An apparatus for use in nerve conduction studies includes a fixture for supporting a reference electrode, a recording electrode, a cathode and an anode with the distance between the cathode and the recording electrode being preselected and fixed. The electrodes of the fixture are electrically connected to a nerve stimulator and a controller. A panel and display are connected to the controller along with a storage device and a keyboard input device. A ground pad including a ground electrode and a temperature sensor are connected to the controller. The controller causes an electrical pulse to be transmitted to the cathode. The distal latency and amplitude of the supramaximal stimulus response of the nerve being tested are determined and displayed.

Patent
   5327902
Priority
May 14 1993
Filed
May 14 1993
Issued
Jul 12 1994
Expiry
May 14 2013
Assg.orig
Entity
Small
217
11
EXPIRED
1. A hand held fixture for use in nerve conduction studies, said fixture comprising:
an elongated body having a first portion, a second portion, an upper edge and a lower edge;
a first pair of electrodes mounted on the lower edge of said body adjacent an end of said first portion, one of said electrodes being a reference electrode and the other of said electrodes being a recording electrode;
a second pair of electrodes fixed to said body on the lower edge thereof, one of said second pair of electrodes being a cathode and the other of said electrodes of said second pair being an anode, said anode being fixed to said second portion of said body; and
adjustment means on said body for adjustably mounting said recording electrode and said cathode with respect to each other so that a distance "1" between the recording electrode and cathode may be changed and fixed for the type of nerve conduction study being performed.
11. An apparatus for performing nerve sensory fiber conduction studies comprising:
an electrode fixture having a reference electrode, a recording electrode, a cathode and an anode, said fixture further including adjustment means thereon for adjustably setting and fixing the distance between said recording electrode and said cathode in accordance with the type of study being performed;
a ground electrode;
a temperature sensor;
a nerve stimulator electrically connected to said cathode and anode;
an operator panel including a display; and
controller means connected to said reference and recording electrodes, said cathode, said anode, said ground electrode, said temperature sensor, said nerve stimulator and said panel and display for delivering a controlled electrical impulse to said cathode, measuring the response thereto as sensed by the recording electrode and generating an output which represents the amplitude and distal latency of the response.
6. A fixture for use in nerve conduction studies, said fixture comprising:
an elongated body having a first portion, a second portion, an upper edge and a lower edge;
a first pair of electrodes mounted on the lower edge of said body adjacent an end of said first portion, one of said electrodes being a reference electrode and the other of said electrodes being a recording electrode;
a second pair of electrodes fixed to said second portion of said body on the lower edge thereof, one of said second pair of electrodes being a cathode and the other of said electrodes of said second pair being an anode, the distance between the cathode and said recording electrode being fixable and at a distance predetermined for the type of nerve conduction study being conducted; and
slide means on said body for slideably and adjustably mounting said first pair of electrodes on said body so that the distance "1" between the cathode and recording electrode can be changed within predetermined limits.
7. A fixture for use in nerve conduction studies, said fixture comprising:
an elongated body having a first portion, a second portion, an upper edge and a lower edge;
a first pair of electrodes mounted on the lower edge of said body adjacent an end of said first portion, one of said electrodes being a reference electrode and the other of said electrodes being a recording electrode;
a second pair of electrodes fixed to said second portion of said body on the lower edge thereof, one of said second pair of electrodes being a cathode and the other of said electrodes of said second pair being an anode, the distance between the cathode and said recording electrode being fixable and at a distance predetermined for the type of nerve conduction study being conducted;
a rheostat on said body for adjusting the voltage level of pulses applied to the cathode; and
slide means on said body for slideably and adjustably mounting said first pair of electrodes on said body so that the distance "1" between the cathode and recording electrode can be changed within predetermined limits.
26. A device for use in nerve conduction studies, said device comprising:
an elongated body having a first portion, a second portion, an upper edge and a lower edge;
a first pair of electrodes mounted on the lower edge of said body adjacent an end of said first portion, one of said electrodes being a reference electrode and the other of said electrodes being a recording electrode; and
a second pair of electrodes fixed to said body on the lower edge thereof, one of said second pair of electrodes being a cathode and the other of said electrodes of said second pair being an anode, said anode being fixed to said second portion of said body, the distance between the cathode and said recording electrode being fixed at a distance predetermined for the type of nerve conduction study being conducted, said first portion and said second portion of said body being hingedly interconnected along a vertical axis and wherein said cathode is fixed to said body at said vertical axis so that the angular position of said anode with respect to said cathode may be changed without changing a distance "1" between said cathode and said recording electrode and a distance "12 " between the anode and cathode.
24. An apparatus for performing nerve sensory fiber conduction studies comprising:
an electrode fixture having a reference electrode, a recording electrode, a cathode and an anode, said fixture setting the distance between said recording electrode and said cathode;
a ground electrode;
a temperature sensor;
a nerve stimulator electrically connected to said cathode and anode;
an operator panel including a display;
controller means connected to said reference and recording electrodes, said cathode, said anode, said ground electrode, said temperature sensor, said nerve stimulator and said panel and display for delivering a controlled electrical impulse to said cathode, measuring the response thereto as sensed by the recording electrode and generating an output which represents the amplitude and distal latency of the response, said electrode fixture comprising:
an elongated body having ends, said reference and recording electrodes being fixed to said body and said anode and cathode being fixed to said body with the distance "1" between the cathode and recording electrode being predetermined and fixed for the type of nerve conduction study being performed; and
a pad, said ground electrode and said temperature sensor being fixed to said pad, said elongated body of said fixture including a first portion hinged to a second portion about a hinge axis and wherein said recording and reference electrodes are mounted on said first portion, said cathode is positioned on said hinge axis and said anode is fixed to said second portion, and wherein said fixture further comprises:
