compounds which suppress human T-lymphocyte proliferation are disclosed. The active compounds essentially contain at least the following structure: ##STR1## wherein A, R1, R2, R3, n, X1 and Z are defined in the specification.

Patent
   5385918
Priority
Feb 09 1993
Filed
Feb 09 1993
Issued
Jan 31 1995
Expiry
Feb 09 2013
Assg.orig
Entity
Large
54
5
EXPIRED
8. 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline methyl ester.
7. 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline phenylmethyl ester.
19. 1-[1-[2-(S)-[[(1,1 -dimethylethoxy)carbonyl]amino]-3-methylbutyl]-L-proline]-L-isoleucine benzylamide.
17. 1-[1-[2-(S)-[[(1 ,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine benzylamide.
24. 1-[1-[2-(S)[[(1,1-dimethylethoxy)carbonyl]amino] -4-methylpentyl]-L-homoproline]-L-isoleucine benzylamide.
9. 1-[1-[2-[[( 1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester.
23. 1-[1-[2-(S)[[(1,1-dimethylethoxy)carbonyl]amino]-3-(S)-me thylpentyl]-L-homoproline]-L-isoleucine benzylamide.
22. 1-[1-[2-(S)-[2-(S)-amino-1-oxo-3-cyclohexylpropy l]amino]-3-methylpentyl]-L-proline]-L-isoleucine benzylamide.
20. 1-[2-(S)- [[(1,1-dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-proline]-L-isol eucine benzylamide.
18. 1-[1-[2-( S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-cyclohexylpropyl]-L-proline]-L-i soleucine benzylamide.
13. 1-[1-[2-(S)-[[1-[2-(S) ,4-diamino-1,4-dioxobutyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester.
14. 1-[1-[2-(S)-[[2- (S)-amino-3-cyclohexyl-1-oxopropyl]amino]-4-methylpentyl]-L-proline]-L-isol eucine phenylmethyl ester.
25. 1-[1-[2-(S)[[(1,1-dimethylethoxy)carbonyl]amino]-3-(S )-methylpentyl]-L-homoproline]-L-threonene(O-benzyl ether)benzylamide.
10. 1-methyl-1-[1-[2 -(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline]-L-tyr osine(O-methyl)methyl ester.
16. 1-[1-[2-(S)-[[1-[2-(S)-amino-1-oxo-3-phenylpr opyl]-L-asparaginyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester.
21. 1-[1-[2-(S)-[[2 -(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-1-oxo-3-cyclohexylpropyl]amino]- 3-methylpentyl]-L-proline]-L-isoleucine benzylamide.
12. 1-[1-[2-[[3-cyclohexyl-2-(S)-[[(1,1-dimethyl ethoxy)carbonyl]amino]-1-oxopropyl]amino]-4-methylpentyl]-L-proline]-L-isol eucine phenylmethyl ester.
15. 1-[1-[2-(S)-[[1-[1-[(1 ,1-dimethylethoxy)carbonyl]-L-phenylalanyl]-L-asparaginyl]amino]-4-methylpe ntyl]-L-proline]-L-isoleucine phenylmethyl ester.
11. 1-[1-[2-(S)-[[4-amino-2- (S)-[[(1,1-dimethylethoxy)carbonyl]amino]-1,4-dioxobutyl]amino]-4-methylpen tyl]-L-proline]-L-isoleucine phenylmethyl ester.
3. A compound having the structure: ##STR50## wherein n is an integer having a value of 2 or 3;
R1 is hydrogen;
one of R2 and R3 is hydrogen, and the other is a straight or branched (C1 -C4)alkyl optionally substituted with (C6)cycloalkyl;
Z is hydrogen or (C1)alkyl optionally substituted with phenyl, or Z is ##STR51## wherein R4 is a straight or branched (C1 -C4)alkyl optionally substituted with 4-methoxyphenyl or benzyloxy;
X2 is oxygen or NH; and
R5 is methyl optionally substituted with phenyl;
A is hydrogen, ##STR52## wherein R6 is (C1)alkyl optionally substituted with (C6)cycloalkyl or caboxamido;
R7 is hydrogen, or alkoxycarbonyl of formula --CO2 R' where R' is a straight or branched (C1 -C5)alkyl or a phenylalanine having the nitrogen substituted with a straight or branched (C1 -C6)alkoxycarbonyl;
E is oxygen;
m is an integer having a value of 0 or 1;
R8 is hydrogen, or straight or branched (C1 -C5)alkyl;
X1 is oxygen or NR9, where R9 is hydrogen or methyl;
