A surgical implantation device to be placed within a patient's body and seal a hernial rupture includes either a single planar member attached to a locating segment or a first planar member and second planar member, large enough to cover the opening in the abdominal fascia, that are placed on opposite sides of the fascia. In the case of a single planar member, the locating member is placed in the fascia opening and the planar member is placed interiorly of the transversalis fascia. In the case of two planar members, the first and second planar members are connected by a locating member that passes through the fascia opening. The surgical implantation device can be folded upon itself and compressed to fit with a surgical tube and inserted into the patient to the hernial site. Once the surgical tube is at the site, the surgical implantation device is forced from the tube and automatically expands so the planar members assume their flat shape and the locating member assumes its elongated shape.
|
8. A surgical implantation device that can be placed within a patient using a surgical tube inserted through the patient's skin and that, once placed, can be used to seal an enlarged generally circular opening in the wall of one of the patient's body cavities, the surgical implant comprising:
a first flat, circular patch that is constructed of a biocompatible fabric and that includes a plurality of resilient members sufficiently stiff to urge the first patch into a planar orientation and resist any other orientations, but sufficiently flexible to allow the first patch to be folded into a surgical tube; a second flat, circular patch that is constructed of a biocompatible fabric and that includes a plurality of resilient members sufficiently stiff to urge the second patch into a planar orientation and resist any other orientations but sufficiently flexible to allow the second patch to be folded into the surgical tube; and an elongated locating member that is constructed of a biocompatible material and that includes at a first end hook and loop fastener means, for attaching the member to the first patch, and further includes at a second end hook and loop fastener means, for attaching the member to the second patch, the locating member having a generally cylindrical shape with a diameter substantially the same as the diameter of the circular opening in the wall of the patient's body cavity.
13. A method of implanting a surgical implantation device, having a generally planar first portion and second portion that are interconnected by a connecting segment, into a patient using a surgical tube to seal an enlarged, generally circular opening in the wall of one of the patient's body cavities, the method comprising the steps of:
providing a surgical implementation device having a generally planar first portion and second portion that are interconnected by a connecting segment; inserting and locating one end of a surgical tube through a wall opening, in a wall of a body cavity, and adjacent a first side of the wall; forcing the first portion of the surgical implantation device out of the surgical tube adjacent the first side of the wall and allowing the first portion to automatically assume a planar shape; forcing the connecting segment of the surgical implantation device out of the surgical tube within the wall opening; forcing the second planar portion of the surgical implantation device out of the surgical tube adjacent a second side of the wall and allowing the second portion to automatically assume a planar shape; passing a suture through the first portion, the connecting segment, and the second portion of the surgical implantation device and tying off the suture, to attach together the first portion, connecting segment, and second portion; and withdrawing the surgical tube from the patient.
1. A surgical implantation device adapted to be placed within a patient using a surgical tube inserted through the patient's skin, for sealing a wall opening in one of the patient's body cavities, the surgical implant comprising:
a first planar patch member, for bridging the wall opening, that can be compressed into an implanting condition such that it fits within a surgical tube and that can be expanded into a deployed condition upon release from the surgical tube such that it assumes a planar shape; a second planar patch member, for bridging the wall opening, that can be compressed into an implanting condition such that it fits within a surgical tube and that can be expanded into a deployed condition upon release from the surgical tube such that it assumes a planar shape; a second planar patch member, for bridging the wall opening, that can be compressed into an implanting condition such that it fits within the surgical tube and that can be expanded into a deployed condition upon release from the surgical tube such that it assumes a planar shape; and a locating member having a predetermined length; wherein one end of the locating member and one surface of the first patch member include hook and loop fasteners, for removably attaching the two members together, and the opposite end of the locating member and one surface of the second patch member include hook and loop fasteners, for removably attaching the two members together; wherein the first planar member, locating member, and second planar member are apart in the implanting condition; and wherein in the deployed condition, the first patch member is positioned on one side of the wall opening in the patient's body cavity, the second patch member is positioned on the other side of the wall opening, and the locating member extends through the wall opening to interconnect the first and second patch members.
2. A surgical implantation device as defined in
3. A surgical implantation device as defined in
4. A surgical implantation device as defined in
5. A surgical implantation device as defined in
6. A surgical implantation device as defined in
7. A surgical implantation device as defined in
9. A surgical implantation device as defined in
10. A surgical implantation device as defined in
11. A surgical implantation device as defined in
12. A surgical implantation device as defined in
|
1. Field of the Invention
This invention relates generally to surgical implantation devices and, more particularly, to surgical implantation devices that are used to repair openings in the walls of body cavities.
2. Description of the Related Art
The present invention can be used in treating an inguinal hernia, for example. Inguinal hernia is a painful condition in which the wall of the abdominal cavity ruptures and a portion of the peritoneum protrudes through the opening in the abdominal wall. The portion of the peritoneum protruding through the abdominal wall must be tied off and pushed back into place and the opening in the wall must be sealed to prevent further injury and infection. These tasks must be accomplished using surgical techniques.
FIG. 1 is a cross-sectional view of a patient with a hernia condition in which the transversalis fascia 12, or abdominal wall, has a ruptured opening 13 with angled edges 14 in the wall defining a frusto-conical circumference. The peritoneum 16 is a membrane that lines the abdominal cavity and acts as a cover for the internal organs, including the intestine (not shown). When the rupture is large enough, typically approximately one centimeter in diameter, the peritoneum and the internal organs behind it can suddenly protrude outwardly past the rupture into the space behind the external oblique muscle 18. This can strain the muscle and press it against the overlaying subcutaneous fat 20 and the skin 22.
One surgical technique commonly used to treat the hernia and seal the rupture is to make an incision in the skin 22 followed by dissection through the subcutaneous fat 20 and external oblique muscle 18 to reach the opening in the transversalis fascia 12. Once exposed, the portion of peritoneum 16 extending through the rupture can be tied off and pushed back to the proper side of the fascia. The opening in the fascia can then be repaired by pulling the opening's angled edges 14 together and keeping them closed by using sutures or surgical staples. This surgical technique can lead to great post-operative discomfort because of the need to cut through many layers of tissue. The large incision requires careful post-operative care to prevent infection from the outside and produces great discomfort while the wound heals. Pulling the opening in the fascia closed also creates a tension on the fascia, which results in additional discomfort. Thus, the incision and the pulling together of the fascia both create difficulties in post-operative recovery.
Another surgical technique commonly used to repair hernias uses a biocompatible prosthetic patch constructed from, for example, polypropylene. The patch is positioned on one side of the fascia, bridging the opening 13. Alternatively, with relatively small openings, the patch is rolled up and inserted lengthwise into the opening, plugging it. In either case, with the passage of time body tissue will grow around and onto the patch and hold it in place. FIG. 2 is a cross-sectional view showing a prosthetic patch 24 placed on top of the fascia 12 covering the opening 13 in accordance with this technique. Unfortunately, the prosthetic patch can move about in relation to the opening before tissue has grown onto it. Such movement produces a less than optimal result and possibly a failure of the seal. In addition, the large incision in the skin 22, with the concomitant discomfort and post-operative difficulties, is still a problem.
More recently, less invasive surgical procedures have been used in conjunction with a laparoscope. A typical laparoscope includes a one-centimeter diameter surgical tube that can be inserted through the patient's skin and through the peritoneum 16 into the peritoneal cavity, toward the center of the abdomen interiorly of the peritoneum. Thus, the surgical tube is approximately of the same diameter as the hernia opening 13 and leaves a relatively small wound. The surgeon views an optical image through the surgical tube and can see the progress of the tube's end as it makes its way in the peritoneal cavity toward the site of the opening. The peritoneum can either be left intact while the tube's end is moved to the opening 13 or the peritoneum can be cut open to extend the tube's end out of the peritoneal cavity to the opening.
At the transversalis fascia opening 13, a prosthetic patch inserted down the length of the surgical tube can be forced out of the tube and moved into its desired position. Post-operative problems are decreased by this procedure because of the smaller external wound left by the surgical tube. The patch, however, still can shift before tissue has grown onto it. The prosthetic patch also can be sutured to the transversalis fascia or peritoneum, to minimize movement. Unfortunately, it can be very difficult to attach the prosthetic patch with sutures using the laparoscope because of difficulties in viewing and in maneuvering through the laparoscope.
From the discussion above, it should be apparent that there is a need for a surgical implantation device and technique for using it that minimize patient discomfort and provide an easier post-operative recovery, that minimize shifting of the device before tissue has grown into place, and that eliminate the need for surgical dissection. The present invention satisfies this need.
The invention provides a surgical implantation device that can be used with a laparoscope to minimize the external wound necessary for placement of the implantation device and that can be compressed into an implanting condition for placement at the opening in the transversalis fascia using the laparoscope and then can be expanded into a deployed condition to securely seal the opening. In the implanting condition, the surgical implantation device is compressed to a size small enough to fit within the hollow surgical tube of the laparoscope. Once the surgical tube is placed in its proper position at the fascia opening, the surgical implantation device is pushed out the end of the tube and is expanded into the deployed condition, effectively bridging the opening in the transversalis fascia. The surgical implantation device is effectively immobilized in place when in the deployed condition, thereby preventing its movement out of the fascia opening while tissue grows around it. The peritoneum can either be left intact and pushed through the fascia opening by the surgical tube and held in place by the surgical implant device, or the peritoneum can be pierced and the surgical tube and device can be positioned directly in the fascia opening.
