A system and method for polishing the edges of a plurality of semiconductor wafers rotates a stack of wafers against a polish one or more pads such that both the wafer edges and the sides of the edges are polished to a mirror finish. The polish pad has a series of grooves through which the wafer edges are passed to polish the sides of the wafer edges, or two pads are used, one with grooves and one without grooves.

Patent
   5274959
Priority
Jun 05 1991
Filed
Dec 11 1992
Issued
Jan 04 1994
Expiry
Jun 05 2011
Assg.orig
Entity
Large
12
3
all paid
8. An apparatus for polishing the edges of semiconductor wafer edges, comprising:
a rotatably mounted clamp assembly for holding a plurality of semiconductor wafers;
a polishing pad having a cylindrical surface;
a plurality of circumferential grooves extending partially around the polishing pad surface, leaving a portion of the polishing pad surface without grooves;
a slurry dispenser mounted over said polishing pad for dispensing slurry on said pad; and
at least one motor for rotating the semiconductor wafer edges against said polishing pad.
1. An apparatus for polishing the edges of semiconductor wafer edges, comprising:
a rotatably mounted clamp assembly for holding a plurality of semiconductor wafers;
at least one rotatable polishing pad mounted adjacent to and engaging said semiconductor wafer edges, said polishing pad having a cylindrical shaped surface, said surface having a plurality of circumferential grooves therein extending partially around the polishing pad surface, leaving a portion of the polishing pad surface without grooves;
a slurry dispenser mounted adjacent to said polishing pad for dispensing slurry on said pad; and
at least one motor for rotating the semiconductor wafer edges against said polishing pad.
2. The apparatus according to claim 1, wherein the semiconductor wafers rotate on an axis parallel to the axis on which the polishing pad rotates.
3. The apparatus according to claim 1, including a means for heating the semiconductor wafers during polishing.
4. The apparatus according to claim 1, wherein said polishing pad is an elastomer pad, including urethane, rubber, silicone, and combinations of layers of urethane, rubber and silicone.
5. The apparatus according to claim 1, including means for heating said slurry.
6. The apparatus according to claim 1, including a slurry with a chemical base having a pH between 9 and 14.
7. The apparatus according to claim 1, including an air blower for moving heated air across the semiconductor wafers during polishing.
9. The apparatus according to claim 8, wherein the semiconductor wafers rotate on an axis parallel to the axis on which the polishing pads rotates.
10. The apparatus according to claim 8, including a means for heating the semiconductor wafers during polishing.
11. The apparatus according to claim 8, wherein said polishing pad is an elastomer pad, including urethane, rubber, silicone, and combinations of layers of urethane, rubber and silicone.
12. The apparatus according to claim 8, including means for heating said slurry.
13. The apparatus according to claim 8, including a silica dispersion slurry with a chemical base having- a pH between 9 and 14.
14. The apparatus according to claim 8, including an air blower for moving heated air across the semiconductor wafers during polishing.

This application is a continuation of application Ser. No. 07/868,741, filed Apr. 14, 1992 now abandoned, which is a division of application Ser. No. 07/711,468, filed Jun. 5, 1991 now U.S. Pat. No. 5,128,281.

This invention relates to semiconductor material, and more particularly to an apparatus and method for polishing semiconductor wafer edges.

During the manufacture of semiconductor wafers, the edge of the wafer is ground to a rounded or beveled profile by means of an abrasive wheel. The rounded edge reduces chipping during later process steps. The grinding wheel usually contains diamond abrasive ranging in particle size form 30 to 40 micrometers, and leaves a surface that has visible ridges and valleys as seen under a low power microscope. It is known that a smoother edge surface is needed in integrated circuit manufacturing. Smoother edges are needed because wafers with rough edges chip more easily, edge ground wafers contain deeper micro cracks than edge polished wafers, and edge ground wafers contain depressions that may be a source of particles in processes that use phosphorous glasses.

Present polishing processes include mechanically abrading wafers with a finer abrasive, dipping the wafer in an acid polishing mixture, treating the wafer edges with an acid polishing mixture, or by dripping or spraying an etchant onto the edge. Mechanical abrasion has the disadvantage that it does not produce a mirror finish. Dipping the entire wafer in acid leads to the rounding of the planar surfaces of the wafer unless extreme care is exercised in the process. Acid etching of the edge requires considerable removal of material for etching a smooth surface, which causes a problem with maintaining an optimum profile for the wafer.

The invention is an apparatus and method for polishing the edges of a plurality of semiconductor wafers at one time. A plurality of wafers alternating with spacers are held together with the surfaces protected and rotated against a polishing surface to which is applied a polish slurry that is used during the polishing of wafer surfaces. The process is a combination chemo-mechanical process in that the exposed edge surface of each wafer is chemically converted to a coating of silicate and the top part of the coating is removed mechanically by very fine hydrated silica gel particles on a polishing pad.