or a pharmaceutically acceptable salt thereof.
2. A compound having the structure: ##STR47## wherein n is an integer having a value of 2 or 3;
R1 is hydrogen or methyl;
one of R2 and R3 is hydrogen, and the other is a straight or branched (C1 -C6)alkyl optionally substituted with (C5 -C6)cycloalkyl;
Z is hydrogen or (C1 -C3)alkyl optionally substituted with phenyl, or Z is ##STR48## wherein R4 is a straight or branched (C1 -C6)alkyl optionally substituted with (C5 -C6)-cycloalkyl or with phenyl optionally substituted once with hydroxy or methoxy;
X2 is oxygen or NH; and
R5 is (C1 -C5)alkyl optionally substituted with phenyl;
A is hydrogen, ##STR49## wherein R6 is (C1 -C4)alkyl optionally substituted with (C6)cycloalkyl, (C1 -C4)alkoxy, benzyloxy, caboxamido, or phenyl;
R7 is hydrogen, acetyl, an alpha-aminomethylcarbonyl unit in which the nitrogen is unprotected, or alkoxycarbonyl of formula --CO2 R', where R' is a straight or branched (C1 -C6)alkyl optionally substituted with phenyl or a (C2 -C6) alkenyl group, or R7 is an alpha-aminomethylcarbonyl unit in which the nitrogen is substituted with a straight or branched (C1 -C6)alkoxycarbonyl optionally substituted with phenyl or a (C2 -C6) alkenyl group;
E is oxygen;
m is an integer having a value of 0 or 1;
R8 is hydrogen, or straight or branched (C1 -C7)alkyl optionally substituted with (C3 -C7)cycloalkyl, phenyl, (C1 -C4)alkoxy, or benzyloxy;
X1 is oxygen or NR9, where R9 is hydrogen or methyl;
or a pharmaceutically acceptable salt thereof.
1. A compound having the structure: ##STR44## wherein n is an integer having a value of 2 or 3;
R1 is hydrogen or methyl;
one of R2 and R3 is hydrogen, and the other is a straight or branched (C1 -C8)alkyl optionally substituted with (C3 -C8)cycloalkyl;
Z is hydrogen or (C1 -C5)alkyl optionally substituted with phenyl, or Z is ##STR45## wherein R4 is a straight or branched (C1 -C8)alkyl optionally substituted with (C3 -C8)-cycloalkyl or with phenyl optionally substituted with hydroxy, (C1 -C4)alkoxy, or (C1 -C4)alkyl;
X2 is oxygen or NH; and
R5 is (C1 -C5)alkyl optionally substituted with phenyl;
A is hydrogen, ##STR46## wherein R6 is (C1 -C4)alkyl optionally substituted with C6 cycloalkyl, (C1 -C4)alkoxy, benzyloxy, caboxamido, or phenyl optionally substituted with hydroxy, (C1 -C4)alkoxy, or (C1 -C4)alkyl;
R7 is hydrogen, acetyl, an alpha-aminomethylcarbonyl in which the nitrogen is unsubstituted, or alkoxycarbonyl of formula --CO2 R', where R' is a straight or branched (C1 -C8)alkyl optionally substituted with phenyl or a (C2 -C6) alkenyl group, or R7 is an alpha-aminomethylcarbonyl unit in which the nitrogen is substituted with a straight or branched (C1 -C6) alkoxycarbonyl optionally substituted with phenyl or a (C2 -C6) alkenyl group;
E is oxygen;
m is an integer having a value of 0 or 1;
R8 is hydrogen, or straight or branched (C1 -C7)alkyl optionally substituted with (C3 -C7)cycloalkyl, phenyl, (C1 -C4)alkoxy, or benzyloxy;
X1 is oxygen or NR9, where R9 is hydrogen or methyl;
or a pharmaceutically acceptable salt thereof.
4. A therapeutic composition for suppressing proliferation of human T-lymphocytes, comprising an effective amount of a compound according to claim 1.
5. A therapeutic composition for suppressing proliferation of human T-lymphocytes, comprising an effective amount of a compound according to claim 2.
6. A therapeutic composition for suppressing proliferation of human T-lymphocytes, comprising an effective amount of a compound according to claim 3.