In one aspect of the invention, the surgical implantation device comprises an expandable planar member attached to a biocompatible locating plug member. The planar member and locating plug member are compressible such that, in the implanting condition, both members can fit within the surgical tube of the laparoscope, the locating plug being inserted first. The end of the surgical tube is first placed at the opening in the transversalis fascia, with the peritoneum either left intact or pierced. The locating plug is then pushed out of the surgical tube such that it fills the opening in the transversalis fascia. The planar member is then pushed out of the tube, whereupon it automatically expands and assumes a planar orientation adjacent the inner surface of the transversalis fascia. The planar member is held in place by the locating plug and by pressure from the intestine and other tissues in the peritoneal cavity. Thus, the surgical implantation device is immobilized in position while the planar member automatically assumes an expanded condition in which it bridges the opening in the transversalis fascia.
In another aspect of the invention, the surgical implantation device includes two biocompatible planar members, or patches, that are placed on either side of the transversalis fascia at the opening and also includes a biocompatible locating plug member that passes through the opening and connects the two planar members together. The members are compressible such that, in the implanting condition, all three members can fit within the surgical tube of the laparoscope. The end of the surgical tube is placed through the opening in the fascia, with the peritoneum either left intact or pierced, and the device is left compressed in the tube. The first planar member is then pushed out the end of the laparoscope tube, whereupon it is automatically expanded into its planar deployed condition in front of the fascia. The elongated biocompatible locating member is next left in place as the tube is withdrawn through the opening so that it occupies the opening in the fascia and extends between the front surface and back surface of the fascia. Next, the last biocompatible planar member is pushed out the end of the tube, automatically expanding into its planar deployed condition adjacent the back surface of the fascia. Each planar member is therefore immobilized in position by its connection to the opposite planar member. If the peritoneum was pierced, it is then sutured or stapled together.
The planar members and connecting length of locating material can be formed from a wide variety of biocompatible materials. These materials include fabrics such as "MARLEX"-polypropylene, "MERSILENE"-"DACRON", and "GORE-TEX"-polytetraflourethelene. For example, the planar members can comprise fabric patches made from these materials. Alternatively, the planar members can comprise co-planar spoked segments that emanate radially from a hub. In either case, the members can be automatically expanded into their deployed condition by constructing them with a variety of resilient materials that have memory. The resilient materials can be embedded in or attached to the fabric patches and include nylon, polypropylene, or silastic materials, for example. The resilient materials can be embedded or attached to the fabric patches in multiple strands emanating radially or concentrically from the center of the patch or in a single strand along the periphery of the patch. Alternatively, the patches can be made entirely from the resilient materials.
The surgical implantation device can be implanted as a single piece or can be pushed down the laparoscope tube as individual component parts and assembled at the hernia site. A suture attached to the first planar member can act as a guide string for the remaining members. Additionally, a staple technique can be used to attach the parts together before insertion. The component parts, if inserted individually, can be attached together at the opening by using a hook-and-loop fastener arrangement, such as "VELCRO", or by using sutures.
Other features and advantages of the present invention should be apparent from the following description of the preferred embodiments, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention.
FIG. 1 is a cross-sectional view of tissue layers in a patient showing a hernia condition.
FIG. 2 is a cross-sectional view of the layers of tissue in a hernia patient with a conventional surgical implantation device.
FIG. 3 is a cross-sectional view of the layers of tissue in a hernia patient with a surgical implantation device constructed in accordance with the present invention in its deployed condition.
FIG. 4 is a cross-sectional view of the layers of tissue in a hernia patient with a surgical implantation device, constructed in accordance with the present invention, in its deployed condition after the peritoneum has been cut and the device has been placed on the outside of the peritoneal cavity.
FIG. 5 is a cross-sectional view of the layers of tissue in a hernia patient with the surgical implant device illustrated in FIG. 4 in its deployed condition, using a procedure that leaves the peritoneum intact.
FIG. 6 is a cross-sectional view of the surgical implantation device shown in FIG. 4 in an implanting condition fully within the laparoscopic surgical tube.
FIG. 7 is a cross-sectional view of the FIG. 6 surgical implantation device in a partially deployed condition.
FIG. 8 is a cross-sectional view of the FIG. 6 surgical implantation device shown with the first fabric patch and connecting material pushed out from the end of the laparoscopic tube.
FIG. 9 is a top plan view of the FIG. 4 surgical implantation device in the deployed condition.
FIG. 10 is a top plan view of an alternate embodiment of a surgical implantation device constructed in accordance with the present invention.
FIG. 11 is a top plan view of yet another embodiment of a surgical implantation device constructed in accordance with the present invention.
FIG. 12 is a top plan view of another alternative embodiment of a surgical implantation device in accordance with the present invention.
FIG. 13 is a side view of a surgical implantation device such as any of those shown in FIGS. 4-12, with their elements connected by releasable fastening means.
FIG. 14 is a side view of another surgical implantation device constructed in accordance with the present invention with its elements connected by a suture.
FIG. 15 is a side view of another surgical implantation device in accordance with the present invention with an offset planar patch member.
FIG. 16 is a top plan view of the FIG. 15 surgical implantation device.
FIG. 3 shows a fully deployed surgical implantation device 200 in accordance with the present invention, which provides an effective seal against a rupture 13 in the transversalis fascia 12 of a patient and which is effectively immobilized in place while the patient's tissue grows onto it. The implantation device can be inserted into the peritoneal cavity past the peritoneum 16 using a laparoscope, which eliminates the need for making a long incision and dissecting through the skin 22, subcutaneous fat 20, and transversal oblique muscle 18. Instead, the device can be pushed out the end of a laparoscope, as described in further detail below, either by first piercing the peritoneum 16 or by leaving the peritoneum intact. FIG. 3 illustrates the device in place after the peritoneum has been pierced, the device deployed, and the peritoneum sutured at 19.
The implantation device 200 includes a planar member 202 attached to a biocompatible locating plug member 204. Both members are compressible such that they can fit within the surgical tube of a laparoscope, which has a diameter of approximately one centimeter. A typical transversalis fascia rupture 13 has a diameter of approximately one centimeter, therefore the only external wound necessary to insert the surgical implantation device 200 is a one centimeter diameter hole left by the surgical tube. Thus, the surgical implantation device 200 in accordance with the present invention minimizes the amount of trauma to the patient due to the surgical procedure itself. Because there is no dissection through layers of body tissues and no stretching of the transversalis fascia 12, the post-operative discomfort of the patient is minimized. Moreover, the implantation device is held in place by the fit of the plug member 204 in the opening 13 and by the force of the patient's intestine and other internal organs in the peritoneal cavity pressing against the planar member 202. Thus, the implantation device is securely fixed in place while the patient heals.
The planar member 202 can be provided in a variety of structures. For example, the planar member can comprise a biocompatible fabric patch that is provided with resilient expandable elements. Alternatively, the planar member can comprise a plurality of resilient segments that radiate outwardly from the center of the biocompatible locating plug 204. Finally, the planar member and plug can be a single integrated structure or can be separately attached together either prior to insertion in the laparoscope's surgical tube or in situ. These alternative constructions are described further below in conjunction with descriptions of other embodiments of the present invention.
FIG. 4 shows an alternative embodiment of a fully deployed surgical implantation device 30 in accordance with the present invention. This embodiment also provides an effective seal against a rupture in the transversalis fascia 12 of a patient and is effectively immobilized in place while the patient's tissue grows onto it. As with the FIG. 3 embodiment, the implantation device 30 can be inserted into the peritoneal cavity past the peritoneum 16 using a laparoscope, which eliminates the need for making a long incision and dissecting through the skin 22, subcutaneous fat 20, and transversal oblique muscle 18. Instead, the device can be pushed out the end of the laparoscope's surgical tube (shown in FIGS. 6-8) to the site of the rupture by either first piercing the peritoneum 16 (FIG. 4) or by leaving the peritoneum intact (FIG. 5). The surgical tube has a diameter of approximately one centimeter, which is about the size of a typical fascia rupture 13, and therefore the only external wound necessary is a one centimeter diameter hole left by the surgical tube. Thus, a surgical implantation device in accordance with the present invention minimizes the amount of trauma to the patient due to the surgical procedure itself, improves the fixation of the implantation device in the fascia opening, and minimizes the post-operative discomfort the patient will experience because there is no dissection through layers of body tissues, no stretching of the fascia, and minimal movement before tissue has grown around the implantation device itself.
The implantation device illustrated in FIG. 4 includes two planar patches located on opposite sides of the transversalis fascia 12 and connected by a locating segment that substantially fills the transversalis fascia opening 13. In a preferred embodiment illustrated in FIG. 4 and FIG. 5, the implantation device 30 includes a first biocompatible circular fabric patch 32 located on one side of the opening above the fascia 12, a second biocompatible circular fabric patch 34 located on the opposite side of the fascia, and an elongated, biocompatible locating segment 36 linking the first and second fabric patches together and extending between the opening's angled sides 14. The patches and locating segment can be a single integrated structure or the patches can be attached to the locating segment, as described in further detail below.