A preferred embodiment of the invention is to have an abrasive polish cylinder come into contact with the edges of the wafers prior to the application of the chemo-mechanical polishing surface and slurry, thus putting a finer finish on the wafer than results from the edge grinding process, and thus removing some of the damage depth of the preceding process.

The chemo-mechanical polishing pad, which may be in cylindrical form, is rotated against the edges of the wafers. The wafers may also be rotating. The wafers are processed at an elevated temperature, between 35 and 60 degrees Centigrade.

In order to properly polish and shape the wafer edges, the wafers may be moved back and forth with respect to the polishing surface so that beveled edges may be polished as well as the outer parts of the edge. The polishing pad may have grooves partially around the polishing surface so that each wafer edge is in a groove, part of the time, to polish the beveled edge and against a nominally flat surface part of th time to polish the outer surface or crown of the edge. Alternately, the wafers may have the crown polished by one pad and the bevels by another pad that is fully grooved.

The technical advance represented by the invention as well as the objects thereof will become apparent from the following description of a preferred embodiment of the invention when considered in conjunction with the accompanying drawings, and the novel features set forth in the appended claims.

FIG. 1 is a simplified view of one embodiment of the invention;

FIG. 2 is a polishing roller used in the invention;

FIG. 3 is a second embodiment of a polishing roller;

FIG. 4 illustrates the edge of an unpolished semiconductor wafer;

FIG. 5 illustrates two semiconductors in polishing grooves; and

FIG. 6 illustrates a polishing system according to the present invention.

FIG. 1 is a simplified illustration of the present invention. A plurality of semiconductor wafers 10 are held together by clamping plates 12 which rotate around shafts 13 and 14. The wafers have spacers 11 sandwiched between the wafers. The stack of wafers are rotated, for example, in the direction of arrow 23.

The wafers are rotated against roller 15 which has a pad 15a on it surface. The wafer edges are in contact with pad 15a. Roller 15 is rotated by shafts 17 and 18, for example, in the direction of arrow 24. As the wafers and roller are rotated, a chemo-mechanical slurry mixture is applied by dispenser 19 through holes 20. Slurry is introduced into dispenser at its end, as shown by arrow 22.

Roller pad 15a has a series of grooves 16 that extend into the surface of the pad and partially around the outer circumference of pad 15a. Grooves 16 are spaced such that an edge of a wafer enters a groove as the wafers and roller are rotated. The edge of a wafer is in a groove only during a part of a complete rotation since each groove does not extend completely around the outer circumference of pad 15a. As roller 15 rotates, the edges of the semiconductor wafers are moved into and out of grooves 16 alternately polishing the edge and the sides of the edge to provide a polished tapered edge on the semiconductor wafer.

FIG. 2 show an end view of roller 15, illustrating grooves 16. Grooves 16 extend half-way around pad 15a such that when roller 15 rotates against wafers 10, the edges of wafers 10 ride in and out of grooves 16 alternately polishing the edges and sides of the edges of the wafers.

FIG. 3 illustrates another embodiment of a polishing roller. Roller 41 is elliptical and has an elliptical polishing pad. Grooves 43 are in the end of the elliptical pad such that when roller 41 is rotated against the semiconductor wafers, the edges of the wafers extend into the pad, polishing the sides of the wafer edge twice during one rotation of pad 42 and the edge of the wafer is polished twice during one rotation. The alternating polishing action of pad 41 produces a finished polished tapered and round edge of the wafer.

FIG. 4 shows the edge 10a of wafer 10 against the flat surface 15b of pad 15 and FIG. 5 shows two wafers 10 in grooves 16 of pad 15, polishing the sides 10b of wafer 10. The alternating polishing of the edges and sides of the edges produces the taper or rounded wafer edge as illustrated in FIG. 5.

A chemo-mechanical polishing slurry is applied to each of the above illustrated polishing pads. Other embodiments may be used for polishing pads such as a continuous band or belt of polishing material, or a flat disk rotating under and against the wafer edges.

A preferred embodiment of the invention is to have an abrasive polish cylinder come into contact with the edges of the wafers prior to the application of the chemo-mechanical polishing surface and slurry, thus putting a finer finish on the wafer than results from the edge grinding process, and thus removing some of the damage depth of the preceding process.

FIG. 6 is a polishing system according to the present invention. A plurality of semiconductor wafers 10 are stacked together with spacers 11 and held between clamping plates 60 and 61. Each clamping plated 60 and 61 are rotatably fastened to a movable mount. Plate 60 is attached to mount 63 and plate 61 is attached to mount 62. Mounts 62 and 63 are movable away from each other so that a stack of wafers, held between plates 60 and 61 can be rotatably mounted in the mounts. A shaft 64 is coupled to a shaft (not illustrated) in mount 62. Shaft 64 is also coupled to motor 65. Motor 65 rotates wafers 10 when motor 65 is turned on. Housing 59 encloses the polishing apparatus.