This invention relates to control of inflammatory processes in humans through mediation of inflammatory cell proliferation. More particularly, the invention provides a class of aminomethylene-peptides useful for suppressing T-lymphocytes.

Compounds which retard the production of cytokines such as interleukin-2 (IL-2) are known. For instance, U.S. Pat. No. 4,764,503 assigned to Sandoz Ltd., Basel, Switzerland, describes a compound generically referred to as Cyclosporin A (hereinafter referred to as "CsA"), and U.S. Pat. No. 4,894,366 assigned to Fujisawa Pharmaceuticals, Osaka, Japan, describes a compound they designate as "FK506." Both CsA and FK 506 are claimed to inhibit IL-2 production and bind to cellular receptor proteins that possess Peptidyl Prolyl Isomerase (PPIase) activity (Johansson et al., 1990, Transplantation 50:10017).

It was initially postulated by those skilled in the art that the specific binding by such compounds to PPIase type proteins led to inhibition of the protein's isomerase activity which, in turn, led to inhibition of T-cell proliferation. Thus, these PPIase type proteins were referred to as "immunophilins", with the cellular receptor proteins that bound to CsA and FK506 being referred to as "cyclophilin" and "FK506 binding protein", respectively. FK506 binding protein is also simply referred to as "FKBP" (Harding et al., 1989, Nature 341:758).

Recent publications report that the inhibition of PPIase activity, in and of itself, is not sufficient for immunosuppressant activity. However, there is support in the literature that inhibitory binding to PPIase-type enzymes probably contributes to ultimate T-cell suppression (Sigal et al. 1991, J. Exp. Med. 173:619).

This disclosure presents a new class of synthetic compounds that both suppress the proliferation of T-cells and inhibit the isomerase activity of the FKBP-type of PPIases.

CsA, a cyclic undecapeptide, has received FDA approval for use as an adjunct to organ transplant procedures. However, CsA is administered with caution due to its known toxicity. Currently, CsA is prescribed in situations where the risks of non-treatment outweigh the risks of its therapeutic complications.

As a result, efforts to expand the application of CsA into non-life threatening indications such as chronic maintenance of autoimmune disorders have been limited by the well-known side effects of this drug. The use of CsA leads to a variety of disorders including: nephrotoxicity, such as impairment of glomerular filtration and irreversible interstitial fibrosis (Kopp et al., 1991, J. Am. Soc. Nephrol. 1:162); neurological deficits, such as involuntary tremors, or non-specific cerebral angina such as non-localized headaches (De Groen et al, 1987, N. Engl. J. Med. 317:861); and vascular hypertension with complications resulting therefrom (Kahan et al., 1989, N. Engl. J. Med. 321:1725).

Recent efforts to investigate the cause of the adverse effects of CsA administration have centered on the role of CsA breakdown into toxic metabolites (Bowers et al., 1990, Clin. Chem. 36:1875; Burke et al., 1990, Transplantation 50:901). The prevailing thought is that CsA toxicity is due to such metabolites and not due to the nature of the CsA binding to the PPIase, cyclophilin (Akagi et al., 1991, J. Int. Med. Res. 19:1; Ryffel et al., 1988, Transplantation 46:905).

Thus, inhibitor compounds that do not resemble CsA structurally, yet bind to PPIases, should be more amenable to therapeutic applications. Such non-toxic immunosuppressors would benefit the art, especially for chronic administration such as required in the treatment of autoimmune disorders.

The compound FK506 is structurally different from CsA and does not produce the same type of toxic metabolites. FK506 has been shown to be effective in some transplant patients who do not respond to CsA (Tucci et al., 1989, J. Immunol. 143:718).

However, testing of FK506 in humans was delayed due to severe vasculitis observed in treatment regimens in dogs and baboons (Collier et al., 1988, Transplant Proc. 20:226). Furthermore, other clinical side effects and complications of FK506 administration are being reported (Frayha et al., 1991, Lancet 337:296; Kitahara et al., 1991, Lancet 337:1234). It has also been reported that "overall, the absolute rate of clinical rejection in FK506 [post-organ transplantation] patients is only slightly lower than with current standard therapies" (Holechek, 1991, Anna. J. 18:199).

In an attempt to alleviate the FK506 side effects, many minor modifications to the base structure have been reported. For example, U.S. Pat. No. 5,057,608 assigned to Merck & Co. and WIPO Publication No. WO89/05304 assigned to FISONS PLC Inc. both disclose chemical variations of the FK506 compound.

To date, only a few studies on the metabolism of FK506 have been published, and little information has been reported on the toxicity of its metabolites (Johansson et al., 1990, Transplantation 50:1001; Christians et al., 1991, Clinical Biochemistry 24:271; Lhoest et al., 1991, Pharmaceutica Acta Helveticae 66:302). Since it is likely that the pattern of metabolism of the FK506 analogs and derivatives is similar to the parent compound, it is also likely that many of the side effects of FK506 will be shared by the derivatives.

As is true for CsA, the toxicity of FK506 is postulated to be based on its structure and not due to its binding activity with the immunophilin FKBP. It is further postulated that the toxicity of compounds such as CsA and FK506 are due to various chemical groups found in these structures which do not participate in the immunosuppressive activity, such as those groups which result in the toxic metabolites of CsA bio-processing. Thus, relatively compact molecules which do not resemble either CsA or FK506, and which have both immuno-suppressive and PPIase binding activity should be free of side effects associated with CsA and FK506.