a slide movable along said first portion of said fixture elongated body, said recording and reference electrodes being mounted on said slide.
25. An apparatus for performing nerve sensory fiber conduction studies comprising:
an electrode fixture having a reference electrode, a recording electrode, a cathode and an anode, said fixture setting the distance between said recording electrode and said cathode;
a ground electrode;
a temperature sensor;
a nerve stimulator electrically connected to said cathode and anode;
an operator panel including a display;
controller mean connected to said reference and recording electrodes, said cathode, said anode, said ground electrode, said temperature sensor, said nerve stimulator and said panel and display for delivering a controlled electrical impulse to said cathode, measuring the response thereto as sensed by the recording electrode and generating an output which represents the amplitude and distal latency of the response, said operator panel including switches labeled for specific nerve conduction studies and said controller means generates a step-by-step procedure on the display for an operator when one of said switches is actuated, an input means connected to said controller means for inputting information on the subject of the study;
a storage means for recording and storing said output and said information on the subject, said electrode fixture comprising:
an elongated body having ends, said reference and recording electrodes being fixed to said body and said anode and cathode being fixed to said body with the distance "1" between the cathode and recording electrode being fixed for the type of nerve conduction study being performed; and
a pad, said ground electrode and said temperature sensor being fixed to said pad, wherein said elongated body of said fixture includes a first portion hinged to a second portion about a hinge axis and wherein said recording and reference electrodes are mounted on said first portion, said cathode is positioned on said hinge axis and said anode is fixed to said second portion, and wherein said fixture further comprises:
a slide movable along said first portion of said fixture elongated body, said recording and reference electrodes being mounted on said slide.
2. A fixture as defined in claim 1 wherein said first portion and said second portion of said body are hingedly interconnected along a vertical axis so that said second portion may be rotated about said axis.
3. A fixture as defined by claim 2 wherein said cathode is fixed to said body at said vertical axis so that as said second portion is rotated the angular position of said anode with respect to said cathode may be changed without changing the distance "1" between said cathode and said recording electrode.
4. A fixture as defined y claim 1 further comprising:
switch means on said body for activating storage of responses to nerve stimulation.
5. A fixture as defined by claim 1 further comprising:
a rheostat on said body for adjusting the voltage level of pulses applied to the cathode.
8. A fixture as defined by claim 7 further comprising:
switch means on said body for activating storage of responses to nerve stimulation.
9. A fixture as defined by claim 8 wherein said first portion and said second portion of said body are hingedly interconnected along a vertical axis.
10. A fixture as defined by claim 9 wherein said cathode is fixed to said body at said vertical axis so that the angular position of said anode with respect to said cathode may be changed without changing the distance "12 " between said anode and said cathode and the distance "1" between said cathode and said recording electrode.
12. An apparatus as defined by claim 11 further comprising:
an input means connected to said controller means for inputting information on the subject of the study.
13. An apparatus as defined by claim 12 further comprising:
a storage means for recording and storing said output and said information on the subject.
14. An apparatus as defined by claim 13 wherein said display is a cathode ray tube.
15. An apparatus as defined by claim 11 wherein said operator panel includes switches labeled for specific nerve conduction studies and said controller means generates a step-by-step procedure on the display for an operator when one of said switches is actuated.
16. An apparatus as defined by claim 15 further comprising:
an input means connected to said controller means for inputting information on the subject of the study.
17. An apparatus as defined by claim 16 further comprising
a storage means for recording and storing said output and said information on the subject.
18. An apparatus as defined by claim 17 wherein said electrode fixture comprises:
an elongated body having ends, said reference and recording electrodes being fixed to said body and said anode and cathode being fixed to said body with the distance "1" between the cathode and recording electrode being fixed for the type of nerve conduction study being performed.
19. An apparatus as defined by claim 18 further comprising:
a pad, said ground electrode and said temperature sensor being fixed to said pad.
20. An apparatus as defined by claim 19 wherein said elongated body of said fixture includes a first portion hinged to a second portion about a hinge axis and wherein said recording and reference electrodes are mounted on said first portion, said cathode is positioned on said hinge axis and said anode is fixed to said second portion.
21. An apparatus as defined by claim 11 wherein aid electrode fixture comprises:
an elongated body having ends, said reference and recording electrodes being fixed to said body by said adjustment means and said anode and cathode being fixed to said body with the distance "1" between the cathode and recording electrode being predetermined and fixed for the type of nerve conduction study being performed.
22. An apparatus as defined by claim 21 further comprising:
a pad, said ground electrode and said temperature sensor being fixed to said pad.
23. An apparatus as defined by claim 22 wherein said elongated body of said fixture includes a first portion hinged to a second portion about a hinge axis and wherein said recording and reference electrodes are mounted on said first portion, said cathode is positioned on said hinge axis and said anode is fixed to said second portion.
27. A device as defined by claim 26 further comprising:
a nerve stimulator electrically connected to said cathode and anode; and
controller means connected to said nerve stimulator for delivering a controlled electrical impulse to said cathode, measuring the response thereto as sensed by the recording electrode and generating an output.
28. A device as defined by claim 27 further comprising:
a ground electrode;
a temperature sensor; and
a pad, said ground electrode and said temperature sensor being mounted on said pad and electrically connected to said controller means.
29. A device as defined by claim 26 further comprising:
adjustment means on said elongated body for moveably positioning said recording electrode with respect to said cathode to set the distance "1" therebetween in accordance with the type of study being conducted.

The present invention relates to a method and apparatus for performing sensory nerve conduction studies.

Sensory nerve conduction studies are often used by neurologists to diagnose different forms of nerve compression syndrome. Diminished conduction velocity may indicate nerve damage. Such studies may also be used to indicate the development or onset of an abnormal condition. Such studies could, therefore, be used to permit corrective action to be undertaken before permanent damage to the nerve occurs.

