of the support layer from an evenly spaced multi-orifice dispensing head. The uncured filter layer and the support layer with the beads are then individually fed to a corrugator which forms the composite with the upstream surface of the support layer lying adjacent to the downstream surface of the filter layer and which also forms pleats extending generally perpendicular to the beads. Within each pleat, the opposing portions of the beads abut one another. Hot plates positioned within the corrugator soften the beads and tack the opposing portions of the beads together. The corrugated filter arrangement is then placed in a spring-loaded fixture with positive stops and a slight reverse curve and is heated in a convection oven to about 325° for about 15 minutes. This heating both sets the joined portion of the beads and cures the filter medium.

The filter layer is formed from a filter medium consisting essentially of glass fibers with a resin binder. Such a filter medium is available from Hollingsworth and Vose Corporation. Further, this filter media may have a rated pore size in the range from about 1 micron to about 50 microns. The support layer is a paper available from Pallflex Corporation under the trade designation D4D. The beads are formed from a polyamide hot melt adhesive available from Henkle Inc. under the trade designation Macromelt 6300 and are continuously applied to the downstream surface of the support layer from an evenly spaced multi-orifice dispensing head. The filter layer and the support layer with the beads are then individually fed to a corrugator which forms the composite with the upstream surface of the support layer lying adjacent to the downstream surface of the filter layer and also forms pleats extending generally perpendicular to the beads. Within each pleat, the opposing portions of the beads abut one another. Hot plates positioned within the corrugator soften the beads and tack the opposing portions of the beads together. The corrugated filter arrangement is then placed in a spring-loaded fixture with positive stops and a slight reverse curve and is heated in a convection oven to about 325° for about 15 minutes. This heating sets the joined portion of the beads.

Although the present invention has been described in terms of an exemplary embodiment and two examples, it is not limited to this embodiment or these examples. Alternative embodiments, examples, and modifications which would still be encompassed by the invention may be made by those skilled in the art, particularly in light of the foregoing teachings. Therefore, the following claims are intended to cover any alternative embodiments, examples, modifications, or equivalents which may be included within the spirit and scope of the invention as defined by the claims.

Miller, John D., Swiezbin, Joseph R.

Patent Priority Assignee Title
10391437, Apr 08 2014 Filtrum Fibretechnologies Private Limited Filter media construction
10441909, Jun 25 2014 Hollingsworth & Vose Company Filter media including oriented fibers
10449474, Sep 18 2015 Hollingsworth & Vose Company Filter media including a waved filtration layer
10561972, Sep 18 2015 Hollingsworth & Vose Company Filter media including a waved filtration layer
10744439, Jun 24 2016 K&N ENGINEERING, INC Compound air filter and method of removing airborne molecular contaminants and volatile organic compounds therefrom
10758858, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
10814261, Feb 21 2017 Hollingsworth & Vose Company Electret-containing filter media
11077394, Feb 21 2017 Hollingsworth & Vose Company Electret-containing filter media
11117079, Jan 20 2017 CHAMPION LABORATORIES, INC Filter packs, processes for making filter packs, and air filters comprising filter packs
11420143, Nov 05 2018 Hollingsworth & Vose Company Filter media with irregular structure and/or reversibly stretchable layers
11433332, Nov 05 2018 Hollingsworth & Vose Company Filter media with irregular structure
5232595, Jul 05 1990 Filtrox-Werk AG Deep bed filter, method of manufacture of a filter layer and a filter module
5279731, Sep 11 1990 PALL EUROPE CORPORATION; Pall Corporation Depth filter media
5417793, May 14 1993 Derrick Manufacturing Corporation Undulating screen for vibratory screening machine and method of fabrication thereof
5417858, Jan 13 1993 Derrick Manufacturing Corporation Screen assembly for vibrating screening machine