The present invention presents a novel class of synthetic inhibitor compounds. The novel class includes synthetic aminomethylene derivatives that bind to human FKBP-type PPIases and demonstrate human peripheral T-lymphocyte inhibitory activity.

Amino-methylene derivatives are known. For example, several claimed amino-methylene HIV inhibitors have been published, including WO 90/00399 assigned to Smithkline Beckman Corp., EP 0387231 assigned to Washington University, and EP 0361341 assigned to Miles Inc., by Molecular Therapeutics, Inc. Similarily, amino-methylene inhibitors of the enzyme renin have also been published, including EP 0374097 assigned to CIBA Geigy AG. Also published are amino methylene compounds which are claimed to be therapeutics for neurologic dysfunctions, such as EP 374,756 assigned to Merck Inc.

As used herein, the term "aminomethylene-prolyl spacer" refers to a peptide fragment in which the carbonyl of the central amide bond has been replaced by an alkyl fragment such as a methylene group. ##STR2##

It is therefore an object of the present invention to provide compounds and compositions containing such aminomethylene derivatives for suppression of pathological and abnormal human peripheral T-lymphocyte proliferation.

It is also an object of the present invention to provide a novel class of compounds suitable for therapeutic compositions designed to suppress pathological immune responses, such as the hyperimmune response in organ transplantation rejection, the self-destructive autoimmune diseases, and the overproduction and excessive proliferation of immune cells such as in infectious disease states.

More specific objects include provisions for compounds, compositions and methods for treatment and prevention of rejection of transplanted organs or tissues such as kidney, heart, lung, liver, bone marrow, skin grafts, and corneal replacement.

It is a further object to provide compounds, compositions and methods for use in the treatment of autoimmune, degenerative, inflammatory, proliferative and hyperproliferative diseases, such as rheumatoid arthritis, osteoarthritis, other degenerative joint diseases, joint inflammation such as associated with infectious diseases such as suppurative arthritis, and secondary arthritis such as those associated with gout, hemochromatosis, rheumatic fever, Sjorgens syndrome and tuberculosis.

Another object is to provide compounds, compositions and methods for use in the treatment of lupus erythematosus, systemic lupus erythematosus, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type 1 diabetes, uveitis, nephrotic syndrome, and of cutaneous manifestations of immunologically-mediated diseases such as psoriasis, atopic dermatitis, contact dermatitis, eczematous dermatitis, seborrheic dermatitis, lichen planus, pemphigus, bollous pemphigoid, epidermolysis bullosa, urticaria, angioedemas, vasculitis, erythemas, cutaneous eosinophilias, and alopecia areata.

Yet another object is to provide compounds, compositions and methods for use in the treatment of abnormal T-cell proliferation such as lymphocytic leukemia; Hodgkin's disease, especially those subtypes involving abnormal T-cell subpopulations; non-Hodgkin's lymphomas, such as mycosis fungoides, convulated lymphocytic lymphoma, and immunoblastic sarcoma; and chronic lymphadenitis.

The above lists are non-limiting, and one skilled in the art could easily adapt the compounds, compositions and methods of the present invention to other indications, such adaptations being within the spirit and scope of the invention which will be described hereinbelow.

The presently claimed invention relates to active compounds of the following structure: ##STR3## where n=an integer of 2 or 3;

R1 is hydrogen or methyl;

R2 and R3 are defined as follows: one of R2 and R3 is hydrogen, and the other is straight or branched alkyl (C1-C8). These straight or branched alkyl groups may be substituted by cycloalkyl (C3-C8).

Z is hydrogen, or straight or branched alkyl (C1-C5), and the alkyl may be substituted with phenyl. Z may also be the fragment ##STR4## wherein R4 is straight or branched alkyl (C1-C8), which may be substituted by cycloalkyl (C3-C8), phenyl, or a phenyl substituted once by hydroxy, straight or branched alkoxy (C1-C4) or straight or branched alkyl (C1-C4).

R5 is straight or branched alkyl (C1-C5), which may be substituted with phenyl.

X2 is oxygen or NR10, where R10 is hydrogen.

A is either hydrogen, the amino acid residue ##STR5## wherein R6 is a straight or branched alkyl group (C1-C4) that may be substituted by cycloalkyl (C6), phenyl, straight or branched alkoxy (C1-C4), benzyloxy, carboxamido, or phenyl substituted by hydroxy, straight or branched alkoxy (C1-C4) or straight or branched alkyl (C1-C4);

R7 is hydrogen, an acetyl, an amino acid residue, an alkoxycarbonyl of the formula --CO2R' where R' is a straight or branched alkyl group (C1-C8) which may be substituted by phenyl or an alkene (C2-C6), or an amino acid residue in which the nitrogen is substituted by a straight or branched alkoxycarbonyl (C1-C6) that may be substituted by phenyl or an alkene (C2-C6).

