Azeotrope-like compositions comprising trifluoromethane and carbon dioxide or trifluromethane, hexafluoroethane and carbon dioxide are stable and have utility as refrigerants for heating and cooling as well as fire extinguishing compositions.
|
1. Azeotrope-like compositions consisting essentially of
about 35 to about 85 weight percent trifluoromethane and about 15 to about 65 weight percent carbon dioxide which have a vapor pressure of about 15 psia at about 85°C±1°C wherein the azeotrope-like components consist of trifluoromethane and carbon dioxide; or about 30 to about 43 weight percent trifluoromethane, about 33 to about 43 weight percent hexafluoroethane and about 24 to about 37 weight percent carbon dioxide which have a vapor pressure of about 15 psia at about -87°C±1°C when the azeotrope-like components consist of trifluoromethane, hexafluoroethane and carbon dioxide.
2. The azeotrope-like compositions of
3. The azeotrope-like compositions of
4. The azeotrope-like compositions of
5. The azeotrope-like compositions of
6. The azeotrope-like compositions of
7. A method for producing refrigeration which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
8. A method for producing refrigeration which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
9. A method for producing refrigeration which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
10. A method for producing refrigeration which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
11. A method for producing refrigeration which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
12. A method for producing refrigeration which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
13. A method for producing heating which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
14. A method for producing heating which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
15. A method for producing heating which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
16. A method for producing heating which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
17. A method for producing heating which comprises condensing a refrigerant consisting essentially of the azeotrope-like compositions of
18. A method for extinguishing fire which comprises releasing an amount of the azeotrope-like compositions of
19. A method for preventing fire which comprises releasing an amount of the azeotrope-like compositions of
20. A method for extinguishing fire which comprises propelling onto a fire from a portable or fixed fire extinguisher an amount of the azeotrope-like compositions of
|
This invention relates to azeotrope-like or constant-boiling mixtures of trifluoromethane and carbon dioxide or trifluromethane, hexafluoroethane and carbon dioxide. These mixtures are useful as refrigerants for heating and cooling and also as fire extinguishing compositions.
Fluorocarbon based fluids have found widespread use in industry for refrigeration applications such as air conditioning and heat pump applications. Vapor compression is one form of refrigeration. In its simplest form, vapor compression involves changing the refrigerant from the liquid to the vapor phase through heat absorption at a low pressure and then from the vapor to the liquid phase through heat removal at an elevated pressure.
While the primary purpose of refrigeration is to remove energy at low temperature, the primary purpose of a heat pump is to add energy at higher temperature. Heat pumps are considered reverse cycle systems because for heating, the operation of the condenser is interchanged with that of the refrigeration evaporator.
Certain chlorofluoromethane and chlorofluoroethane derivatives have gained widespread use as refrigerants in applications including air conditioning and heat pump applications owing to their unique combination of chemical and physical properties. The majority of refrigerants utilized in vapor compression systems are either single components fluids or azeotropic mixtures.
Azeotropic or azeotrope-like compositions are desired as refrigerants because they do not fractionate upon boiling. This behavior is desirable because in the previously described vapor compression equipment with which these refrigerants are employed, condensed material is generated in preparation for cooling or for heating purposes. Unless the refrigerant composition exhibits a constant boiling point, i.e. is azeotrope-like, fractionation and segregation will occur upon evaporation and condensation and undesirable refrigerant distribution may act to upset the cooling or heating.
The art is continually seeking new fluorocarbon and hydrofluorocarbon based azeotrope-like mixtures which offer alternatives for refrigeration and heat pump applications. Fluorocarbon and hydrofluorocarbon based azeotrope-like mixtures are of particular interest because they are considered to be environmentally safe substitutes for the presently used fully halogenated chlorofluorocarbons (CFC's) which are suspected of causing environmental problems in connection with the earth's protective ozone layer. R-503 is an azeotropic blend which consists of trifluoromethane (HFC-23) and chlorotrifluoromethane (CFC-13), a fully halogenated chlorofluorocarbon (U.S. Pat. Nos. 2,101,993 and 2,641,579).