Each of the fabric patches 32 and 34 is circular, so as to be more easily compressed into an implanting condition and automatically expanded into a deployed condition. Alternatively, one or both of the patches can be non-circular, particularly where the fascia opening is located laterally, as described further below. The fabric can be any biocompatible material, the most popular materials for this application being "MARLEX"-polypropylene, "MERSILENE"-"DACRON", and "GORE-TEX"-polytetraflourethelene. The fabric patches are automatically expanded into their deployed condition when they are pushed from the end of the surgical tube. The automatic deployment can be achieved with a wide variety of materials. The only requirement for automatic deployment is that the materials have memory, i.e., can be compressed from an expanded, at-rest condition to a compressed condition, and then automatically regain their expanded shape when the compression is released. Suitable materials include nylon, polypropylene, or silastic materials or resilient stainless steel strips or springs. These materials can be formed in the shape of flat ribbons, circular threads, or coiled springs and can be embedded or attached to the fabric patches either radially, circularly, or circumferentially. Alternatively, the entire implantation device can be constructed of these materials.
Because the surgical implantation device 30 in accordance with the present invention can be compressed and expanded, it can advantageously be positioned within the patient using a laparoscope, as shown in FIGS. 6-8. Surrounding layers of tissue have been omitted for the sake of clarity. Although the views of FIGS. 6-8 are shown without the peritoneum, thereby indicating that the peritoneum has been pierced and the device implanted outside of the peritoneal cavity as illustrated in FIG. 4, it is to be understood that the device works equally well with a procedure that leaves the peritoneum intact as illustrated in FIG. 5.
In FIGS. 6-8, the surgical implantation device 30 is first compressed and placed within the surgical tube 40 of the laparoscope. The compressed implantation device is represented in FIGS. 6-8 by the cross-hatched area in the surgical tube. As known to those skilled in the art, the surgical tube is pushed through the patient's outer skin 22 and through all intermediate layers such as the transversalis fascia 12 and the peritoneum 16 until it reaches the peritoneal cavity. The surgical tube is then advanced within the peritoneal cavity up to the site of the fascia opening 13, or hernia. The peritoneum 16 is then pierced and the end of the surgical tube 40 is placed at the opening 13. A rigid pushing tool 42 is then inserted down the surgical tube until it is in a position to push the surgical implantation device 30 out of the surgical tube.
When the surgical tube 40 is in a location relative to the opening 13 in the transversalis fascia 12 as illustrated in FIG. 6 and the surgical implantation device 30 is pushed out of the surgical tube, the first fabric patch 32 of the surgical implantation device automatically expands and deploys as it is forced from the surgical tube. When the first patch deploys, it assumes a generally circular, planar configuration extending parallel to the fascia 12 so as to bridge the angled sides 14 of the fascia opening as illustrated in FIG. 7.
The surgeon then continues to deploy the surgical implantation device 30 at the opening 13 in the transversalis fascia 12 by withdrawing the surgical tube 40 from its position in the fascia opening. As illustrated in FIG. 8, the locating member 36 is the next portion of the device to be pushed from the surgical tube. The locating member has a diameter of approximately one centimeter, approximately equal to the diameter of the typical fascia opening. The locating member 36 can be solid and have a diameter as large as the surgical tube. Alternatively, the locating member can be resilient and have a diameter greater than that of the surgical tube. In such a case, the locating member must be constructed from a flexible material such that the locating member can be compressed into a size small enough to fit within the surgical tube. As illustrated in FIG. 8, the deployed locating member has a diameter approximately equal to that of the opening 13 in the fascia. Thus, when the locating member is deployed, it effectively prevents lateral movement of the first fabric patch 32 relative to the fascia and locates the device in the proper position.
When the second fabric patch 34 of the surgical implantation device 30 is pushed out from the surgical tube 40, the patch automatically expands and deploys into a generally planar patch, as shown in FIG. 4 and FIG. 5. As can be seen from FIG. 4 and FIG. 5, the two planar patches 32 and 34 are held in place relative to the opening 13 in the fascia 12 by the locating member 36. The patches are effectively immobilized relative to the opening in the fascia because the locating member has a diameter approximately equal to that of a typical opening in the fascia and has a length only slightly greater than the thickness of the typical fascia.
A wide variety of materials can be used for the various elements of the surgical implantation device, as noted above. The resiliency, or memory, of the surgical implantation device likewise can be provided in a variety of ways. For example, nylon or spring steel segments can be attached or sewn into the patches. FIG. 9 is a plan view of an expanded surgical implantation device with the first portion 32 of the device constructed from a biocompatible fabric. A plurality of nylon or spring steel memory segments 50 are shown attached to the fabric in straight lengths emanating radially from the center of the patch. The memory segments are flexible enough to be folded upon themselves so as to allow the device to fit within the surgical tube 40 of a laparoscope. Once inside the surgical tube, the device remains in its compressed condition because of the tube walls. Once the surgical implantation device has been pushed from the surgical tube, the memory segments 50 resume their earlier straight shape, unfolding themselves flat and giving the fabric patch 32 a planar shape.
FIG. 10 illustrates a first portion 32 of a surgical implantation device similar to that shown in FIG. 9, this time having its shape restored by a plurality of flexible memory segments 52 attached to the fabric patch in concentric circles emanating from the center of the first portion 32
Yet another possible configuration for the implant is illustrated in FIG. 11, wherein a first implant portion 32 constructed from a biocompatible fabric patch is provided with an elongated spring steel coil 54 that is attached to the fabric patch along the patch's circumference. When unstrained or unfolded, the coil tends to lay flat, giving the fabric patch a planar configuration. The coil also has enough resilience to be compressed so as to fit within the laparoscope and then automatically expand when pushed from the laparoscope tube.
It is not necessary for the planar patches to comprise pieces of fabric. FIG. 12 shows a plan view of an alternative embodiment in which the planar patch 45 comprises a plurality of spoke segments 46 emanating from a central hub 48. The spoke segments are resilient enough to be compressed and fit into the surgical tube 40. When the planar patch 45 is pushed out of the tube, the spokes regain their radially-directed shape as shown in FIG. 12. In side view, the spoke planar member 45 appears as the planar patches shown in FIGS. 3-8. While the spokes 46 do comprise separate segments, they are coplanar and therefore provide a structure that is located on one side of the transversalis fascia 12 and that provides a planar structure to bridge the fascia opening 13 and on which tissue can grow.
The surgical implantation device in accordance with the invention can be constructed from separate elements that are individually placed in the proper locations and are then attached together to form a single implant structure. FIG. 13 is a cross-sectional view of a surgical implantation device 60 constructed in accordance with the present invention. The implantation device 60 includes a first planar portion 62, a second planar portion 64, and a locating member 66 that extends between the first planar member and the second planar member. The locating member 66 is connected to each of the planar members by a hook-and-loop fastening mechanism, such as that sold under the name of "VELCRO." Thus, one end of the locating member is provided with a first part of a hook-and-loop fastening mechanism 68, and the first planar member 62 is provided with a matching second part of a hook-and-loop fastening mechanism 70 that engages with the first hook-and-loop mechanism 68. Likewise, the opposite end of the locating member 66 is provided with a hook-and-loop fastening mechanism 72 while the corresponding location on the second planar member 64 is provided with a complementary hook-and-loop fastening arrangement 74.
In addition to assembling the surgical implantation device at the hernia site in the patient, the surgical implantation device can also include further refinements that make its use more advantageous. For example, the outwardly facing surfaces of the surgical implantation device 60 shown in FIG. 13 are provided with a smooth coating 76 such as a thin coating of "GORE-TEX", which discourages the formation of scar tissue and prevents the intestine from clinging to the implantation device before tissue has had a chance to grow over it.
FIG. 14 shows yet another surgical implantation device 80 comprised of separate members. The first and second planar patches 82, 84 and the locating member 86 are shown attached together by a suture 88 that can then be tied off at the hernia site. This securely attaches the separate parts together, effectively immobilizing the surgical implantation device at the desired location. The suture is attached to the first planar patch 82 at an attachment point 89 and passes through a central bore 90 in the locating member and passes through the planar patches. The attachment of the separate members together in this way can, under many circumstances, be much easier than assembling the separate elements together using "VELCRO" fasteners or similar attachment mechanisms. Alternatively, the suture 88 can be used in addition to some other attachment mechanism, in which case the suture can be attached to the first planar patch member 82.
After the suture 88 has been attached to the first planar member 82, the first member is deployed. This anchors the suture relative to the fascia opening 13 (FIG. 2). The locating member 86 can then be slipped onto the suture and can then slide down the suture to its proper position at the fascia opening 13. The last planar patch member 84 can then be slipped onto the suture and can then slide down the suture to its proper position. The various members can be attached together by tying off the suture at the last planar member, by means of "VELCRO", or by other means known to those skilled in the art. As discussed, one or both of the planar members 82 and 84 can comprise spoked segments (see FIG. 12).