E is oxygen.

The subscript m is an integer of 0 or 1.

R8 is hydrogen, or straight or branched alkyl (C1-C7), which may be substituted by cycloalkyl (C3-C7), phenyl, straight or branched alkoxy (C1-C4), or benzyloxy.

X1 is oxygen or NR9, where R9 is hydrogen or methyl.

Included within the scope of the invention are pharmaceutically acceptable salts of the above mentioned compounds. Such salts can be derived from mineral acids, carboxylic acids or sulfuric acids. Exemplary materials are hydrochloric acid, hydrobromic acid, sulfuric acid, methane sulfonic acid, ethane sulfonic acid, toluene sulfonic acid, benzene sulfonic acid, naphthalene disulfonic acid, acetic acid, propionic acid, lactic acid, tartaric acid, citric acid, fumaric acid, maleic acid and benzoic acid. Most preferred are the hydrochlorides.

Where the present compounds are carboxylic acids or contain acidic functional groups, the invention includes metal salts and ammonium salts. Preferred are sodium, potassium or ammonium salts. The compounds of this invention exist as stereoisomeric forms, either enantiomers or diastereomers. Included within the scope of the invention are the enantiomers, the racemic form and diastereomeric mixtures. Enantiomers as well as diastereomers can be separated by methods known to those skilled in the art (compare E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill, 1962).

More particularly, the invention relates to active compounds of the following structure: ##STR6## where n=an integer of 2 or 3;

R1 is hydrogen or methyl;

R2 and R3 are defined as follows: one of R2 and R3 is hydrogen, and the other is straight or branched alkyl (C1-C6). These straight or branched alkyl groups may be substituted by cycloalkyl (C5-C6);

Z is hydrogen, or alkyl (C1-C3), and the alkyl may be substituted with phenyl. Z may also be the fragment ##STR7## wherein R4 is straight or branched alkyl (C1-C6), which may be substituted by cycloalkyl (C5-C6), phenyl, or a phenyl substituted once by hydroxy or methoxy;

X2 is oxygen or NR10, where R10 is hydrogen; and

R5 is alkyl (C1-C5), which may be substituted with phenyl.

A is either hydrogen, or an amino acid residue ##STR8## wherein R6 is an alkyl group (C1-C4) that may be substituted by cycloalkyl (C6), phenyl, alkoxy (C1-C4), benzyloxy, or carboxamido;

R7 is hydrogen, an acetyl, an amino acid residue, an alkoxycarbonyl of the formula --CO2R' where R' is a straight or branched alkyl group (C1-C6) which may be substituted by phenyl or an alkene (C2-C6), or an amino acid residue in which the nitrogen is substituted by a straight or branched alkoxycarbonyl (C1-C6) that may be substituted by phenyl or an alkene (C2-C6);

E is oxygen;

m is an integer of 0 or 1.

R8 is hydrogen, or straight or branched alkyl (C1-C7), which may be substituted by cycloalkyl (C3-C7), phenyl, alkoxy (C1-C4), or benzyloxy; and

X1 is oxygen or NR9, where R9 is hydrogen or methyl.

Included within the scope of the invention are such salts of the above mentioned compounds. Pharmaceutically acceptable salts can be derived from mineral acids, carboxylic acids or sulfuric acids as discussed above.

Preferred compounds of the present invention have the following structure: ##STR9## where n=an integer of 2 or 3;

R1 is hydrogen;

R2 and R3 are defined as follows: one of R2 and R3 is hydrogen, and the other is straight or branched alkyl (C1-C4). These straight or branched alkyl groups may be substituted by cycloalkyl (C6);

Z is hydrogen, methyl, or methyl substituted with phenyl. Z may also be the fragment ##STR10## wherein R4 is straight or branched alkyl (C1-C4), which may be substituted with 4-methoxyphenyl, or benzyloxy;

X2 is oxygen or NR10, where R10 is hydrogen;

R5 is methyl or methyl substituted by phenyl.

A is either hydrogen, or an amino acid residue ##STR11## wherein R6 is a C1 alkyl group that may be substituted by a cycloalkyl (C6) or carboxamido;

R7 is hydrogen, or an alkoxycarbonyl of the formula --CO2R' where R' is a straight or branched alkyl group (C1-C5), or a phenylalanine residue in which the nitrogen is substituted by a straight or branched alkoxycarbonyl (C1-C6);

E is oxygen;

m is an integer of 0 or 1;

R8 is straight or branched alkyl (C1-C5); and

X1 is oxygen or NR9, where R9 is hydrogen or methyl.