Substitute refrigerants must also possess those properties unique to the CFC's refrigerants including similar refrigeration characteristics, chemical stability, low toxicity, non-flammability, and efficiency in-use. The latter characteristic is important in refrigeration and air-conditioning especially where a loss in refrigerant thermodynamic performance or energy efficiency may have secondary environmental impacts through increased fossil fuel usage arising from an increased demand for electrical energy. Furthermore, the ideal CFC refrigerant substitute would not require major engineering changes to conventional vapor compression technology currently used with CFC refrigerants. Mathematical models have substantiated that hydrofluorocarbons, such as trifluoromethane (HFC-23), will not adversely affect atmospheric chemistry, being a negligible contributor to ozone depletion and to green-house global warming in comparison to the fully halogenated species. HFC-23 alone is not useful as a refrigerant because of a reduction in low evaporator temperature capability.
JO-3,255,189-A published Nov. 14, 1991 teaches a refrigerant composition of HFC-23 and n-pentane.
Bromofluoromethane and bromochlorofluoromethane derivatives, particularly bromotrifluoromethane (Halon 1301) and bromochlorodifluoromethane (Halon 1211) have gained widespread use as fire extinguishing agents in enclosed areas such as airplane cabins and computer rooms. However, the use of these materials is being phased out due to their high ozone depletion. Moreover, as Halons are frequently used in areas where humans are present, suitable replacements must also be safe to humans at concentrations necessary to suppress or extinguish fire.
Low or non-ozone depleting hydrochlorofluorocarbons have been disclosed to be suitable replacements for various Halons in fire extinguishing. For example, U.S. Pat. No. 5,040,609 discloses a process for preventing and controlling fires using a composition containing trifluoromethane. CO2 is a common fire extinguishing agent used in household fire extinguishers. However, there remains a need for suitable Halon replacements.
We have discovered novel azeotrope-like or constant-boiling compositions comprising trifluoromethane (HFC-23) and carbon dioxide or trifluoromethane, hexafluoroethane (FC-116) and carbon dioxide.
The present binary azeotrope-like compositions consist essentially of about 35 to about 85 weight percent trifluoromethane and about 15 to about 65 weight percent carbon dioxide which have a vapor pressure of about 15 psia (103 kPa) at -85±1°C The present ternary azeotrope-like compositions consist essentially of about 30 to about 43 weight percent trifluoromethane, about 33 to about 43 weight percent hexafluoroethane and about 14 to about 37 weight percent carbon dioxide which have a vapor pressure of about 15 psia at about -87±1°C
The present azeotrope-like compositions are advantageous for the following reasons. Each component is a negligible contributor to ozone depletion. Also, because the present compositions exhibit essentially constant-vapor pressure characteristics as the liquid mixture is evaporated and show relatively minor shifts in composition during evaporation, the compositions are advantageous in a vapor compression cycle as they mimic the performance of a constant-boiling single component or azeotropic mixture refrigerant.
The preferred azeotrope-like compositions are in the following Table. In the Table, the numerical ranges are understood to be prefaced by "about":
__________________________________________________________________________ |
MORE MOST VAPOR |
PREFERRED |
PREFERRED |
PREFERRED |
PRESSURE |
RANGE RANGE RANGE (PSIA) |
COMPONENTS |
(WT. %) (WT. %) (WT. %) (kPa) |
__________________________________________________________________________ |
HFC-23 35-85 40-80 50-70 15 at |
CO2 15-65 20-60 30-50 -85 ± 1°C. |
HFC-23 30-43 33-43 36-40 15 at |
FC-116 33-43 33-43 36-40 -87 ± 1°C. |
CO2 14-37 14-34 20-28 |
__________________________________________________________________________ |
Since CO2, FC-116 and HFC-23 are indiviually non-flammable materials, their mixtures in all proportions are likewise non-flammable.
Additional components may be added to the mixture to tailor the properties of the mixture according to the need. For example, in the art, propane has been added to refrigerant compositions to aid oil solubility. Similar materials may be added to the present mixture.
All compositions within the indicated ranges, as well as certain compositions outside the indicated ranges, are azeotrope-like, as defined more particularly below. The term "azeotrope-like composition" as used herein is intended to mean that the composition behaves like an azeotrope, i.e. has constant-boiling characteristics or a tendency not to fractionate upon boiling or evaporation. Thus, in such compositions, the composition of the vapor formed during boiling or evaporation is identical or substantially identical to the original liquid composition. Hence, during boiling or evaporation, the liquid composition, if it changes at all, changes only to a minimal or negligible extent. This is to be contrasted with non-azeotrope-like compositions in which during boiling or evaporation, the liquid composition changes to a substantial degree.