In one example, nerve conduction studies could be used to diagnose or determine the potential for or the onset of carpal tunnel syndrome. Carpal tunnel syndrome is a painful condition associated with repetitive use of the hands and wrists. The condition is caused by compression of the median nerve as it passes through the carpal tunnel. Carpal tunnel syndrome is characterized by pain and paresthesia in the sensory distribution of the median nerve in the hand. Symptoms include numbness, tingling and a painful burning sensation in the fingers which can radiate up the forearm to the shoulder.

Heretofore, nerve conduction velocity measurements have been made by stimulating the peripheral nerve with an electrical impulse and measuring the time or latency from the stimulation until an action potential occurs in a muscle innervated by the nerve under examination. Measurements are made by the use of surface electrodes positioned over the muscle that picks up the signals which are then amplified and displayed on a screen of a cathode ray tube or an oscilloscope. Measurements of the distance between the stimulus and response, which peak on the screen of the oscilloscope, are converted into latency times. This technique is referred to as electromyography (EMG). U.S. Pat. No. 4,291,705 entitled NEUROMUSCULAR BLOCK MONITOR, which issued on Sep. 29, 1981 to Severinghaus et al, and U.S. Pat. No. 4,807,643 entitled DIGITAL ELECTRONEUROMETER, which issued on Feb. 28, 1989 to Rosier, disclose methods and apparatus for performing conduction studies, the disclosure of which are hereby incorporated by reference.

EMG generally requires sophisticated and expensive equipment. The studies are typically performed by highly trained medical personnel or technicians. Proper procedures must be followed or error will be present in the results. For example, in conducting a median nerve sensory fiber conduction study, the distance between the stimulating cathode and the recording electrode is critical to obtaining results which may be compared with generally accepted standards or norms. Another source of error involves ambient temperature. Lower temperature will reduce the conduction velocities. In addition, it is important that the electrodes be placed properly on the subject so that the appropriate nerve and responses to stimulation are accurately recorded.

A need exists for apparatus which eliminates measurement errors and assists in the proper placement of electrodes for nerve conduction studies. In addition, a need exists for apparatus which permits nonmedical personnel to conduct studies on a regular basis at reduced cost and with accurate results.

In accordance with the present invention, the aforementioned needs are fulfilled. An apparatus is provided which includes a fixture for accurately positioning the electrodes used in nerve conduction studies. The fixture includes an elongated body supporting a first pair of electrodes and a second pair of electrodes. The first pair includes a reference electrode and a recording electrode. The second pair includes a stimulating electrode or cathode and an anode. The distance between the cathode and the recording electrode is preselected for the specific nerve conduction study being undertaken in order to eliminate measurement error.

In narrower aspects of the invention, the fixture may include provision for movably mounting the reference and recording electrodes so that the distance between the recording electrode and the stimulating cathode may be changed. In addition, it is preferred that the fixture permit angular positioning of the anode with respect to the cathode.

Operating controls may be positioned on the fixture. The fixture is connected to a nerve stimulator and a controller. A ground electrode and a temperature sensor are preferably connected to the controller. The apparatus generates electrical impulses which are transmitted to the cathode. The potential sensed by the recording and reference electrodes are received by the controller. The voltage level of the impulse is increased until supramaximal stimulus is reached. The controller is connected to a display which presents the amplitude and distal latency associated with the response by the stimulated nerve.

In narrower aspects of the invention, it is preferred that the controller generate a set of instructions presented at the display for the operator to follow in the performing of the specific nerve conduction study. The apparatus is conduction study specific which reduces the extent of training necessary and helps insure accuracy.

The apparatus in accordance with the present invention eliminates common sources of error in conventional nerve conduction studies. The apparatus generates readily comparable data. The apparatus permits the performance of studies on a regular basis to determine the onset of nerve compression syndrome, such as carpal tunnel syndrome.

FIG. 1 is a view of the lower arm, wrist and hand of a subject showing the prior art placement of electrodes in the performing of a median nerve sensor fiber conduction study;

FIG. 2 is an elevational view of a fixture in accordance with the present invention;

FIG. 3 is a top plan view of the fixture of FIG. 2;

FIG. 4 is a plan view of a ground pad and electrode incorporated in the present invention;

FIGS. 5a, 5b and 5c are elevational views of alternative electrode attachment devices which may be used with the present invention;

FIG. 6 is a schematic view of an electrical controller, display and related apparatus in accordance with the present invention;

FIG. 7 is a plan view of an apparatus in accordance with the present invention including a control panel and display, fixture and ground pad; and

FIG. 8 is a representative printed output from the subject apparatus.

Fiber conduction studies have required the placement of a reference electrode 10, commonly referred to as electrode G2, and a recording electrode 12, commonly referred to as G1, on the skin surface. FIG. 1 illustrates electrode placement for a median nerve conduction study. Electrodes G1 and G2 are positioned approximately 3.5 cm apart on the volar surface of the wrist between the flexor carpi radialis and the palmaris longus tendons. Electrodes 14, 16 are positioned on the palm. Palm electrode 14 is the cathode and electrode 16 is the anode. The cathode is positioned along a line that is defined by the web space between the second and third digits and the thumb side of the right wrist just lateral to the flexor carpi radialis tendon. Cathode 14 is positioned 8 cm from the recording electrode 12. A ground electrode is secured to the wrist by a strap 18. The ground electrode is used to minimize or eliminate electrical noise during the measurement.

In prior approaches, electrodes 14, 16 are positioned by a hand-held device 20. Electrodes 14, 16 of device 20 are connected to an EMG apparatus, as are electrodes G1, G2 and ground. Errors in studies using existing equipment result from improper distance measurement and placement of electrodes 10 and 12 with respect to each other and electrodes 12 and 14 with respect to each other. Distance errors on the order of 0.15 ms/cm in the measured distal latency are typical. In addition, low temperatures at the extremity are a source of error. As temperatures decrease, the conduction velocities decrease. The rate of change is on the order of 0.1 ms/c°.