Included within the scope of the invention are pharmacuetically acceptable salts of the above mentioned compounds. Most preferred are the hydrochlorides.

PAC Synthesis of Dipeptide Derivatives ##STR12##

Imino acid derivatives can be dehydratively coupled to N-protected amino acid derivatives using standard coupling agents such as PPA, DCC or other reagents as described in standard books on peptide coupling (such as Bodanszky et al. The Practice of Peptide Synthesis: Springer-Verlag, Vol 21, 1984). The group used to protect the nitrogen of these amino acids can be either carbotertbutoxy, carbobenzyloxy, carboallyloxy, or other temporary protecting groups as described in the literature (T. W. Greene et al, Protective Groups in Organic Synthesis, 2nd Edition; John Wiley & Sons, 1991).

A convenient route to prepare the present compounds involves reduction of the central peptide bond as depicted in equation 2∅ Standard methods to effect transformations of this type have been reported (Cushman, M. et al. J. Org. Chem. 1991, 56, 4161-7.). For example, the intermediate amide bond can be reduced with a borohydride reagent such as borane in a polar solvent such as tetrahydrofuran, ether, or dimethoxyethane.

Alternatively, these derivatives may also be prepared by a procedure in which the amide bond is first converted to a thioamide intermediate using sulfur transfer reagents such as Lawesson's Reagent (Synthesis 1979, 941). The resulting thioamide obtained by this or other procedures may be reduced to the corresponding aminomethylene derivative by treatment with a reducing reagent such as Raney nickel. In cases where the thioamide derivative is a phenylmethyl ester derivative, reduction of the thioamide may lead directly to the corresponding reduced derivative containing a free carboxylic acid derivative (Eq. 2.1) ##STR14##

Although methods as depicted in Eq. 2.1 may allow for the formation of carboxylic acid derivatives directly from the corresponding thioamide phenylmethyl esters, these intermedates are also obtained from the corresponding esters (Eq. 3). Conditions used to effect hydrolysis or conversion of ester derivatives to acid derivatives are described in detail in the literature (T. W. Greene et al, Protective Groups in Organic Synthesis, 2nd Edition; John Wiley & Sons, 1991).

Aminomethylene-carboxylic acid derivatives derived from Eq. 2.1, Eq. 3.0, or other methods be dehydratively coupled to a variety of alcohol or amine derivatives to provide the corresponding ester (X=0) or amide derivatives (X=NR). This dehydrative coupling can be achieved with standard coupling agents such as PPA, DCC or other reagents as described in standard books on peptide coupling (such as Bodanszky The Practice of Peptide Synthesis: Springer-Verlag, Vol 21, 1984). These compounds are themselves embodiments of this invention as well as being intermediates for the synthesis of other embodiments.

The deprotection of amine derivatives has been described (T. W. Greene et al, Protective Groups in Organic Synthesis, 2nd Edition; John Wiley & Sons, 1991). These methods are useful for the conversion of protected amine derivatives to free amino derivatives.

Amine derivatives prepared by methods described in connection with Eq. 5.0 or from other sources may be coupled with a variety of acid derivatives using methods described in the literature (such as Bodanszky, The Practice of Peptide Synthesis: Springer-Verlag, Vol 21, 1984, and Organic Chemistry; Functional Group Transformations: Academic Press, Vol 12-I).

The presently claimed compounds were found to be effective at low micromolar doses in both in vivo assays for inhibition of mitogen-induced human T-cell proliferation and NF-AT directed β-galactosidase expression. Moreover, the results from the rat adjuvant arthritis model (described in detail further below) indicate that the present class of compounds exhibit desirable biological properties (prophylactic prevention of paw swelling), at the concentration tested (10 mg/kg/dose).

The present invention encompasses pharmaceutical formulations which, in addition to non-toxic, inert pharmaceutically suitable excipients, contain the compounds of the invention.

The present invention also includes pharmaceutical formulations in dosage units. This means that the formulations are present in the form of individual part, for example, tablets, dragees, capsules, caplets, pills, suppositories and ampules, the active compound content of which corresponds to a fraction or a multiple of an individual dose. The dosage units can contain, for example, 1, 2, 3 or 4 individual doses; or 1/2, 1/3 or 1/4 of an individual dose. An individual dose preferably contains the amount of active compound which is given in one administration and which usually corresponds to a whole, one half, one third or one quarter of a daily dose.

By non-toxic inert pharmaceutically suitable excipients there are to be understood solid, semi-solid or liquid diluents, fillers and formulation auxiliaries of all types.