In one process embodiment of the invention, the azeotrope-like compositions of the invention may be used in a method for producing refrigeration which comprises condensing a refrigerant comprising the azeotrope-like compositions and thereafter evaporating the refrigerant in the vicinity of a body to be cooled.
In another process embodiment of the invention, the azeotrope compositions of the invention may be used in a method for producing heating which comprises condensing a refrigerant comprising the azeotrope-like compositions in the vicinity of a body to be heated and thereafter evaporating the refrigerant.
In the fire extinguishing embodiment of the invention, the azeotrope-like compositions may be used to extinguish a fire by releasing an effective amount of the composition in an enclosed area containing the fire. As used herein the term effective amount is an amount which will impart to the modified air a heat capacity per mole of total oxygen present sufficient to suppress or prevent combustion of the flammable, non-self-sustaining materials in the enclosed environment. The minimum heat capacities required to prevent or suppress combustion of a variety of materials are generally known in the art and are disclosed in U.S. Pat. No. 5,141,654, incorporated herein by reference. The fire extinguishing compositions of the present invention may also be directly applied to a fire.
The compositions of the present invention may be released via any method known in the art, such as controlled release into the environment of the enclosed space or propelling from a portable or fixed fire extinguisher. Other methods for releasing or applying the fire extinguishing compositions are well known in the art and need not be repeated here.
The compositions may be controllingly released any time that it appears desirable. For example, the modified air can be continuously released at a level sufficient to prevent the start of a fire in environments where the chance of fire must be kept at an absolute minimum or where the threat of fire is constant. Alternatively, the compositions of the present invention may be released as an emergency measure when a fire develops.
The trifluoromethane, hexafluoroethane and carbon dioxide of the novel azeotrope-like compositions of the invention are known materials and are commercially available. Preferably, the materials should be used in sufficiently high purity so as to avoid the introduction of adverse influences upon the cooling or heating properties or constant-boiling properties of the system.
This Example shows the azeotrope-like nature of a mixture of trifluoromethane and carbon dioxide. A 50:50 weight percent mixture of HFC-23 and CO2 was charged into a packed distillation column with about 150 theoretical separation stages. The overhead composition of the distillate remained at about 42 weight percent CO2 and about 58 weight percent HFC-23; i.e. these two components could not be separated. Further, the boiling point of the mixture was noted to be about -85°C, which is lower than that of trifluoromethane (-82° C.). Carbon dioxide is a solid at this temperature.
This Example shows that constant-boiling HFC-23/carbon dioxide blends have certain advantages when compared to other refrigerants which are currently used in certain refrigeration cycles.
The theoretical performance of a refrigerant at specific operating conditions can be estimated from the thermodynamic properties of the refrigerant using standard refrigeration cycle analysis techniques; see for example, R. C. Downing, FLUOROCARBON REFRIGERANTS HANDBOOK, Chapter 3, Prentice-Hall, 1988. The coefficient of performance (COP) is a universally accepted measure, especially useful in representing the relative thermodynamic efficiency of a refrigerant in a specific heating or cooling cycle involving evaporation or condensation of the refrigerant. In refrigeration engineering, this term expresses the ratio of useful refrigeration to the energy applied by the compressor in compressing the vapor. The capacity of a refrigerant represents the volumetric efficiency of the refrigerant. To a compressor engineer, this value expresses the capability of a compressor to pump quantities of heat for a given volumetric flow rate of refrigerant. In other words, given a specific compressor, a refrigerant with a higher capacity will deliver more cooling or heating power.
This type of calculation was performed for a medium to low temperature refrigeration cycle where the condenser temperature is typically -20° F. and the evaporator temperature is typically -120° F. We have further assumed isentropic compression and a superheat of 20° F. (18.3°C). Such calculations were performed for various combinations of HFC-23 and carbon dioxide as well as for R-503. Table II lists the COP and capacity of the various blends relative to that of R-503. In Table II, "*" means that the COP and capacity are given relative to R-503.