FIG. 15 is a side view of another embodiment of a surgical implantation device 94 in accordance with the present invention in which the first planar patch member 96 is offset when compared with the locating plug member 98 and the second planar patch member 100. The offset construction is most effective in the case of a lateral hernia condition, in which the hernia is not close to the patient's midline. In such a case, the first planar patch member 96 can reinforce the abdomen toward the body center. For example, if the hernia is located laterally toward the patient's left, the center of the plug member 98 will be attached to the first planar patch 96 toward the left of the patch's center so that the first patch extends to the right more toward the patient's body center than toward the left side, as shown in FIG. 15. In such a case, the first patch 96 also could have a non-circular, oval shape, as shown in FIG. 16, for greater abdominal reinforcement. The second planar patch member 100 would not have such a critical need to reinforce the abdomen center, and therefore would preferably have a circular shape. Again, the planar members 96 and 100 can comprise fabric patches such as illustrated in FIGS. 9-11 or can comprise spoked segments such as illustrated in FIG. 12.
Those skilled in the art will recognize that variations and combinations of the described members might have particular advantages. For example, in the case of the embodiment of FIG. 3, the maximum pressing force from the patient's internal organs to keep the device in place will occur if the peritoneum is first pierced and then sealed after deployment of the implantation device, rather than if the peritoneum is left intact. In the case of the three-member embodiments of FIG. 4 and FIG. 5, the implantation device can be provided with a first planar member that is spoked (see FIG. 12) and a second planar member that includes a fabric patch (FIGS. 9-11). This decreases the amount of materials used and makes insertion down the surgical tube easier. Other variations will occur to those skilled in the art.
The present invention has been described above in terms of presently preferred embodiments so that an understanding of the present invention can be conveyed. There are, however, many configurations for surgical implantation devices not specifically described herein, but with which the present invention is applicable. The present invention should therefore not be seen as limited to the particular embodiments described herein, but rather, it should be understood that the present invention has applicability with respect to surgical implantation devices in a variety of applications. All modifications, variations, or equivalent arrangements that are within the scope of the attached claims should therefore be considered to be within the scope of the invention.
Patent | Priority | Assignee | Title |
10022214, | Dec 20 2011 | LifeCell Corporation | Sheet tissue products |
10024000, | Jul 17 2007 | The Procter & Gamble Company | Fibrous structures and methods for making same |
10028815, | Dec 09 2010 | Sofradim Production | Prosthesis with zigzag seam |
10034755, | Oct 02 2014 | SIERRA MEDTECH LIMITED; ORTHONIKA LIMITED | Anatomically designed meniscus implantable devices |
10070948, | Jun 27 2008 | Sofradim Production | Biosynthetic implant for soft tissue repair |
10076395, | Jul 16 2010 | Sofradim Production | Prosthesis having a radiopaque element |
10076424, | Sep 07 2007 | Intrinsic Therapeutics, Inc. | Impaction systems |
10080639, | Dec 29 2011 | Sofradim Production | Prosthesis for inguinal hernia |
10092677, | Jul 28 2011 | LifeCell Corporation | Natural tissue scaffolds as tissue fillers |
10159554, | Feb 18 2008 | Covidien LP | Clip for implant deployment device |
10159555, | Sep 28 2012 | Sofradim Production | Packaging for a hernia repair device |
10179012, | Jan 28 2013 | Cartiva, Inc. | Systems and methods for orthopedic repair |
10182898, | Feb 18 2008 | Covidien LP | Clip for implant deployment device |
10184032, | Feb 17 2015 | Sofradim Production | Method for preparing a chitosan-based matrix comprising a fiber reinforcement member |
10206769, | Mar 30 2012 | Covidien LP | Implantable devices including a film providing folding characteristics |
10213283, | Jun 07 2013 | Sofradim Production | Textile-based prosthesis for laparoscopic surgery |
10238480, | Jul 02 2009 | LifeCell Corporation | Device and method for treatment of incision or hernia |
10240297, | Mar 31 2010 | The Procter & Gamble Company | Fibrous structures and methods for making same |
10245018, | Jun 13 2006 | Suture Concepts Inc. | Method and apparatus for closing fissures in the annulus fibrosus |
10314861, | Apr 24 2012 | LifeCell Corporation | Flowable tissue matrices |
10327882, | Sep 29 2014 | Sofradim Production | Whale concept—folding mesh for TIPP procedure for inguinal hernia |
10327884, | Jan 24 2012 | LifeCell Corporation | Elongated tissue matrices |
10327907, | May 28 1999 | Suture Concepts Inc. | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft |
10342652, | Dec 29 2011 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
10363690, | Aug 02 2012 | Sofradim Production | Method for preparing a chitosan-based porous layer |
10368971, | Dec 03 2007 | Sofradim Production | Implant for parastomal hernia |
10405960, | Jun 07 2013 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
10449053, | Oct 02 2012 | Implantable devices for musculoskeletal repair and regeneration | |
10470804, | Dec 28 2005 | Intrinsic Therapeutics, Inc. | Bone anchor delivery systems and methods |
10472750, | Mar 16 2011 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
10478168, | Nov 11 2011 | LifeCell Corporation | Device and method for treatment of incision or hernia |
10478281, | Dec 24 2014 | C.R. Bard, Inc.; C R BARD, INC | Implantable prosthesis for soft tissue repair |
10513801, | Jul 17 2007 | The Procter & Gamble Company | Process for making fibrous structures |
10548704, | Sep 04 2009 | Sofradim Production | Fabric with barbs coated with a water-soluble material |
10549015, | Sep 24 2014 | Sofradim Production | Method for preparing an anti-adhesion barrier film |
10568988, | Feb 06 2013 | LifeCell Corporation | Methods for localized modification of tissue products |
10610615, | Jul 28 2011 | LifeCell Corporation | Natural tissue scaffolds as tissue fillers |
10646321, | Jan 25 2016 | Sofradim Production | Prosthesis for hernia repair |
10653508, | Sep 29 2014 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
10660741, | Apr 24 2015 | Sofradim Production | Prosthesis for supporting a breast structure |
10675137, | May 02 2017 | Sofradim Production | Prosthesis for inguinal hernia repair |
10682215, | Oct 21 2016 | Sofradim Production | Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained |
10695155, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
10697127, | Mar 31 2010 | The Procter & Gamble Company | Fibrous structures and methods for making same |
10709538, | Jul 13 2011 | Sofradim Production | Umbilical hernia prosthesis |
10709810, | Sep 26 2012 | LifeCell Corporation | Processed adipose tissue |
10716685, | Sep 07 2007 | Intrinsic Therapeutics, Inc. | Bone anchor delivery systems |
10722339, | Dec 20 2011 | LifeCell Corporation | Flowable tissue products |
10743976, | Jun 19 2015 | Sofradim Production; Covidien LP | Synthetic prosthesis comprising a knit and a non porous film and method for forming same |
10743998, | Oct 02 2014 | SIERRA MEDTECH LIMITED; ORTHONIKA LIMITED | Anatomically designed meniscus implantable devices |
10745835, | Dec 05 2014 | Sofradim Production | Prosthetic porous knit |
10792394, | Jun 03 2016 | LifeCell Corporation | Methods for localized modification of tissue products |
10815345, | Feb 17 2015 | Sofradim Production | Method for preparing a chitosan-based matrix comprising a fiber reinforcement member |
10820980, | Mar 24 2010 | Covidien LP | Combination three-dimensional surgical implant |
10821205, | Oct 18 2017 | LifeCell Corporation | Adipose tissue products and methods of production |
10828391, | Apr 14 2011 | LifeCell Corporation | Regenerative materials |
10858785, | Jul 17 2007 | The Procter & Gamble Company | Fibrous structures and methods for making same |
10865505, | Sep 04 2009 | Sofradim Production | Gripping fabric coated with a bioresorbable impenetrable layer |
10893982, | Jul 12 2011 | MEDSKIN SOLUTIONS DR SUWELACK AG | Perforated, layered wound treatment material |
10895022, | Nov 02 2009 | The Procter & Gamble Company | Fibrous elements and fibrous structures employing same |
10900153, | May 02 2017 | Sofradim Production | Two-sides gripping knit |
10952903, | Mar 08 2011 | Mor Research Applications Ltd. | Tympanic membrane repair device |
11028509, | May 02 2017 | Sofradim Production | Method for forming a base knit suitable for manufacturing hernia prostheses and hernia prostheses obtained therefrom |
11033383, | Sep 17 2015 | TYMCURE LTD | Tympanoplastic patch applicator |