Polishing pad 15 is rotatably mounted on shafts 17 and 18 which are coupled to disconnect couplers 68 and 69, respectfully. Disconnect coupler 68 is connected to coupler 74 via shaft 72. Coupler 74 connects shaft 72 to motor 73. Shaft 72 is supported by mount 71. Shaft 17 connected to disconnect 69, connected to shaft 76. Shaft 76 is supported by bearing 75. Shaft 76 is supported by mount 70. Both mounts 70 and 71 have bearings (not illustrated) through which shaft 72, for mount 71 and shaft 76, for mount 70, extends through. Motor 73 rotates polishing pad 15.

Dispenser 19 is mounted above polishing pad 15 and dispenses the chemo-mechanical slurry. The slurry is pumped through tube 78 and is applied to pad 15 so that the edges of wafers are polished as the wafers rotate against polishing pad 15.

Heated air is circulated across the semiconductor wafers as shown by arrow 81. Temperature of the air is monitored by thermometer. Thermometer 82 may be connected to control the temperature of the heated air stream.

Polishing of the wafer edges is effected by rotating the wafers against the polishing pad/roller while a chemo-mechanical polish slurry is being applied. The edges of the wafers are introduced into grooves to polish the sides of the edge to maintain a tapered shape. The wafers are rotating slowly with the polishing roller rotating at a much faster rate. Polishing can be accomplished with one rotation of the wafers while the polishing roller rotates many revolutions alternately polishing the edge and then the sides of the edge of the wafer as the wafer edges pass through the groves in the polish roller. The speed of the wafers may be, for example, between 0.02 and 50 rpm, and the speed of the polishing pad may be, for example, 600 rpm.

In one example the wafers were elevated to a temperature between 35 and 60 degree centigrade with the heated air. Slurry was applied at a rate of about 7 drops per minute from each opening in the slurry dispenser. The slurry was maintained at a temperature of about 50 +/-3 degrees centigrade. Polishing time was about 20 minutes.

The polish pad 15 can be of different configurations. It can be cylindrical shaped, with a pad of material around a cylindrical mandrel. The pad may also be a continuous roll of pad driven by two rollers. In another embodiment, a flat plate may used with a pad on its surface.

The pad may be an elastomer such as urethane, rubber or silicone or a combination of layers of materials. One example is to use a napped poromeric urethane pad.

The slurry, which is heated, may have a chemical base added so that the pH is a value between 9 and 14. The slurry contains a silica dispersion with a stabilizing agent.

Dyer, Lawrence D., Allen, Frank, Stephens, Anthony E., Easton, Keith M., Kennon, James A., Medders, Jerry B., Meyer, III, Frederick O.

Patent Priority Assignee Title
5551960, Mar 12 1993 Minnesota Mining and Manufacturing Company Article for polishing stone
5582536, Jun 02 1994 Tokyo Seimitsu Co., Ltd. Apparatus and method for manufacturing wafer
5674110, May 08 1995 Onix s.r.l. Machine and a process for sizing and squaring slabs of materials such as a glass, stone and marble, ceramic tile and the like
5944584, Aug 27 1996 Shin-Estu Handotai Co., Ltd. Apparatus and method for chamfering wafer with loose abrasive grains
6113721, Jan 03 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method of bonding a semiconductor wafer
6257954, Feb 23 2000 MEMC Electronic Materials, Inc. Apparatus and process for high temperature wafer edge polishing
6722964, Apr 04 2000 TOSHIBA MEMORY CORPORATION Polishing apparatus and method
6935932, Apr 04 2000 Kabushiki Kaisha Toshiba Polishing apparatus and method
7108589, Apr 04 2000 TOSHIBA MEMORY CORPORATION Polishing apparatus and method
7438630, Sep 30 1997 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
7494401, Sep 30 1997 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
7690969, Sep 30 1997 Hoya Corporation Polishing method, polishing device, glass substrate for magnetic recording medium, and magnetic recording medium
Patent Priority Assignee Title
3699721,
4344260, Jul 13 1979 Nagano Electronics Industrial Co., Ltd.; Shin-Etsu Chemical Co., Ltd. Method for precision shaping of wafer materials
4850147, Jan 08 1987 Amchem Company Limited Electrode shaping
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 11 1992Texas Instruments Incorporated(assignment on the face of the patent)
Date Maintenance Fee Events
Jun 25 1997M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 29 2001M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 30 2005M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jan 04 19974 years fee payment window open
Jul 04 19976 months grace period start (w surcharge)
Jan 04 1998patent expiry (for year 4)
Jan 04 20002 years to revive unintentionally abandoned end. (for year 4)
Jan 04 20018 years fee payment window open
Jul 04 20016 months grace period start (w surcharge)
Jan 04 2002patent expiry (for year 8)
Jan 04 20042 years to revive unintentionally abandoned end. (for year 8)
Jan 04 200512 years fee payment window open
Jul 04 20056 months grace period start (w surcharge)
Jan 04 2006patent expiry (for year 12)
Jan 04 20082 years to revive unintentionally abandoned end. (for year 12)