TABLE II |
______________________________________ |
THERMODYNAMIC PERFORMANCE |
Composition |
HFC-23/carbon dioxide |
(by weight) COP* Capacity* |
______________________________________ |
100%/0% 1.02 0.83 |
58%/42% 1.03 0.91 |
0%/100% Carbon dioxide is a solid at |
the operating conditions and |
cannot act as a refrigerant. |
______________________________________ |
As can be seen, the 58 weight percent HFC-23 mixture (azeotrope) has improved refrigeration properties over either HFC-23 or carbon dioxide alone and is a good R-503 alternate.
This Example shows that the HFC-23/carbon dioxide blends of the invention have utility as fire extinguishing agents.
The fire extinguishing concentrations of CHF3 and CO2 blends are determined by the cup burner method. This method is described in Measurement of Flame-Extinguishing Concentrations, R. Hirst and K. Booth, Fire Technology, Vol. 13, 269-315 (1977). Specifically, an air stream is passed at 40 liters/minute through an outer chimney from a distributor at its base. A fuel cup burner is positioned within the chimney below the top edge of the chimney. The fire extinguishing agent is added to the air stream prior to its entry into the distributor. The air and agent flow rates are measured using calibrated rotameters.
Each test is conducted by adjusting the fuel level in the reservoir to bring the liquid fuel level in the cup burner just even with the ground glass lip on the burner cup. With the air flow rate maintained at 10 liters/minute, the fuel in the cup burner is ignited. The fuels are heptane or methanol. A 50:50 weight percent mixture of HFC-23 and CO2 is added by increments until the flame is extinguished.
This example shows that a mixture of HFC-23, FC-116 and carbon dioxide form a three component azeotrope, i.e., they can not be separated by distillation and the boiling point of the mixture is lower than the boiling point of the HFC-23/carbon dioxide binary azeotrope (boiling point -85.5°C) or FC-116 (-78.1°C).
A mixture of approximately 200 g of 30 weight percent HFC-23, 40 weight percent FC-116 and 30 weight percent CO2 is charged in a low temperature still with approximately 150 theoretical separation stages. The distillation is started at total reflux and at atmospheric pressure. After an hour equilibrium is reached. The refluxing condensate is sampled and analyzed by gas chromatography. The temperature of the condensate is stable at approximately -87°C, lower than that of the binary azeotrope of Example 1 (-85.5°C). The overhead composition remains constant at approximately 38±5 wt % HFC-23, 38±5 wt % FC-116, with the balance being CO2.
The fact that the boiling point of the ternary is lower than the binary azeotrope or FC-116 establishes that the system is a positive azeotrope. The fact that the ternary cannot be separated into its components, even in a very efficient distillation column, confirms azeotropy.
Singh, Rajiv R., Shankland, Ian R., Wilson, David P., Lund, Earl A. E., Logsdon, Peter B., Thomas, Raymond H. P., Decaire, Barbara R.
Patent | Priority | Assignee | Title |
5618894, | Mar 10 1995 | The University of North Carolina | Nonaqueous polymerization of fluoromonomers |
5674957, | Mar 10 1995 | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | Nonaqueous polymerization of fluoromonomers |
5718807, | Sep 20 1994 | E I DU PONT DE NEMOURS AND COMPANY | Purification process for hexafluoroethane products |
5728315, | May 01 1996 | AlliedSignal Inc | Azeotrope-like compositions of trifluoromethane, carbon dioxide, ethane and hexafluoroethane |
5766503, | Dec 16 1994 | THE CHEMOURS COMPANY FC, LLC | Refrigeration process using azeotropic compositions of perfluoroethane and trifluoromethane |
5939501, | Mar 10 1995 | The University of North Carolina at Chapel Hill | Nonaqueous polymerization of fluoromonomers |
5939502, | Mar 10 1995 | The University of North Carolina at Chapel Hill | Nonaqueous polymerization of fluoromonomers |
5981673, | Mar 10 1995 | The University of North Carolina at Chapel Hill | Nonaqueous polymerization of fluoromonomers |
6034048, | Mar 01 1995 | Charvid Limited Liability Company | Non-caustic cleaning composition using an alkali salt |
6074572, | Apr 06 1999 | COOPERSURGICAL, INC | Gas mixture for cryogenic applications |
6113803, | Mar 18 1991 | AlliedSignal Inc. | Non-azeotropic refrigerant compositions comprising difluoromethane or 1,1,1-trifluoroethane |