11039912, | Jul 13 2011 | Sofradim Production | Umbilical hernia prosthesis |
11045583, | Dec 22 2016 | LifeCell Corporation | Devices and methods for tissue cryomilling |
11090338, | Jul 13 2012 | LifeCell Corporation | Methods for improved treatment of adipose tissue |
11123375, | Jul 03 2019 | LifeCell Corporation | Methods of treating tissue voids following removal of implantable infusion ports using adipose tissue products |
11185354, | Dec 28 2005 | Intrinsic Therapeutics, Inc. | Bone anchor delivery systems and methods |
11246994, | Oct 19 2017 | LifeCell Corporation | Methods for introduction of flowable acellular tissue matrix products into a hand |
11266489, | Dec 29 2011 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
11291536, | Sep 29 2014 | Sofradim Production | Whale concept-folding mesh for TIPP procedure for inguinal hernia |
11304790, | Jun 07 2013 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
11346056, | Jul 17 2007 | The Procter & Gamble Company | Fibrous structures and methods for making same |
11359313, | Dec 05 2014 | Sofradim Production | Prosthetic porous knit |
11382758, | Oct 02 2012 | Implantable devices for musculoskeletal repair and regeneration | |
11389282, | Jan 25 2016 | Sofradim Production | Prosthesis for hernia repair |
11439498, | Apr 24 2015 | Sofradim Production | Prosthesis for supporting a breast structure |
11452606, | May 02 2017 | ORTHONIKA LIMITED | Composite joint implant |
11458004, | Oct 19 2017 | C R BARD, INC | Self-gripping hernia prosthesis |
11471199, | Jan 28 2013 | Cartiva, Inc. | Systems and methods for orthopedic repair |
11471256, | Dec 29 2011 | Sofradim Production | Prosthesis for inguinal hernia |
11471257, | Nov 16 2018 | Sofradim Production | Implants suitable for soft tissue repair |
11555262, | May 02 2017 | Sofradim Production | Two-sides gripping knit |
11589974, | Sep 29 2014 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
11612472, | Mar 16 2011 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
11617637, | Dec 24 2014 | C.R. Bard, Inc. | Implantable prosthesis for soft tissue repair |
11617638, | Dec 24 2014 | C.R. Bard, Inc. | Implantable prosthesis for soft tissue repair |
11618977, | Nov 02 2009 | The Procter & Gamble Company | Fibrous elements and fibrous structures employing same |
11622845, | Jun 07 2013 | Sofradim Production | Textile-based prothesis for laparoscopic surgery |
11629440, | Apr 28 2018 | Sofradim Production | Method for forming a base knit suitable for manufacturing hernia prostheses and hernia prostheses obtained therefrom |
11633521, | May 30 2019 | LifeCell Corporation | Biologic breast implant |
11639581, | Jul 17 2007 | The Procter & Gamble Company | Fibrous structures and methods for making same |
11672636, | May 02 2017 | Sofradim Production | Prosthesis for inguinal hernia repair |
11680373, | Mar 31 2010 | The Procter & Gamble Company | Container for fibrous wipes |
11696819, | Oct 21 2016 | Sofradim Production | Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained |
11713526, | Dec 05 2014 | Sofradim Production | Prosthetic porous knit |
11826242, | Jun 19 2015 | Sofradim Production | Synthetic prosthesis comprising a knit and a non porous film and method for forming same |
11826488, | Oct 19 2017 | LifeCell Corporation | Flowable acellular tissue matrix products and methods of production |
11890199, | Oct 02 2014 | ORTHONIKA LIMITED | Anatomically designed meniscus implantable devices |
11903807, | Jul 13 2011 | Sofradim Production | Umbilical hernia prosthesis |
5368602, | Feb 11 1993 | Surgical mesh with semi-rigid border members | |
5411520, | Nov 08 1991 | Kensey Nash Corporation | Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use |
5425740, | May 17 1994 | Endoscopic hernia repair clip and method | |
5451235, | Nov 05 1991 | CHILDREN S MEDICAL CENTER CORPORATION | Occluder and method for repair of cardiac and vascular defects |
5501700, | Jan 08 1993 | Eardrum perforation patch and eardrum undersurface scraper | |
5545178, | Apr 29 1994 | Kensey Nash Corporation | System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating |
5593441, | Mar 04 1992 | C R BARD, INC | Method for limiting the incidence of postoperative adhesions |
5634931, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patches and methods of their use |
5634944, | Feb 23 1995 | The Nemours Foundation; NEMOURS FOUNDATION, THE | Body membrane prosthesis |
5643300, | Jan 08 1993 | Eardrum undersurface scraper | |
5643317, | Nov 25 1992 | Cook Medical Technologies LLC | Closure prosthesis for transcatheter placement |
5676689, | Nov 08 1991 | Kensey Nash Corporation | Hemostatic puncture closure system including vessel location device and method of use |
5690674, | Jul 02 1996 | Cordis Corporation | Wound closure with plug |
5697978, | Dec 30 1994 | Prosthetic element for the treatment of inguinal hernias, in particular by the celioscopic route | |
5707393, | Nov 08 1991 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
5709707, | Oct 30 1995 | Children's Medical Center Corporation | Self-centering umbrella-type septal closure device |
5741297, | Aug 28 1996 | W L GORE & ASSOCIATES, INC | Daisy occluder and method for septal defect repair |
5759204, | May 16 1991 | SM TECHNOLOGIES, LLC | Methods and apparatus for establishing a stable body pocket |
5766246, | May 20 1992 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis |
5769864, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch |
5916225, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch |
5947997, | Nov 25 1992 | Cook Medical Technologies LLC | Closure prothesis for transcatheter placement |
5972008, | Apr 29 1998 | Ethicon, Inc | Method and apparatus for retaining a surgical mesh |
6007563, | Nov 08 1991 | Kensey Nash Corporation | Method of deploying percutaneous puncture closure |
6042534, | Feb 13 1997 | Boston Scientific Scimed, Inc | Stabilization sling for use in minimally invasive pelvic surgery |
6042592, | Aug 04 1997 | Boston Scientific Scimed, Inc | Thin soft tissue support mesh |
6080168, | Aug 28 1997 | Compression pad for laparoscopic/thorascopic surgery | |
6090130, | Nov 08 1991 | Kensey Nash Corporation | Hemostatic puncture closure system including blood vessel locator and method of use |
6113623, | Apr 20 1994 | Cabinet Beau de Lomenie | Prosthetic device and method for eventration repair |
6113641, | Aug 24 1998 | Ethicon, Inc | Prosthesis for the obturation of a hernial canal |
6120539, | May 01 1997 | C R BRAD, INC | Prosthetic repair fabric |
6171318, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch with stiffening layer |
6174320, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch with slit |
6176863, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch with I-shaped filament |
6180848, | Aug 27 1997 | ETHICON S A S | Prosthesis obturating device for the obturation of a hernial canal |
6183496, | Nov 02 1998 | ST JUDE MEDICAL, INC | Collapsible hemostatic plug |
6197036, | Oct 01 1997 | Boston Scientific Scimed, Inc | Pelvic floor reconstruction |
6214020, | May 27 1994 | C. R. Bard, Inc. | Implantable prosthesis and method and apparatus for loading and delivering an implantable prosthesis |
6224615, | Sep 29 1994 | Bard Asdi Inc. | Hernia mesh patch with seal stiffener |
6224616, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch |
6241768, | Aug 27 1997 | Ethicon, Inc | Prosthetic device for the repair of a hernia |
6258124, | May 10 1999 | C R BARD, INC | Prosthetic repair fabric |
6267772, | May 27 1994 | C. R. Bard, Inc. | Implantable prosthesis |
6270530, | May 01 1997 | C.R. Bard, Inc. | Prosthetic repair fabric |
6280453, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch with stiffener line segment |
6290708, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch with seal stiffener |
6375662, | Aug 04 1997 | Boston Scientific Scimed, Inc | Thin soft tissue surgical support mesh |
6383201, | May 14 1999 | Surgical prosthesis for repairing a hernia | |
6425924, | Mar 31 2000 | Ethicon, Inc | Hernia repair prosthesis |
6440152, | Jul 28 2000 | ev3 Endovascular, Inc | Defect occluder release assembly and method |
6482235, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Devices and methods of vertebral disc augmentation |
6497650, | Jul 28 1999 | DAVOL INC | Hernia prosthesis |
6551344, | Apr 26 2000 | ev3 Endovascular, Inc | Septal defect occluder |
6551356, | Mar 19 2001 | Ethicon, Inc. | Pocketed hernia repair |
6632237, | Jan 11 2001 | BIO-SEAL TECH INC | Device and method for sealing a puncture in a blood vessel |
6652595, | Mar 25 1996 | Davol Inc. | Method of repairing inguinal hernias |
6666817, | Oct 05 2001 | Boston Scientific Scimed, Inc | Expandable surgical implants and methods of using them |
6669706, | Aug 04 1997 | Boston Scientific Scimed, Inc | Thin soft tissue surgical support mesh |
6669735, | Jul 13 1998 | Davol, Inc. | Prosthesis for surgical treatment of hernia |
6689047, | Nov 15 2000 | Boston Scientific Scimed, Inc | Treating urinary incontinence |