5417859, May 14 1993 Derrick Manufacturing Corporation Undulating screen for vibratory screening machine and method of fabrication thereof
5429744, Sep 28 1992 AB Electrolux Spacer elements between membrane surfaces of a fluid purifier, and a method for their manufacture
5468382, Sep 09 1991 Pall Corporation Depth filter media
5543047, Nov 06 1992 Pall Corporation Filter with over-laid pleats in intimate contact
5551575, Jul 29 1994 TUBOSCOPE I P INC Shale shaker screens
5552048, Jun 15 1988 Pall Corporation Two pleated filter composite having cushioning layers
5598930, Jul 20 1995 VARCO I P, INC Shale shaker screen
5620790, Jun 23 1994 Sartorius Stedim Biotech GmbH Multi-layer microfiltration membrane having an integrated prefiltration layer and method of making same
5622537, Oct 19 1990 Donaldson Company, Inc. Filtration arrangement
5669949, Apr 21 1995 Donaldson Company, Inc Air filtration arrangement
5720881, Jan 13 1993 Derrick Corporation Screen assembly for vibrating screening machine
5725784, Nov 06 1992 Pall Corporation Filtering method
5744036, Feb 03 1997 AMERICAN AIR FILTER COMPANY, INC Pleated filter arrangement
5755963, Jul 28 1995 Nippondenso Co., Ltd. Filter element and fabrication method for the same
5759351, Jul 28 1995 Nippondenso Co., Ltd. Method of manufacturing a filter having longitudinal channels by molding from a slurry using thermosetting resin
5762669, Oct 19 1990 Donaldson Company, Inc. Filtration arrangement
5762670, Oct 19 1990 Donaldson Company, Inc. Filtration arrangement
5783077, Jan 13 1993 Derrick Corporation Undulating screen for vibratory screening machine
5792227, Oct 19 1990 Donaldson Company, Inc. Filtration arrangement
5795369, Mar 06 1996 CECO FILTERS, INC Fluted filter media for a fiber bed mist eliminator
5797973, Apr 21 1995 Donaldson Company, Inc. Air filtration arrangement and method
5800587, Oct 19 1990 Donaldson Company, Inc. Filtration arrangement and method
5814219, Apr 21 1995 Donaldson Company, Inc. Pleated filter having a planar sheet of randomly arranged filaments to maintain pleat spacing
5858044, Jul 11 1996 Donaldson Company, Inc. Filter arrangement including removable filter with first and second media secured together
5868929, Jan 13 1993 Derrick Corporation Screen assembly for vibrating screening machine
5876552, Jan 13 1993 Derrick Corporation Method of fabricating screen for vibratory screening machine
5876601, Nov 06 1992 Pall Corporation Pleated filter having a helically wrapped septum to tension the filter
5921399, Jun 07 1996 Derrick Corporation Gumbo separator
5944993, Jan 13 1993 Derrick Corporation Screen assembly for vibrating screening machine
5958236, Jan 13 1993 Derrick Manufacturing Corporation Undulating screen for vibratory screening machine and method of fabrication thereof
5971159, Apr 30 1993 VARCO I P, INC Screen assembly for a vibratory separator
5972063, Apr 21 1995 Donaldson Company, Inc. Air filtration arrangement and method
5988397, Jan 21 1997 TUBOSCOPE I P Screen for vibratory separator
6000556, Jan 13 1993 Derrick Manufacturing Corporation Screen assembly for vibratory screening machine
6007608, Jul 10 1998 Donaldson Company, Inc Mist collector and method
6015452, Jul 11 1996 Donaldson Company, Inc. Method of servicing an air cleaner and of filtering engine intake air using prefilter arrangements
6019809, Oct 19 1990 Donaldson Company, Inc. Filtration arrangement
6032806, Apr 30 1993 VARCO I P, INC Screen apparatus for vibratory separator
6036752, Jul 28 1998 3M Innovative Properties Company Pleated filter
6045597, Jun 22 1998 AAF International Inc. Pleated filter with spacer insert
6099729, Mar 01 1996 Parker Intangibles LLC Coreless non-metallic filter element
6113784, Nov 06 1992 Pall Corporation Filter
6152307, Apr 30 1993 VARCO I P, INC Vibratory separator screens
6267247, Apr 30 1993 VARCO I P, INC Vibratory separator screen
6269953, Apr 30 1993 VARCO I P, INC Vibratory separator screen assemblies
6273938, Aug 13 1999 3M Innovative Properties Company Channel flow filter
6283302, Apr 30 1993 VARCO I P, INC Unibody screen structure
6290068, Apr 30 1993 TUBOSCOPE I P Shaker screens and methods of use
6302276, Apr 30 1993 Tuboscope I/P, Inc. Screen support strip for use in vibratory screening apparatus
6325216, Apr 30 1993 VARCO I P, INC Screen apparatus for vibratory separator
6340089, Jan 13 1993 Derrick Corporation Method of fabricating undulating screen for vibratory screening machine
6371302, Apr 30 1993 TUBOSCOPE I P Vibratory separator screens