In accordance with the present invention, a fixture 30 is provided for properly positioning electrodes 10, 12, 14 and 16. Fixture 30 includes an elongated body 32. Body 32 includes a first portion 34 and a second portion 36. Portions 34 and 36 are hingedly interconnected by a hinge pin 38. Pin 38 extends through portions 40, 42 on body 34 and portion 44 on body portion 36. In the preferred form, cathode 14 is fixed to body 30 at the vertical hinge axis defined by pin 38 and portions 40, 42 and 44. In the presently preferred form, electrodes 10, 12 are mounted on body portion 34 by a slide 50. Slide 50 includes a top flange 52 and a bottom flange 54 which are extended over upper and lower edges 56, 58 of body portion 34. Electrodes 10, 12 are fixed to flange 54 of slide 50. As seen in FIG. 3, an upper surface 56 of body portion 4 is formed with gradations or tick marks 58. The tick marks are calibrated to indicate the distance 1 between the recording electrode 12 and cathode 14. Slide 50 is fixed in position by a set screw 62. Upper flange 52 defines a window or aperture 64 which permits the gradations 58 to be read. Slide 50 mounts electrodes 10, 12 at a distance 11. Electrodes 14, 16 are mounted a preselected distance 12 with respect to each other. The distance 11 between recording electrode 12 and stimulating cathode or electrode 14 is preselected and corresponds to that needed for the type of study being conducted. Electrodes 10, 12, 14 and 16 are connected through fixture 30 to a conductor within a cord 85. In addition, fixture 30 may include a rheostat or variable position slide potentiometer 88 to control the voltage levels applied to the stimulating electrode as discussed below. Further, a storage actuating switch 90 may be mounted on the fixture for ready use by the operator in conducting a study.

FIG. 4 illustrates a ground pad usable with the fixture 30 of FIGS. 2 and 3. Pad 70 includes a planar, elongated wrist and forearm support portion 72 and a hand and wrist support portion 74. A raised ground electrode 76 is fixed to pad 70 adjacent the wrist area of the subject. Hooks 78 extend from the side of pad 70. The hooks provide a place for attachment of an elastic strap or band to secure the subject's forearm, wrist and hand in position on pad 70. Ground electrode 76 is connected to an electrical lead 82. In addition, a thermistor 84 or other temperature sensor is mounted on ground electrode 76. Sensor 84 is electrically connected to a lead 86.

Various devices may be used in connection with the electrodes to attach them to the subject. As shown in FIG. 5a, a conventional bipole or surface disk 94 may be attached to any of the electrodes. A ring attachment structure 96, as shown in FIG. 5b, may also be used. A loop attachment structure 98, as shown in FIG. 5c, may further be used. Each of the devices 94, 96 and 98 includes an attachment stem portion 100 dimensioned to receive the electrode. The various types of attachment structures are provided depending upon the type of nerve conduction study being performed. When conducting a median nerve sensory fiber conduction study to position the electrodes as shown, for example, in FIG. 1, disks 94 would typically be used.

Electrodes 14, 16, 10, 12, 76 and temperature sensor 84 are connected to a controller 120, as schematically illustrated in FIG. 6. Controller 120 is a programmable device which is also connected to a power supply 122, a disk or data storage device 124, a nerve stimulator 126, a keyboard input device 128, a panel and display device 130 and a printer 132. Controller 120 controls the application of an electrical impulse from the nerve stimulator 126 to cathode 14. Controller 120 also receives the electrical output signals from electrodes 10, 12 and processes the information to present an appropriate display of amplitude and distal latency at the panel and display 130. As discussed below, keyboard 128 is used to input data about the subject to the controller for permanent recording in connection with the test results.

As best seen in FIG. 7, panel and display 130 includes an oscilloscope with a cathode ray tube display 134, a power on switch 136, a reset switch 138, a temperature switch 140, a save switch 142, a gain indicator (up/down) 144, a cursor control 146, an up/down indicator 148, specific conduction study indicator buttons 150, 152, 154 and 156, and a display storage button 158. Controls 160 for the CRT display 134 are provided. A print button 162 is also included. Keyboard 128 is storable beneath the panel. In addition, the storage device 124 includes an access slot for a standard magnetic disk. FIG. 7 schematically illustrates the attachment of fixture 30 and ground pad 70 to the controller.

The apparatus illustrated in FIGS. 6 and 7 is designed for performing nerve conduction studies which measure distal latencies in the median nerve sensory fiber. Such studies are usable to determine the presence or possible onset of carpal tunnel syndrome.

In operation, the user would turn on power to the apparatus by pushing button 136. Reset button 138 would be pressed to clear unwanted information from the programmable controller. The temperature sensor 84, pad 70 and ground electrode 76 would be positioned on the hand of the patient. An elastic band is secured to hooks 78 to insure that the back of the wrist is placed against electrode 76 and sensor 84. Temperature switch 140 is pressed to record the temperature of the extremity sensed by thermistor 84. Controller 120 may be programmed to use such information in generating output values which are temperature corrected.

It is presently preferred that the controller be programmed to generate test instruction procedures which are displayed on the CRT 134 for user operation. The instructions prompt the operator to input the date, name, age and other appropriate identifying information concerning the individual into the apparatus using the keyboard 128. Such information is stored and permanently recorded along with the results of the conduction studies and printed on an appropriate hard copy printout.

Next the operator is instructed to activate the appropriate switch for the particular conduction study being performed. In the form illustrated in FIG. 7, button 150 is designated RMS for right median sensory. Button 152 is designated RUS for right ulnar sensory. Button 154 is designated LMS for left median sensory, and button 156 is designated LUS for left ulnar sensory.