Preferred pharmaceutical formulations which may be mentioned are tablets, dragees, capsules, caplets, pills, granules, suppositories, solutions, suspensions and emulsions, paste, ointments, glues, creams, lotions, dusting powders and sprays. Tablets, dragees, capsules, caplets, pills and granules can contain the active compounds in addition to the customary excipients, such as (a) fillers and extenders, for example, starches, lactose, sucrose, glucose, mannitol and silicic acid, (b) binders, for example, carboxymethylcellulose, alginates, gelatin and polyvinylpyrrolidone, (c) humectants, for example, glycerol, (d) disintegrating agents, for example, agar-agar, calcium carbonate and sodium carbonate, (e) solution retarders, for example, paraffin and (f) absorption accelerators, for example, quaternary ammonium compounds, (g) wetting agents, for example, cetyl alcohol and glycerol monostearate, (h) absorbents, for example, kaolin and bentonite and (i) lubricants, for example, talc, calcium stearate, magnesium stearate and solid polyethylene glycols, or mixtures of the substances listed under (a) to (i) directly hereinabove.

The tablets, dragees, capsules, caplets, pills and granules can be provided with the customary coatings and shells, optionally containing opacifying agents and can also be of such composition that they release the active compounds only or preferentially in a certain part of the intestinal tract, optionally in a delayed manner. Examples of embedding compositions which can be used are polymeric substances and waxes.

The active compounds can also be present in microencapsulated form, if appropriate with one or more of the abovementioned excipients. Suppositories can contain, in addition to the active compounds, the customary water-soluble or water-insoluble excipients, for example, polyethylene glycols, fats, for example, cacao fat and higher esters (for example, C14-alcohol with C16-fatty acid), or mixtures of these substances.

Ointments, pastes, creams and gels can contain, in addition to the active compounds, the customary excipients, for example, animal and vegetable fats, waxes, paraffins, starch tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures of these substances.

Dusting powders and sprays can contain, in addition to the active compounds, the customary excipients, for example, lactose, talc, silicic acid, aluminum hydroxide, calcium silicate and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, for example, chlorofluorohydrocarbons.

Solutions and emulsions can contain, in addition to the active compounds, customary excipients, such as solvents, solubilizing agents and emulsifiers, for example, water, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, glycerol formal, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, or mixtures of these substances.

For parenteral administration, the solutions and emulsions can also be in a sterile form which is isotonic with blood. Suspensions can contain, in addition to the active compounds, customary excipients, such as liquid diluents, for example, water, ethyl alcohol or propylene glycol and suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methydroxide, bentonite, agar-agar, and tragacanth, or mixtures of these substances.

The abovementioned pharmaceutical formulations can also contain other pharmaceutical active compounds in addition to the claimed compounds of the present invention.

The aforementioned pharmaceutical formulations are prepared in the customary manner by known methods, for example, by mixing the active compound or compounds with the excipient or excipients.

The formulations mentioned can be used either with humans and animals, orally, rectally, bucally, parenterally (intra-venously, intramuscularly or subcutaneously), intracisternally, intravaginally, intraperitoneally or locally (dusting powder, ointment or drops) and for the therapy of infection in hollow spaces or body cavities. Suitable formulations are injection solutions, solutions and suspensions for oral therapy, gels, pour-on formulations, emulsions, ointments or drops. Ophthalmological and dermatological formulations, silver salts and other salts, ear drops, eye ointments, powders or solutions can be used for local therapy.

It is furthermore possible to use gels, powders, dusting powders, tablets, sustained release tablets, premixes, concentrates, granules, pellets, capsules, caplets, aerosols, sprays and inhalates on humans and animals. The compounds according to the invention can furthermore be incorporated into other carrier materials, such as, for example, plastics (e.g., chains of plastic for local therapy), collagen or bone cement.

The following examples describe preferred ways to prepare the compounds of the present invention. Other possibilities are within the scope and spirit of the present disclosure.

Anhydrous tetrahydrofuran (THF), ethyl ether (Et2 O), and acetonitrile were distilled from calcium hydride prior to use. Unless otherwise stated, reagents discussed in the following examples were commercially available from Aldrich Chemical Co, Milwakee, Wis., or Janssen Chimica through the U.S. vender Spectrum Chemicals Mfg. Corp., New Brunswick, N.J.

All reactions were carried out in oven-dried glassware (140°C) which were cooled under argon prior to use. Crude products were purified by flash column chromatography using 230-400 mesh silica gel (35-70 um) or medium/high pressure liquid chromatography using Shimadzu LC-8A Preparative liquid chromatography system equipped with columns packed with either 20 um or 10 um silica. Thin layer chromatography (TLC) was performed on aluminum-backed silica gel plates, and visualization was accomplished with a UV light or an iodine vapor chamber.