6695856, | Jun 02 1992 | General Surgical Innovations, Inc. | Apparatus and methods for developing an anatomic space for laparoscopic hernia repair and patch for use therewith |
6712859, | Jun 28 2001 | Ethicon, Inc | Hernia repair prosthesis and methods for making same |
6755781, | Jul 27 2001 | Boston Scientific Scimed, Inc | Medical slings |
6755867, | Mar 31 2000 | Ethicon, Inc | Hernia repair prosthesis and method |
6755868, | Mar 22 2002 | Ethicon, Inc. | Hernia repair device |
6783554, | Feb 20 2001 | ATRIUM MEDICAL CORPORATION | Pile mesh prosthesis |
6790213, | Jan 07 2002 | DAVOL, INC | Implantable prosthesis |
6883520, | Aug 18 1999 | INTRINSIC THERAPEUTICS INC | Methods and apparatus for dynamically stable spinal implant |
6911037, | Sep 07 1999 | ev3 Endovascular, Inc | Retrievable septal defect closure device |
6936052, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
6953428, | Mar 09 2001 | Boston Scientific Scimed, Inc | Medical slings |
6986786, | Sep 11 2000 | LifeShield Sciences LLC | Endovascular prostethic devices having hook and loop structures |
6991597, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
6991637, | Jun 18 2003 | W L GORE & ASSOCIATES, INC | Soft tissue defect repair device |
7014607, | Nov 15 2000 | Boston Scientific Scimed, Inc | Treating urinary incontinence |
7025756, | Sep 20 1999 | Boston Scientific Scimed, Inc | Method of securing tissue |
7025772, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
7070558, | Jul 27 2001 | Boston Scientific Scimed, Inc | Medical slings |
7094258, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Methods of reinforcing an annulus fibrosis |
7101381, | Aug 02 2002 | DAVOL, INC | Implantable prosthesis |
7112209, | Oct 07 2002 | Sofradim Production | Anatomical wall reinforcement for the treatment of an inguinal hernia |
7115110, | Sep 20 1999 | ATRITECH, INC | Method and apparatus for closing a body lumen |
7124761, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Deployment devices and methods for vertebral disc augmentation |
7156804, | Jul 28 1999 | DAVOL, INC | Hernia prosthesis |
7156858, | Apr 20 2000 | Ethicon GmbH | Implant |
7179272, | Jun 02 1992 | General Surgical Innovations, Inc. | Apparatus and method for dissecting tissue layers |
7189235, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method and spinal disc annulus stent |
7214236, | Jun 02 1992 | General Surgical Innovations, Inc. | Apparatus and methods for developing an anatomic space for laparoscopic hernia repair and patch for use therewith |
7220281, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Implant for reinforcing and annulus fibrosis |
7235043, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
7273497, | May 28 1999 | ANOVA CORP | Methods for treating a defect in the annulus fibrosis |
7288105, | Aug 01 2001 | ev3 Endovascular, Inc | Tissue opening occluder |
7331199, | Apr 20 2000 | Sofradim Production | Adhering prosthetic knitting fabric, method for making same and reinforcement implant for treating parietal deficiencies |
7338514, | Jun 01 2001 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Closure devices, related delivery methods and tools, and related methods of use |
7361138, | Jul 31 2003 | Boston Scientific Scimed, Inc | Bioabsorbable casing for surgical sling assembly |
7377929, | Jun 18 2003 | W L GORE & ASSOCIATES, INC | Soft tissue defect repair device |
7377936, | Sep 07 1999 | ev3 Endovascular, Inc | Retrievable septal defect closure device |
7402133, | Dec 17 2002 | Boston Scientific Scimed, Inc | Spacer for sling delivery system |
7404819, | Sep 14 2000 | C R BARD, INC | Implantable prosthesis |
7427279, | Sep 20 1999 | Boston Scientific Scimed, Inc | Method of closing an opening in a wall of a heart |
7465270, | Oct 05 2001 | Boston Scientific Scimed, Inc | Expandable surgical implants and methods of using them |
7479155, | Jul 28 2000 | ev3 Endovascular, Inc | Defect occluder release assembly and method |
7500978, | Jun 20 2003 | INTRINSIC THERAPEUTICS, INC | Method for delivering and positioning implants in the intervertebral disc environment |
7507243, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Devices and method for augmenting a vertebral disc |
7513911, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Method of implanting dynamically stable spinal implant |
7524333, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Method of anchoring an implant in an intervertebral disc |
7549983, | Sep 20 1999 | Boston Scientific Scimed, Inc | Method of closing an opening in a wall of the heart |
7553329, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Stabilized intervertebral disc barrier |
7553330, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Methods of reinforcing an intervertebral disc annulus |
7563282, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Method of supporting nucleus pulposus |
7575586, | Jan 30 1998 | St. Jude Medical ATG, Inc. | Medical graft connector or plug structures, and methods of making and installing same |
7582103, | Aug 01 2001 | ev3 Endovascular, Inc. | Tissue opening occluder |
7608114, | Dec 02 2002 | GI DYNAMICS, INC | Bariatric sleeve |
7615076, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
7658765, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Resilient intervertebral disc implant |
7670379, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method |
7678068, | Dec 02 2002 | GI DYNAMICS, INC | Atraumatic delivery devices |
7682330, | Dec 09 2003 | GI Dynamics, Inc. | Intestinal sleeve |
7691128, | May 06 2002 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | PFO closure devices and related methods of use |
7695446, | Dec 02 2002 | GI DYNAMICS, INC | Methods of treatment using a bariatric sleeve |
7717937, | Jun 01 2001 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Closure devices, related delivery methods and tools, and related methods of use |
7717961, | Aug 18 2000 | INTRINSIC THERAPEUTICS, INC | Apparatus delivery in an intervertebral disc |
7727241, | Jun 20 2003 | INTRINSIC THERAPEUTICS, INC | Device for delivering an implant through an annular defect in an intervertebral disc |
7749273, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
7749275, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Method of reducing spinal implant migration |
7753941, | Apr 04 2000 | KRT INVESTORS, INC | Devices and methods for annular repair of intervertebral discs |
7758535, | Dec 02 2002 | GI DYNAMICS, INC | Bariatric sleeve delivery devices |
7762969, | Mar 09 2001 | Boston Scientific Scimed, Inc. | Medical slings |
7766861, | Oct 17 2003 | GI Dynamics, Inc. | Anti-obesity devices |
7766973, | Jan 19 2005 | GI DYNAMICS, INC | Eversion resistant sleeves |
7771382, | Jan 19 2005 | GI DYNAMICS, INC | Resistive anti-obesity devices |
7776101, | Jun 18 2003 | W L GORE & ASSOCIATES, INC | Soft tissue defect repair device |
7780683, | Sep 20 1999 | Boston Scientific Scimed, Inc | Method of closing an opening in a wall of the heart |
7780700, | Feb 04 2003 | ev3 Endovascular, Inc | Patent foramen ovale closure system |
7780718, | Sep 11 2000 | LifeShield Sciences LLC | Endovascular prosthetic devices having hook and loop structures |
7780973, | Dec 15 2003 | Ethicon Endo-Surgery, Inc. | Method and device for minimally invasive implantation of biomaterial |
7785334, | Aug 02 2002 | DAVOL, INC | Implantable prosthesis |
7806905, | Aug 02 2002 | DAVOL, INC | Implantable prosthesis |
7815589, | Dec 09 2003 | GI DYNAMICS, INC | Methods and apparatus for anchoring within the gastrointestinal tract |
7815591, | Sep 17 2004 | GI DYNAMICS, INC | Atraumatic gastrointestinal anchor |
7819836, | Jun 23 2006 | GI DYNAMICS, INC | Resistive anti-obesity devices |
7824326, | Jul 31 2003 | Boston Scientific Scimed, Inc. | Bioabsorbable casing for surgical sling assembly |
7824420, | Jan 07 2002 | DAVOL, INC | Implantable prosthesis |
7828850, | Oct 20 1999 | KRT INVESTORS, INC | Methods and devices for spinal disc annulus reconstruction and repair |
7837643, | Jul 09 2004 | G I DYNAMICS, INC ; GI DYNAMICS, INC | Methods and devices for placing a gastrointestinal sleeve |
7867278, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Intervertebral disc anulus implant |
7879097, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Method of performing a procedure within a disc |
7887562, | Aug 01 2001 | ev3 Endovascular, Inc. | Tissue opening occluder |
7905923, | Apr 04 2000 | KRT INVESTORS, INC | Devices and methods for annular repair of intervertebral discs |
7909879, | Oct 20 1999 | KRT INVESTORS, INC | Intervertebral disc annulus stent |
7922768, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
7935073, | Dec 02 2002 | GI Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
7935147, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus |
7942897, | Jul 10 2003 | Boston Scientific Scimed, Inc | System for closing an opening in a body cavity |
7951201, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