The operator will have been previously trained to apply the electrode fixture 30 to obtain the right median sensory response initially. The cathode is positioned along the lines defined by the web space between the second and third digits on the thumb side of the right wrist, just lateral to the flexor carpi radialis tendon. The fixture is positioned over the hand, which is positioned as shown in FIG. 1, so that electrodes 10 and 12 are in the appropriate places and electrodes 14, 16 are properly positioned. Once the electrode fixture is positioned, the operator will increase the voltage of the stimulus using slide 88 and electric shocks will be emitted through the cathode every second. As the voltage increases by moving slide or rheostat 88, the amplitude of the output sensed by electrodes 10, 12 will also increase. At the point where the amplitude does not increase any further even though the voltage has been increased an additional increment, supramaximal stimulus of the median nerve has been reached. Anode 14 is then rotated angularly with respect to cathode 14 so that the base line of the response as displayed on the CRT 134 is essentially horizontal. Once an acceptable response is obtained, the operator activates the capture or save button 90 on fixture 30 so that the response will be held and displayed at the CRT tube.

The operator then uses the cursor controls 146, 148 to determine amplitude and distal latency. Switch 148 is placed in its lower station. As a result, movement of the cursor will be along the X axis along the response. The cursor is then positioned to set the base of the amplitude response. Switch 148 is then moved to the upper position. The cursor is then elevated using cursor control 146 until it reaches the top of the response, as schematically illustrated by the dotted lines in FIG. 7. The controller will then display a number under the response. The number indicates the numerical value of the amplitude. The cursor control 146 is again used to position the cursor until a vertical line displayed hits the central, peak portion of the response and which is to be measured. The controller uses this information to generate and display the distal latency in milliseconds. The amplitude is preferably displayed in microvolts. As shown, the display is in the form amplitude value/distal latency value.

In order to properly place the cursors, the responses need to be the appropriate height. If the response is too high, one can decrease the gain or sensitivity by pushing the button 144 below the save button 142. If the response is too low, one could also increase the gain or sensitivity. When the recorded response is considered appropriate, the save button 142 is pressed and a light above a button 150 will light up indicating that a response has been stored safely for that testing factor. The procedure is then repeated pursuant to instructions displayed on screen 134 to determine RUS, LMS and LUS. When responses are appropriately obtained, all of the lights above the buttons 150, 152,154 and 156 will be displayed. All responses can be displayed on the CRT tube for evaluation. In addition, the controller will display or generate the variances or differences between the distal latencies comparing the right median to the right ulnar, the left median to the left ulnar and also right median to left median responses and right ulnar to left ulnar responses. Normal values include median sensory nerve action potential amplitudes of 50 or more microvolts, ulnar sensory action potential amplitudes of 15 or more microvolts, with variance determinations being normal up to 0.2 ms when comparing median and ulnar responses of the ipsilateral arm and median to median and ulnar to ulnar responses of contra lateral arms. The variances are preferably determined, however, only for distal latencies which should be up to and including 2.2 ms with regard to median sensory distal latencies using the palmer method and up to 2.2 ms with regard to ulnar sensory distal latencies using the palmer method. Noted abnormalities would be highlighted on the display screen for easy reference. Once all responses are properly recorded, display storage button 158 may be pushed, which will store the information permanently on a recording medium. This information will be permanently recorded along with the individual patient or subject information. Print button 162 may be pressed to generate a printed output 171, as shown, for example, in FIG. 8. Once information is properly recorded and stored, the apparatus may be prepared for further testing. The fixture and base electrodes need to be wiped off conveniently with an alcohol wipe or the like. Appropriate cleaning measures would be taught to the operator.

The controller which generates the instructions and the fixture 30 permit the apparatus to be used by nonmedical personnel or personnel with limited training. Sources of error such as that caused by temperature and placement of electrodes are eliminated. The apparatus permits specific nerve conduction studies to be regular or repetitively conducted to determine onset or the presence of a compressive nerve disorder. Appropriate screening for potential carpal tunnel syndrome may be undertaken and corrective action initiated. Work and disability problems could be reduced or more quickly treated.

In view of the above description, those of ordinary skill in the art may envision various modifications which would not depart from the inventive concepts disclosed herein. It is expressly intended, therefore, that the above description should be considered as only that of the preferred embodiment. The true spirit and scope of the present invention may be determined by reference to the appended claims.

Lemmen, Roger D.