6401934, Apr 30 1993 VARCO I P, INC Ramped screen & vibratory separator system
6409864, Jun 22 1998 AMERICAN AIR FILTER COMPANY, INC Method of assembly of pleated filter with spacer insert
6443310, Apr 30 1993 TUBOSCOPE I P Seal screen structure
6450345, Apr 30 1993 Varco I/P, Inc. Glue pattern screens and methods of production
6454099, Apr 30 1993 TUBOSCOPE I P Vibrator separator screens
6530483, Apr 30 1993 Varco I/P, Inc. Unibody structure for screen assembly
6564947, Jan 13 1993 Derrick Corporation Method of screening material utilizing a plurality of undulating screen assemblies
6565698, Apr 30 1993 TUBOSCOPE I P, INC Method for making vibratory separator screens
6607080, Apr 30 1993 VARCO I P, INC Screen assembly for vibratory separators
6629610, Apr 30 1993 TUBOSCOPE I P Screen with ramps for vibratory separator system
6669985, Oct 30 1998 VARCO I P, INC Methods for making glued shale shaker screens
6722504, Apr 30 1993 VARCO I P, INC Vibratory separators and screens
6736270, Oct 30 1998 VARCO I P, INC Glued screens for shale shakers
6787031, Dec 15 2000 BHA Altair, LLC Filter cartridge with strap and method
6846413, Sep 26 1997 Boehringer Ingelheim International GmbH Microstructured filter
6892888, Apr 30 1993 VARCO I P, INC Screen with unibody structure
6910589, Jun 22 2000 Oberlin Filter Company Annular pleated filter cartridge for liquid filtration apparatus
6911144, Dec 15 2000 BHA Altair, LLC Filter cartridge with strap and method
6932883, Oct 30 1998 VARCO I P, INC Screens for vibratory separators
6977042, Sep 26 1997 Microstructured filter
7125490, May 29 2003 Porex Corporation Porous filter
7520391, Dec 04 1999 VARCO I P, INC Screen assembly for vibratory separator
7645383, Sep 26 1997 Boehringer Ingelheim International GmbH Microstructured filter
7883562, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
7896940, Jul 09 2004 3M Innovative Properties Company Self-supporting pleated filter media
8197569, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
8202340, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
8251231, Aug 24 2007 ARGO-HYTOS GROUP AG Corrugated or pleated flat material
8257459, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
8419817, Jul 09 2004 3M Innovative Properties Company Self-supporting pleated filter media
8882875, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
9061234, Jan 14 2011 Pall Corporation Gas filter assemblies and methods for filtering gases
9579592, Apr 06 2015 Pall Corporation Filter elements
9592465, Nov 10 2011 Mahle International GmbH Filter material
9687771, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
9718020, Feb 28 2007 Hollingsworth & Vose Company Waved filter media and elements
D425531, Apr 30 1993 TURBOSCOPE I P, INC Screen
Patent Priority Assignee Title
3057481,
3165473,
3189179,
3280985,
3520417,
3692184,
3716970,
3871851,
4033881, Jan 06 1975 Pall Corporation Multilayer paper sheet filter cartridges
4154688, Jan 27 1978 Pall Corporation Collapse-resistant corrugated filter element
4252591, May 02 1979 Pall Corporation Corrugating apparatus and process
4589983, Nov 02 1981 DONALDSON COMPANY, INC , A CORP OF DE Fluid filtering device
4665050, Aug 13 1984 Pall Corporation Self-supporting structures containing immobilized inorganic sorbent particles and method for forming same
4735720, Mar 17 1986 Cummins Filtration IP, Inc Pleated filter element having improved side seam seal
DE2034669,
DE3219671,
FR8118562,
GB1277588,
GB2156232,
GB2192810,
GB763917,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 15 1989Pall Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 07 1993ASPN: Payor Number Assigned.
Jul 10 1995M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 19 1999M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 13 2003REM: Maintenance Fee Reminder Mailed.
Jan 28 2004EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 28 19954 years fee payment window open
Jul 28 19956 months grace period start (w surcharge)
Jan 28 1996patent expiry (for year 4)
Jan 28 19982 years to revive unintentionally abandoned end. (for year 4)
Jan 28 19998 years fee payment window open
Jul 28 19996 months grace period start (w surcharge)
Jan 28 2000patent expiry (for year 8)
Jan 28 20022 years to revive unintentionally abandoned end. (for year 8)
Jan 28 200312 years fee payment window open
Jul 28 20036 months grace period start (w surcharge)
Jan 28 2004patent expiry (for year 12)
Jan 28 20062 years to revive unintentionally abandoned end. (for year 12)