6194367, | Mar 01 1995 | Charvid Limited Liability Co. | Non-caustic cleaning composition comprising peroxygen compound and specific silicate and method of making the same in free-flowing, particulate form |
6254798, | Apr 17 1997 | E. I. Du Pont de Nemours and Company. | Nitrous oxide compositions |
6346203, | Feb 15 2000 | THE CHEMOURS COMPANY FC, LLC | Method for the suppression of fire |
6461530, | Feb 15 2000 | THE CHEMOURS COMPANY FC, LLC | Compositions for the suppression of fire |
6546740, | May 19 2000 | Clemson University | Ternary refrigerant compositions which contain perfluoroorgano sulfur compounds as replacements for R-22 |
6574973, | May 19 2000 | Electric Power Research Institute, Inc. | Ternary refrigerant compositions containing fluorinated ethers as replacements for R-22 |
6692653, | Feb 16 2001 | Korea Institute of Science and Technology | Refrigerant composition |
6776922, | Jul 24 2002 | Korea Institute of Science and Technology | Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1-difluoroethane |
6800216, | Jul 24 2002 | Korea Institute of Science and Technology | Refrigerant composition for replacing chlorodifluoromethane |
6841087, | Apr 19 2002 | Korea Institute of Science and Technology | Refrigerant composition comprising difluoromethane, 1,1,1-trifluoroethane and 1,1,1,2-tetrafluoroethane |
7238299, | Nov 01 2002 | Honeywell International Inc. | Heat transfer fluid comprising difluoromethane and carbon dioxide |
8758625, | Sep 26 2008 | Asahi Kasei Chemicals Corporation; ASAHI KASEI MEDICAL CO , LTD | Use of porous hollow-fiber membrane for producing clarified biomedical culture medium |
Patent | Priority | Assignee | Title |
2101993, | |||
2641579, | |||
4724679, | Jul 02 1986 | Advanced vapor compression heat pump cycle utilizing non-azeotropic working fluid mixtures | |
5040609, | Oct 04 1989 | E. I. du Pont de Nemours and Company | Fire extinguishing composition and process |
5120770, | Nov 29 1989 | Use of liquid carbon dioxide as a blowing agent in the production of open-cell polyurethane foam | |
5141654, | Nov 14 1989 | E. I. du Pont de Nemours and Company | Fire extinguishing composition and process |
5162381, | Dec 10 1991 | Allied-Signal Inc. | Process for preparing thermalplastic foam |
5275751, | Dec 22 1992 | AlliedSignal Inc | Azeotrope-like compositions of trifluoromethane, carbon dioxide and sulfur hexafluoride |
DE4116274, | |||
JP51125995, | |||
JP542230, | |||
JP56029, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 09 1993 | DECAIRE, B R | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 | |
Jul 09 1993 | LOGSDON, P B | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 | |
Jul 09 1993 | LUND, E A E | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 | |
Jul 09 1993 | SINGH, R R | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 | |
Jul 09 1993 | WILSON, D P | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 | |
Jul 09 1993 | THOMAS, R H P | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 | |
Jul 14 1993 | AlliedSignal Inc. | (assignment on the face of the patent) | / | |||
Jul 26 1993 | SHANKLAND, I R | AlliedSignal Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006682 | /0028 |
Date | Maintenance Fee Events |
Jul 30 1998 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 30 1998 | M186: Surcharge for Late Payment, Large Entity. |
Jan 31 2002 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 12 2002 | ASPN: Payor Number Assigned. |
Mar 08 2006 | REM: Maintenance Fee Reminder Mailed. |
Aug 23 2006 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Sep 20 2006 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 23 1997 | 4 years fee payment window open |
Feb 23 1998 | 6 months grace period start (w surcharge) |
Aug 23 1998 | patent expiry (for year 4) |
Aug 23 2000 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2001 | 8 years fee payment window open |
Feb 23 2002 | 6 months grace period start (w surcharge) |
Aug 23 2002 | patent expiry (for year 8) |
Aug 23 2004 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2005 | 12 years fee payment window open |
Feb 23 2006 | 6 months grace period start (w surcharge) |
Aug 23 2006 | patent expiry (for year 12) |
Aug 23 2008 | 2 years to revive unintentionally abandoned end. (for year 12) |