7959679, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Intervertebral anulus and nucleus augmentation |
7963992, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
7972337, | Dec 28 2005 | INTRINSIC THERAPEUTICS, INC | Devices and methods for bone anchoring |
7976488, | Jun 08 2005 | GIDYNAMICS, INC | Gastrointestinal anchor compliance |
7976564, | May 06 2002 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | PFO closure devices and related methods of use |
7981022, | Jul 27 2001 | Boston Scientific Scimed, Inc. | Medical slings |
7981163, | Dec 09 2003 | GI Dynamics, Inc. | Intestinal sleeve |
7985257, | Oct 20 1999 | KRT INVESTORS, INC | Methods and devices for spinal disc annulus reconstruction and repair |
7993405, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus repair system and methods |
7998213, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Intervertebral disc herniation repair |
8002836, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Method for the treatment of the intervertebral disc anulus |
8021425, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Versatile method of repairing an intervertebral disc |
8025698, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Method of rehabilitating an anulus fibrosus |
8033983, | Mar 09 2001 | Boston Scientific Scimed, Inc | Medical implant |
8034112, | Oct 20 1999 | Anulex Technologies, Inc. | Spinal disc annulus reconstruction method and spinal disc annulus stent |
8048160, | Oct 20 1999 | KRT INVESTORS, INC | Intervertebral disc annulus stent |
8057420, | Dec 09 2003 | GI DYNAMICS, INC | Gastrointestinal implant with drawstring |
8088165, | Oct 20 1999 | KRT INVESTORS, INC | Spinal disc annulus reconstruction method and deformable spinal disc annulus stent |
8096966, | Jan 19 2005 | GI DYNAMICS, INC | Eversion resistant sleeves |
8114082, | Dec 28 2005 | Intrinsic Therapeutics, Inc. | Anchoring system for disc repair |
8128698, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
8137301, | Dec 02 2002 | GI Dynamics, Inc. | Bariatric sleeve |
8162816, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
8162871, | Dec 02 2002 | GI Dynamics, Inc. | Bariatric sleeve |
8163022, | Oct 14 2008 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
8182545, | Sep 14 2000 | C.R. Bard, Inc. | Implantable prosthesis |
8206632, | Dec 18 2007 | Ethicon, Inc | Methods of making composite prosthetic devices having improved bond strength |
8231678, | Aug 18 1999 | INTRINSIC THERAPEUTICS, INC | Method of treating a herniated disc |
8257437, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Methods of intervertebral disc augmentation |
8282665, | Jun 02 1992 | Tyco Healthcare Group LP | Apparatus and method for dissecting tissue layers |
8292917, | Aug 07 2003 | Boston Scientific Scimed, Inc. | Medical closure device |
8298290, | Sep 20 2004 | DAVOL, INC | Implantable prosthesis for soft tissue repair |
8303669, | Dec 09 2003 | GI Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
8317808, | Feb 18 2008 | Covidien LP | Device and method for rolling and inserting a prosthetic patch into a body cavity |
8323341, | Sep 07 2007 | INTRINSIC THERAPEUTICS, INC | Impaction grafting for vertebral fusion |
8323352, | Nov 20 2008 | LifeCell Corporation | Method for treatment and prevention of parastomal hernias |
8361155, | Sep 07 2007 | Intrinsic Therapeutics, Inc. | Soft tissue impaction methods |
8372112, | Apr 11 2003 | ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC | Closure devices, related delivery methods, and related methods of use |
8376928, | Oct 05 2001 | Boston Scientific Scimed, Inc. | Expandable surgical implants and methods of using them |
8382796, | Apr 11 2003 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and related methods of use |
8394146, | Dec 28 2005 | Intrinsic Therapeutics, Inc. | Vertebral anchoring methods |
8409284, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Methods of repairing herniated segments in the disc |
8425451, | Jun 08 2005 | GI Dynamics, Inc. | Gastrointestinal anchor compliance |
8430934, | Mar 01 2002 | Regents of the University of Minnesota | Vascular occlusion device |
8454612, | Sep 07 2007 | INTRINSIC THERAPEUTICS, INC | Method for vertebral endplate reconstruction |
8454697, | Oct 14 2008 | KRT INVESTORS, INC | Method and apparatus for the treatment of tissue |
8460319, | Jan 11 2010 | KRT INVESTORS, INC | Intervertebral disc annulus repair system and method |
8486153, | Oct 17 2003 | GI Dynamics, Inc. | Anti-obesity devices |
8500776, | Feb 08 2010 | Covidien LP | Vacuum patch for rapid wound closure |
8518063, | Apr 24 2001 | CARDIOVASCULAR TECHNOLOGIES, INC | Arteriotomy closure devices and techniques |
8556977, | Oct 20 1999 | KRT INVESTORS, INC | Tissue anchoring system and method |
8574264, | Apr 11 2003 | St. Jude Medical, Cardiology Division, Inc. | Method for retrieving a closure device |
8579924, | Jul 26 2011 | Covidien LP | Implantable devices including a mesh and a pivotable film |
8617048, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
8628583, | Dec 09 2003 | GI Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
8632453, | Dec 17 2002 | Boston Scientific Scimed, Inc. | Spacer for sling delivery system |
8632590, | Oct 20 1999 | KRT INVESTORS, INC | Apparatus and methods for the treatment of the intervertebral disc |
8652153, | Jan 11 2010 | KRT INVESTORS, INC | Intervertebral disc annulus repair system and bone anchor delivery tool |
8668662, | Oct 17 2003 | GI Dynamics, Inc. | Anti-obesity devices |
8734473, | Feb 18 2009 | Covidien LP | Device and method for rolling and inserting a prosthetic patch into a body cavity |
8753359, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
8764622, | Jul 27 2001 | Boston Scientific Scimed, Inc. | Medical slings |
8764835, | Jun 13 2006 | Anova Corporation | Intervertebral disc treatment methods and apparatus |
8771219, | Dec 09 2003 | GI Dynamics, Inc. | Gastrointestinal implant with drawstring |
8777985, | Jun 01 2001 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
8795383, | Jul 19 2004 | Laparoscopic inguinal hernia prosthesis | |
8801647, | Feb 22 2007 | GI DYNAMICS, INC | Use of a gastrointestinal sleeve to treat bariatric surgery fistulas and leaks |
8808314, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
8821549, | Jun 13 2006 | Anova Corporation | Methods and apparatus for anulus repair |
8834405, | Dec 09 2003 | GI Dynamics, Inc. | Intestinal sleeve |
8834496, | Jun 13 2006 | Anova Corporation | Soft tissue repair methods and apparatus |
8852474, | Jul 17 2007 | The Procter & Gamble Company | Process for making fibrous structures |
8858981, | Oct 05 1998 | ED GISTLICH SOEHNE FUER CHEMISTRIE INDUSTRIE | Bone healing material comprising matrix carrying bone-forming cells |
8870806, | Dec 02 2002 | GI DYNAMICS, INC | Methods of treatment using a bariatric sleeve |
8882698, | Oct 17 2003 | GI Dynamics, Inc. | Anti-obesity devices |
8888811, | Oct 20 2008 | Covidien LP | Device and method for attaching an implant to biological tissue |
8906045, | Aug 17 2009 | Covidien LP | Articulating patch deployment device and method of use |
8911491, | Sep 02 2005 | Medtronic Vascular, Inc | Methods and apparatus for treatment of aneurysms adjacent branch arteries including branch artery flow lumen alignment |
8911763, | Oct 10 1997 | Ed. Geistlich Soehne AG fuer Chemistrie Industrie | Collagen carrier of therapeutic genetic material and method |
8920358, | Jan 19 2005 | GI Dynamics, Inc. | Resistive anti-obesity devices |
8921244, | Aug 22 2005 | The Procter & Gamble Company | Hydroxyl polymer fiber fibrous structures and processes for making same |
8932621, | Oct 25 2011 | Covidien LP | Implantable film/mesh composite |
8936642, | May 28 1999 | Anova Corporation | Methods for treating a defect in the annulus fibrosis |
8956373, | Aug 02 2002 | DAVOL, INC | Implantable prosthesis |
8961541, | Dec 03 2007 | CARDIOVASCULAR TECHNOLOGIES, INC | Vascular closure devices, systems, and methods of use |
8992567, | Apr 24 2001 | Cardiovascular Technologies Inc. | Compressible, deformable, or deflectable tissue closure devices and method of manufacture |
9005241, | Feb 18 2008 | Covidien LP | Means and method for reversibly connecting a patch to a patch deployment device |
9005308, | Oct 25 2011 | Covidien LP | Implantable film/mesh composite for passage of tissue therebetween |
9034002, | Feb 18 2008 | Covidien LP | Lock bar spring and clip for implant deployment device |
9034315, | Oct 10 1997 | ED GEISTLICH SOEHNE AG FUER CHEMISCHE INDUSTRIE | Cell-charged multi-layer collagen membrane |
9039741, | Dec 28 2005 | Intrinsic Therapeutics, Inc. | Bone anchor systems |
9044235, | Feb 18 2008 | Covidien LP | Magnetic clip for implant deployment device |
9072586, | Oct 03 2008 | C R BARD, INC | Implantable prosthesis |
9078630, | Jun 01 2001 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods and tools, and related methods of use |
9084616, | May 28 1999 | SUTURE CONCEPTS INC | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft |
9084669, | Dec 09 2003 | GI Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
9089313, | Sep 20 1999 | Atritech, Inc. | Method of closing an opening in a wall of the heart |
9089523, | Jul 28 2011 | LifeCell Corporation | Natural tissue scaffolds as tissue fillers |
9095416, | Dec 09 2003 | GI Dynamics, Inc. | Removal and repositioning devices |
9095442, | Oct 20 1999 | KRT INVESTORS, INC | Method and apparatus for the treatment of the intervertebral disc annulus |
9107726, | Feb 18 2008 | Covidien LP | Device and method for deploying and attaching an implant to a biological tissue |
9114025, | Oct 20 1999 | KRT INVESTORS, INC | Methods and devices for spinal disc annulus reconstruction and repair |
9119698, | Aug 03 2001 | BELLON CANEIRO, JUAN MANUEL; LOPEZ HERVAS, PEDRO; BUJAN VARELA, JULIA | Wall prosthesis that can be implanted in the center of a wound to reinforce abdominal wall closure |
9155609, | Dec 02 2002 | GI Dynamics, Inc. | Bariatric sleeve |
9179994, | Oct 25 2011 | Covidien LP | Implantable film/mesh composite |
9186235, | Apr 20 2000 | Sofradim Production | Prosthetic knit with grip properties, method for its production, and reinforcement implant for treatment of parietal defects |
9192372, | Oct 14 2008 | KRT INVESTORS, INC | Method for the treatment of tissue |
9226832, | Sep 07 2007 | Intrinsic Therapeutics, Inc. | Interbody fusion material retention methods |
9232938, | Jun 13 2006 | SUTURE CONCEPTS INC | Method and apparatus for closing fissures in the annulus fibrosus |
9237944, | Dec 09 2003 | GI Dynamics, Inc. | Intestinal sleeve |
9241796, | May 28 1999 | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft | |
9242026, | Jun 27 2008 | Sofradim Production | Biosynthetic implant for soft tissue repair |
9271821, | Jan 24 2012 | LifeCell Corporation | Elongated tissue matrices |
9278020, | Dec 02 2002 | GI Dynamics, Inc. | Methods of treatment using a bariatric sleeve |
9301826, | Feb 18 2008 | Covidien LP | Lock bar spring and clip for implant deployment device |
9308068, | Dec 03 2007 | Sofradim Production | Implant for parastomal hernia |
9333087, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Herniated disc repair |
9345460, | Apr 24 2001 | CARDIOVASCULAR TECHNOLOGIES, INC | Tissue closure devices, device and systems for delivery, kits and methods therefor |
9351819, | Jul 02 2009 | LifeCell Corporation | Device and method for treatment of incision or hernia |
9364310, | Jul 26 2011 | Covidien LP | Implantable devices including a mesh and a pivotable film |
9370536, | Sep 26 2012 | LifeCell Corporation | Processed adipose tissue |
9375017, | Jan 02 2009 | LifeCell Corporation | Method for debristling animal skin |
9375513, | Apr 14 2011 | LifeCell Corporation | Regenerative materials |
9393002, | Feb 18 2008 | Covidien LP | Clip for implant deployment device |
9393093, | Feb 18 2008 | Covidien LP | Clip for implant deployment device |
9398944, | Feb 18 2008 | Covidien LP | Lock bar spring and clip for implant deployment device |
9421004, | Sep 20 1999 | ATRITECH INC. | Method of closing an opening in a wall of the heart |
9433488, | Mar 09 2001 | Boston Scientific Scimed, Inc. | Medical slings |
9445883, | Dec 29 2011 | Sofradim Production | Barbed prosthetic knit and hernia repair mesh made therefrom as well as process for making said prosthetic knit |
9458573, | Nov 02 2009 | The Procter & Gamble Company | Fibrous structures and methods for making same |
9498335, | Oct 02 2012 | Implantable devices for musculoskeletal repair and regeneration | |
9499927, | Sep 25 2012 | Sofradim Production | Method for producing a prosthesis for reinforcing the abdominal wall |
9504770, | Jul 28 2011 | LifeCell Corporation | Natural tissue scaffolds as tissue fillers |
9510927, | Jun 28 2012 | Sofradim Production | Method of making a knit with barbs |
9526603, | Sep 30 2011 | Sofradim Production | Reversible stiffening of light weight mesh |
9532863, | Dec 20 2011 | LifeCell Corporation | Sheet tissue products |
9549803, | Jul 27 2001 | Boston Scientific Scimed, Inc. | Medical slings |
9549805, | Dec 20 2011 | LifeCell Corporation | Flowable tissue products |
9554887, | Mar 16 2011 | Sofradim Production | Prosthesis comprising a three-dimensional and openworked knit |
9585783, | Dec 09 2003 | GI Dynamics, Inc. | Methods and apparatus for anchoring within the gastrointestinal tract |
9592062, | May 28 1999 | Anova Corp. | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft |
9592254, | Feb 06 2013 | LifeCell Corporation | Methods for localized modification of tissue products |
9610106, | Dec 28 2005 | Intrinsic Therapeutics, Inc. | Bone anchor systems |
9622843, | Jul 13 2011 | Sofradim Production | Umbilical hernia prosthesis |
9631321, | Mar 31 2010 | The Procter & Gamble Company | Absorptive fibrous structures |
9675347, | Oct 20 1999 | KRT Investors, Inc. | Apparatus for the treatment of tissue |
9706947, | Aug 18 1999 | Intrinsic Therapeutics, Inc. | Method of performing an anchor implantation procedure within a disc |
9714484, | Nov 02 2009 | The Procter & Gamble Company | Fibrous structures and methods for making same |
9737294, | Jan 28 2013 | Cartiva, Inc. | Method and system for orthopedic repair |
9744061, | Dec 09 2003 | GI Dynamics, Inc. | Intestinal sleeve |
9750595, | Sep 28 2012 | Covidien LP | Implantable medical devices which include grip-members and methods of use thereof |
9750596, | Dec 02 2002 | GI Dynamics, Inc. | Bariatric sleeve |
9750837, | Sep 25 2012 | Sofradim Production | Haemostatic patch and method of preparation |
9782436, | Apr 24 2012 | LifeCell Corporation | Flowable tissue matrices |
9782957, | Aug 24 2011 | Covidien LP | Medical device films |
9795372, | Jan 11 2010 | KRT Investors, Inc. | Intervertebral disc annulus repair system and bone anchor delivery tool |
9801705, | Jun 29 2012 | Sofradim Production | Hernia prosthesis |
9833240, | Feb 18 2008 | Covidien LP | Lock bar spring and clip for implant deployment device |
9839504, | Jun 18 2013 | Covidien LP | Implantable slings |
9839505, | Sep 25 2012 | Sofradim Production | Prosthesis comprising a mesh and a strengthening means |
9861590, | Oct 19 2010 | Covidien LP | Self-supporting films for delivery of therapeutic agents |
9872976, | Aug 20 2010 | TC1 LLC | Assembly and method for stabilizing a percutaneous cable |
9877820, | Sep 29 2014 | Sofradim Production | Textile-based prosthesis for treatment of inguinal hernia |
9901474, | Oct 17 2003 | GI Dynamics, Inc. | Anti-obesity devices |
9907701, | Mar 08 2011 | MOR RESEARCH APPLICATIONS LTD | Tympanic membrane repair device |
9913705, | Dec 20 2011 | LifeCell Corporation | Flowable tissue products |
9926648, | Jul 17 2007 | The Procter & Gamble Company | Process for making fibrous structures |
9931198, | Apr 24 2015 | Sofradim Production | Prosthesis for supporting a breast structure |
9932695, | Dec 05 2014 | Sofradim Production | Prosthetic porous knit |
9980802, | Jul 13 2011 | Sofradim Production | Umbilical hernia prosthesis |
9987114, | Mar 24 2010 | Covidien LP | Combination three-dimensional surgical implant |
9993346, | Oct 02 2012 | Implantable devices for musculoskeletal repair and regeneration | |
9999424, | Aug 17 2009 | Covidien LP | Means and method for reversibly connecting an implant to a deployment device |
Patent | Priority | Assignee | Title |
3707150, | |||
3874388, | |||
4007743, | Oct 20 1975 | Baxter International Inc | Opening mechanism for umbrella-like intravascular shunt defect closure device |
4031569, | Mar 15 1976 | Nasal septum plug | |
4769038, | Mar 18 1986 | C. R. Bard, Inc. | Prostheses and techniques and repair of inguinal and femoral hernias |
4854316, | Oct 03 1986 | Apparatus and method for repairing and preventing para-stomal hernias | |
4917089, | Aug 29 1988 | Buttoned device for the transvenous occlusion of intracardiac defects | |
5021059, | May 07 1990 | Kensey Nash Corporation | Plug device with pulley for sealing punctures in tissue and methods of use |
5108420, | Feb 01 1991 | MARKS, LLOYD A | Aperture occlusion device |
5116357, | Oct 11 1990 | Cook Incorporated | Hernia plug and introducer apparatus |
WO9014796, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
May 27 1997 | REM: Maintenance Fee Reminder Mailed. |
Oct 19 1997 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 19 1996 | 4 years fee payment window open |
Apr 19 1997 | 6 months grace period start (w surcharge) |
Oct 19 1997 | patent expiry (for year 4) |
Oct 19 1999 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 19 2000 | 8 years fee payment window open |
Apr 19 2001 | 6 months grace period start (w surcharge) |
Oct 19 2001 | patent expiry (for year 8) |
Oct 19 2003 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 19 2004 | 12 years fee payment window open |
Apr 19 2005 | 6 months grace period start (w surcharge) |
Oct 19 2005 | patent expiry (for year 12) |
Oct 19 2007 | 2 years to revive unintentionally abandoned end. (for year 12) |