Patent Priority Assignee Title
10004445, Sep 16 2010 NEUROMETRIX, INC Apparatus and method for stimulator on-skin short detection
10251633, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
10299756, Sep 27 2005 NuVasive, Inc. System and methods for nerve monitoring
10327750, Apr 16 2009 NuVasive, Inc. Method and apparatus for performing spine surgery
10357233, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
10357238, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
10420480, Sep 16 2014 NuVasive, Inc Systems and methods for performing neurophysiologic monitoring
10426627, Apr 16 2009 NuVasive, Inc. Methods and apparatus for performing spine surgery
10441183, Sep 22 2005 NuVasive, Inc. Multi-channel stimulation threshold detection algorithm for use with neurophysiology monitoring systems
10470707, Oct 30 2001 NuVasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
10507120, Sep 25 2001 NuVasive, Inc. Systems and methods for performing surgical procedures and assessments
10653308, Oct 17 2003 NuVasive, Inc. Surgical access system and related methods
10695044, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
10695108, May 08 2003 NuVasive, Inc. Neurophysiological apparatus and procedures
10716509, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
10857364, Apr 14 2020 Soin Neuroscience, LLC Neuromodulation system and method with feedback optimized electrical field generation
10881311, Sep 16 2010 NeuroMetrix, Inc. Apparatus and method for the automated measurement of sural nerve conduction velocity and amplitude
10953231, Apr 14 2020 Soin Neuroscience, LLC Neuromodulation system and method with feedback optimized electrical field generation
10959860, Dec 26 2008 Pantheon Spinal, LLC Method of retroperitoneal lateral insertion of spinal implants
10980524, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
10993650, Jan 15 2003 NuVasive, Inc. System for determining nerve direction to a surgical instrument
11026627, Mar 15 2013 Cadwell Laboratories, Inc. Surgical instruments for determining a location of a nerve during a procedure
11064934, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
11065450, Apr 14 2020 Soin Neuroscience, LLC Neuromodulation system and method with feedback optimized electrical field generation
11177610, Jan 23 2017 Cadwell Laboratories, ino. Neuromonitoring connection system
11219440, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
11246713, Apr 16 2009 NuVasive, Inc. Methods and apparatus for performing spine surgery
11253182, May 04 2018 CADWELL LABORATORIES, INC Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
11259737, Nov 06 2012 NuVasive, Inc Systems and methods for performing neurophysiologic monitoring during spine surgery
11443649, Jun 29 2018 CADWELL LABORATORIES, INC Neurophysiological monitoring training simulator
11457857, Sep 22 2005 NuVasive, Inc. Multi-channel stimulation threshold detection algorithm for use with neurophysiology monitoring systems
11471086, Sep 16 2014 NuVasive, Inc. Systems and methods for performing neurophysiologic monitoring
11540804, Sep 27 2005 NuVasive, Inc. System and methods for nerve monitoring
11617562, Sep 27 2005 NuVasive, Inc. System and methods for nerve monitoring
11647999, Apr 16 2009 NuVasive, Inc. Method and apparatus for performing spine surgery
11653894, Sep 27 2005 NuVasive, Inc. System and methods for nerve monitoring
11712218, Sep 27 2005 NuVasive, Inc. System and methods for nerve monitoring
11723644, Oct 08 2004 NuVasive, Inc. Surgical access system and related methods
11793504, Aug 19 2011 NuVasive, Inc. Surgical retractor system and methods of use
11877860, Nov 06 2012 NuVasive, Inc Systems and methods for performing neurophysiologic monitoring during spine surgery
5560372, Feb 02 1994 NERVONIX, INC Non-invasive, peripheral nerve mapping device and method of use
5797854, Aug 01 1995 Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
5851191, Jul 01 1997 NeuroMetrix, Inc. Apparatus and methods for assessment of neuromuscular function
5957860, Aug 04 1995 Method and apparatus for monitoring and/or controlling the neuromuscular blocking, specially the blocking produced by muscular relaxing pharmaceuticals during anaesthesia
5976094, Jul 01 1997 NeuroMetrix, Inc. Apparatus and methods for assessment of neuromuscular function
6132386, Jul 01 1997 NEUROMETRIX, INC Methods for the assessment of neuromuscular function by F-wave latency
6132387, Jul 01 1997 NEUROMETRIX, INC Neuromuscular electrode
6146335, Jul 01 1997 NEUROMETRIX, INC Apparatus for methods for the assessment of neuromuscular function of the lower extremity
6266558, Dec 01 1998 NEUROMETRIX, INC Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity
6379313, Jul 01 1997 NeuroMetrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
6500128, Jun 08 2000 NuVasive, Inc Nerve movement and status detection system and method
6553245, Nov 02 2000 Method and apparatus for self-diagnostic evaluation of nerve sensory latency
6692444, Jul 01 1997 NeuroMetrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
7058438, Nov 02 2000 Method and apparatus for self-diagnostic evaluation of nerve sensory latency
7079883, Dec 23 1998 NuVaslve, Inc. Nerve surveillance cannulae systems
7177677, Nov 24 1999 NuVasive, Inc. Nerve proximity and status detection system and method
7179231, Aug 25 2003 Wisys Technology Foundation, Inc., Apparatus and method for analyzing nerve conduction
7207949, May 25 2005 NuVasive, Inc Surgical access system and related methods
7282033, Sep 04 2002 Positioning system for a nerve stimulator needle
7452335, Nov 06 2001 NeuroMetrix, Inc.; NEUROMETRIX, INC Method and apparatus for the detection of neuromuscular disease using disease specific evoked neuromuscular response analysis
7470236, Nov 24 1999 NuVasive, Inc Electromyography system
7496407, Dec 23 2003 Nerve stimulator measuring device
7522953, Sep 25 2001 NuVasive, Inc System and methods for performing surgical procedures and assessments
7558610, Jun 01 2005 Electric diagnostic tape measure and method
7582058, Jun 26 2002 NuVasive, Inc Surgical access system and related methods
7628761, Jul 01 1997 NEUROMETRIX, INC Apparatus and method for performing nerve conduction studies with localization of evoked responses
7657308, Aug 05 2003 NuVasive, Inc System and methods for performing dynamic pedicle integrity assessments
7664544, Oct 30 2002 NuVasive, Inc System and methods for performing percutaneous pedicle integrity assessments
7691057, Jan 16 2003 NuVasive, Inc Surgical access system and related methods
7785253, Jan 31 2005 NuVasive, Inc.; NuVasive, Inc Surgical access system and related methods
7819801, Feb 27 2003 NuVasive, Inc Surgical access system and related methods
7883536, Jan 19 2007 NERVESENSE LTD Hybrid optical-electrical probes
7892173, Feb 27 2003 NuVasive, Inc. Surgical access system and related methods
7905840, Oct 17 2003 NuVasive, Inc Surgical access system and related methods
7920922, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
7935051, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
7962191, Dec 23 1998 NuVasive, Inc. Nerve surveillance cannulae systems
7963927, Nov 24 1999 NuVasive, Inc. Electromyography system
7988688, Sep 21 2006 NERVESENSE LTD Miniature apparatus and method for optical stimulation of nerves and other animal tissue
8000782, Sep 25 2002 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8005535, Sep 25 2001 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8016767, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8027716, Sep 25 2001 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8050769, Jul 11 2002 NuVasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
8068912, Jul 11 2001 NuVasive, Inc System and methods for determining nerve proximity, direction, and pathology during surgery
8090436, May 18 2000 NuVasive, Inc. Tissue discrimination and applications in medical procedures
8114019, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8133173, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8137284, Oct 08 2002 NuVasive, Inc Surgical access system and related methods
8147421, Jan 15 2003 NuVasive, Inc System and methods for determining nerve direction to a surgical instrument
8160696, Oct 03 2008 NERVESENSE LTD Nerve stimulator and method using simultaneous electrical and optical signals
8165653, Dec 23 1998 NuVasive, Inc. Surgical access and nerve surveillance
8172750, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8182423, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
8187179, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
8192356, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
8192357, Oct 08 2002 NuVasive, Inc Surgical access system and related methods
8206312, Sep 22 2005 NuVasive, Inc Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
8244343, Sep 25 2001 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8255044, Aug 05 2003 NuVasive, Inc. System and methods for performing dynamic pedicle integrity assessments
8255045, Apr 04 2007 NuVasive, Inc Neurophysiologic monitoring system
8265744, Sep 25 2002 NuVasive, Inc. Systems and methods for performing surgical procedures and assessments
8287597, Apr 16 2009 SOLTA MEDICAL, INC Method and apparatus for performing spine surgery
8303498, Feb 27 2003 NuVasive, Inc. Surgical access system and related methods
8303515, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8313430, Jan 11 2006 NuVasive, Inc. Surgical access system and related methods
8317848, Jan 11 2007 Lockheed Martin Corporation Vestibular implant and method for optical stimulation of nerves
8326410, Feb 17 2004 NEUROMETRIX, INC Method for automated analysis of submaximal F-waves
8328851, Jul 28 2005 NuVasive, Inc Total disc replacement system and related methods
8343046, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8355780, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8357187, Jan 19 2007 Lockheed Martin Corporation Hybrid optical-electrical probes for stimulation of nerve or other animal tissue
8388527, Sep 25 2003 NuVasive, Inc. Surgical access system and related method
8403841, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8439832, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8475506, Aug 13 2007 Lockheed Martin Corporation VCSEL array stimulator apparatus and method for light stimulation of bodily tissues
8498699, Oct 03 2008 NERVESENSE LTD Method and nerve stimulator using simultaneous electrical and optical signals
8500634, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8500653, Sep 22 2005 NuVasive, Inc. Neurophysiology monitoring system configured for rapid stimulation threshold acquisition
8506613, Sep 21 2006 NERVESENSE LTD Miniature method and apparatus for optical stimulation of nerves and other animal tissue
8512235, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
8523768, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8548579, Sep 25 2001 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8550994, Feb 27 2003 NuVasive, Inc. Surgical access system and related methods
8551150, Jan 11 2007 NUROTONE MEDICAL LTD Method and system for optical stimulation of nerves
8556808, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8562521, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8568317, Sep 27 2005 NuVasive, Inc System and methods for nerve monitoring
8568331, Feb 02 2005 NuVasive, Inc System and methods for monitoring during anterior surgery
8591432, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8602982, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8628469, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8632577, Jan 19 2007 NERVESENSE LTD Hybrid optical-electrical probes for stimulation of nerve or other animal tissue
8634904, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
8652187, May 28 2010 NUROTONE MEDICAL LTD Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
8663100, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
8672840, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
8679006, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
8696559, Feb 27 2003 NuVasive, Inc. Surgical access system and related methods
8708899, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
8709078, Aug 03 2011 NUROTONE MEDICAL LTD Ocular implant with substantially constant retinal spacing for transmission of nerve-stimulation light
8738123, Sep 25 2001 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8740783, Jul 20 2005 NuVasive, Inc System and methods for performing neurophysiologic assessments with pressure monitoring
8744570, Jan 23 2009 NUROTONE MEDICAL LTD Optical stimulation of the brainstem and/or midbrain, including auditory areas
8747307, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
8747447, Jul 22 2011 NUROTONE MEDICAL LTD Cochlear implant and method enabling enhanced music perception
8753270, Jan 16 2004 NuVasive, Inc. Surgical access system and related methods
8753271, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8764649, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8768450, Sep 25 2001 NuVasive, Inc. System and methods for performing surgical procedures and assessments
8790406, Apr 01 2011 Systems and methods for performing spine surgery
8792978, May 28 2010 NUROTONE MEDICAL LTD Laser-based nerve stimulators for, E.G., hearing restoration in cochlear prostheses and method
8812116, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
8821396, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8827900, Jan 11 2006 NuVasive, Inc. Surgical access system and related methods
8834545, Jul 22 2011 NUROTONE MEDICAL LTD Optical-stimulation cochlear implant with electrode(s) at the apical end for electrical stimulation of apical spiral ganglion cells of the cochlea
8840654, Jul 22 2011 NUROTONE MEDICAL LTD Cochlear implant using optical stimulation with encoded information designed to limit heating effects
8864806, May 28 2010 NUROTONE MEDICAL LTD Optical bundle apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
8870960, Jul 28 2005 NuVasive, Inc. Total disc replacement system and related methods
8894697, Jul 22 2011 NUROTONE MEDICAL LTD Optical pulse-width modulation used in an optical-stimulation cochlear implant
8915846, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
8920500, Apr 16 2009 NuVasive, Inc. Methods and apparatus for performing spine surgery
8929973, Dec 04 2006 NERVESENSE LTD Apparatus and method for characterizing optical sources used with human and animal tissues
8942801, Sep 27 2004 NuVasive, Inc. Surgical access system and related methods
8945004, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
8945197, Jul 22 2011 NUROTONE MEDICAL LTD Sight-restoring visual prosthetic and method using infrared nerve-stimulation light
8956283, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
8956396, Aug 03 2011 NUROTONE MEDICAL LTD Eye-tracking visual prosthetic and method
8968376, May 28 2010 NUROTONE MEDICAL LTD Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
8977352, Sep 25 2001 NuVasive, Inc. Systems and methods for performing surgical procedures and assessments
8985119, Sep 09 2005 NERVESENSE LTD Method and apparatus for optical stimulation of nerves and other animal tissue
8996131, Sep 24 2010 NERVESENSE LTD Apparatus and method for managing chronic pain with infrared light sources and heat
8998914, Jul 22 2011 NUROTONE MEDICAL LTD Optimized stimulation rate of an optically stimulating cochlear implant
9011508, Jul 22 2011 NUROTONE MEDICAL LTD Broad wavelength profile to homogenize the absorption profile in optical stimulation of nerves
9011509, Jul 22 2011 NUROTONE MEDICAL LTD Individually optimized performance of optically stimulating cochlear implants
9014776, Dec 23 1998 NuVasive, Inc. Surgical access and nerve surveillance
9037250, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
9061135, Sep 15 2011 NERVESENSE LTD Apparatus and method for managing chronic pain with infrared and low-level light sources
9131947, Jan 23 2009 NuVasive, Inc. Neurophysiological apparatus and procedures
9168149, Jul 28 2005 NaVasive, Inc. Total disc replacement system and related methods
9173581, Sep 16 2010 NEUROMETRIX, INC Apparatus and method for the automated measurement of sural nerve conduction velocity and amplitude
9192482, Apr 16 2009 NuVasive, Inc. Methods and apparatus for performing spine surgery
9198765, Oct 31 2011 NuVasive, Inc Expandable spinal fusion implants and related methods
9204871, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
9265493, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
9295396, Apr 03 2007 NuVasive, Inc. Neurophysiologic monitoring system
9301743, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
9314152, Oct 17 2003 NuVasive, Inc. Surgical access system and related methods
9351845, Apr 16 2009 NuVasive, Inc Method and apparatus for performing spine surgery
9392953, Sep 17 2010 NuVasive, Inc Neurophysiologic monitoring
9456783, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
9468405, Feb 27 2003 NuVasive, Inc. Surgical access system and related methods
9572562, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
9610071, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
9610171, Jul 28 2005 NuVasive, Inc. Total disc replacement system and related methods
9622732, Oct 08 2004 NuVasive, Inc Surgical access system and related methods
9655744, Oct 31 2011 NuVasive, Inc. Expandable spinal fusion implants and related methods
9743853, Nov 24 1999 NuVasive, Inc. Electromyography system
9750490, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
9757067, Nov 09 2012 NuVasive, Inc Systems and methods for performing neurophysiologic monitoring during spine surgery
9757072, Feb 11 2013 NuVasive, Inc Waveform marker placement algorithm for use in neurophysiologic monitoring
9757246, Apr 16 2009 NuVasive, Inc. Methods and apparatus for performing spine surgery
9788822, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
9795371, Jan 16 2003 NuVasive, Inc. Surgical access system and related methods
9814402, Feb 15 2013 Acacia Designs BV Electrode systems for use with medical monitoring systems
9820729, Oct 08 2002 NuVasive, Inc. Surgical access system and related methods
9826968, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
9827109, Mar 07 1999 NuVasive, Inc Methods and apparatus for performing spine surgery
9833227, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
9848861, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
9931077, Jul 11 2001 NuVasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
9949840, Apr 01 2011 Systems and methods for performing spine surgery
9974531, Sep 25 2003 NuVasive, Inc. Surgical access system and related methods
D837394, Jul 11 2017 NEUROMETRIX, INC Transcutaneous electrical nerve stimulation (TENS) device
D857910, Sep 21 2017 NEUROMETRIX, INC Transcutaneous electrical nerve stimulation device
D861903, May 15 2018 NEUROMETRIX, INC Apparatus for transcutaneous electrical nerve stimulation
D865986, Sep 21 2017 NEUROMETRIX, INC Transcutaneous electrical nerve stimulation device strap
Patent Priority Assignee Title
3881495,
4341221, Oct 07 1980 Medtronic, Inc. Shielded recording electrode system
4595018, Jun 10 1983 Instrumentarium Corp. Method of further developing the measuring of a neuro-muscular junction
4774967, Sep 09 1986 DynaMed Systems, LLC Method and apparatus for mammalian nerve regeneration
4807643, Aug 16 1982 University of Iowa Research Foundation Digital electroneurometer
4811742, Jun 11 1985 Verimed, Inc. Proportional response electrical muscle stimulation
4817628, Oct 18 1985 David L., Zealear System and method for evaluating neurological function controlling muscular movements
5012820, Nov 12 1985 Device for investigation of muscular contraction
5107853, Jan 07 1991 Daniels Manufacturing Corporation Apparatus for determining suceptibility to carpal tunnel syndrome
5163443, Aug 01 1991 BOARD OF REGENTS ACTING FOR AN ON BEHALF OF THE UNIVERSITY OF MICHIGAN, THE; GMI ENGINEERING AND MANAGEMENT INSTITUTE A CORP OF MICHIGAN System for testing hand, wrist, and forearm strength
5215100, Apr 29 1991 HEALTHSOUTH OCCUPATIONAL AND PREVENTIVE DIAGNOSTICS LIMITED PARTNERSHIP Nerve condition monitoring system and electrode supporting structure
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Dec 15 1997M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 06 1998SM02: Pat Holder Claims Small Entity Status - Small Business.
Feb 06 2002REM: Maintenance Fee Reminder Mailed.
Jul 12 2002EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 12 19974 years fee payment window open
Jan 12 19986 months grace period start (w surcharge)
Jul 12 1998patent expiry (for year 4)
Jul 12 20002 years to revive unintentionally abandoned end. (for year 4)
Jul 12 20018 years fee payment window open
Jan 12 20026 months grace period start (w surcharge)
Jul 12 2002patent expiry (for year 8)
Jul 12 20042 years to revive unintentionally abandoned end. (for year 8)
Jul 12 200512 years fee payment window open
Jan 12 20066 months grace period start (w surcharge)
Jul 12 2006patent expiry (for year 12)
Jul 12 20082 years to revive unintentionally abandoned end. (for year 12)