Proton (1 H) nuclear magnetic resonance (NMR) spectra were obtained on GN-OMEGA-300 spectrometers at 300 MHz. Carbon (13 C) NMR were obtained on the same spectrometer at 75 MHz. Mass spectral data were obtained on a Kratos-MS 80RFA spectrometer using electron impact ionization (EI), chemical ionization (CI), or fast atom bombardment (FAB). Mass Spectral (MS) data were obtained on a Kratos CONCEPT I-H spectrometer, using liquid-cesium secondary ion (LSI) technique, a more modern version of fast atom bombardment (FAB).

Abbreviations used in the following experimental section refer to the following reagents: DCC is 1,3-dicyclohexyl carbodiimide; DMAP is 4-dimethylaminopyridine; TFA is trifluoroacetic acid; HOBT is 1-hydroxybenzotriazole monohydrate. PPA refers to n-propylphosphonic acid cyclic anhydride.

Amino acid derivatives described as 1-[X]-L-Isoleucine are meant to signify a derivative of the the L-isomer of the amino acid Isoleucine, in which the α-amino group is attached to the the fragment X. In a similar fashion, 1-[1-[X]-L-Proline]-L-Isoleucine is meant to represent a fragment that can be represented graphically as: ##STR19##

Example 1 ##STR20## 1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline Phenylmethyl Ester.

a) 1-Thio-1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-pr oline Phenylmethyl Ester.

This compound was prepared from N-tertbutoxycarbonyl-L-isoleucine-L-proline benzyl ester in 49% yield using a procedure described earlier (Synthesis, 1979, 941). The 1 H NMR of this compound was consistent with the structure.

Rf=0.61 (2% methanol in dichloromethane).

b) 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-Proline Phenylmethyl Ester.

A solution of 1-thio-1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-pr oline phenylmethyl ester (8.14 g) was dissolved in absolute ethanol (30 mL) and treated with #2-Raney nickel (60 mL 1:1 v/v slurry in absolute ethanol) at 22°C for 2 hours. The reaction was filtered on a glass frit and washed with ethanol (700 mL). The filtrate was concentrated under reduced pressure and chromatographed on silica gel to provide 835 mg (11%) of the title compound. The 1 H NMR of this compound was consistent with the structure.

Rf=0.53 (33% EtOAc in hexane).

In addition to the desired product, 1.05 g (18%) of 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline was obtained. The 1 H NMR of both these compound were consistent with their structure.

Example 2 ##STR21## 1-[1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-prolin e ]-L-isoleucine Benzylamide.

Into a 25 mL round bottom flask were added 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline (200 mg), DCC (197 mg, 1.5 eq), DMAP (86 mg, 1.1 eq), HOBT (100 mg, 1.1 eq), and L-isoleucine benzylamide (225 mg). These reagents were taken up in DMF (1.0 mL) and dichloromethane (2.0 mL) and treated with triethylamine (177 mL, 2.0 eq). After TLC indicated the reaction was complete, the solution was concentrated to a residue, and taken up in ethyl acetate. The heterogenous solution was filtered through a plug of Celite, the resulting solution was concentrated to a residue and the residue was chromatographed on acidic silica to provide 200 mg (60%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.26 (50% EtOAc in hexane). LSIMS=517; (mass calculated for C29 H48 N4 O4 =516.70).

Example 3 ##STR22## 1-[1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-ho m oproline]-L-isoleucine Benzylamide.

In a round bottom flask was added 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-homop roline (129 mg), L-isoleucine benzylamide (129 mg), triethylamine (136 uL) and anhydrous dichloromethane (1.5 mL). The reaction was cooled to 4°C, then bis(2-oxo-3-oxazolidinyl)-phosphinic chloride (BOP-Cl, 110 mg) was added and the reaction was stirred 2 hours at 4°C, then warmed to 20°C and stirred for 12 hours. The reaction mixture was washed with satd aq NaHCO3, satd aq NaCl, dried (MgSO4) and evaporated under reduced pressure. The crude reaction mixture was chromatographed on acidic silica to provide 26 mg (13%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.32 (50% EtOAc in hexane). LSIMS=531; (mass calculated for C30 H50 N4 O4 =530.73).

Example 4 ##STR23## 1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline Methyl Ester.

a) 1-Thio-1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-Pr oline Methyl Ester.

Using the procedure described in Example 1, N-tertbutoxycarbonyl-L-isoleucine-L-proline methyl ester (5.56 g) was converted to 5.48 g (94%) of the title compound. The 1 H MNR of this compound was consistent with the structure.

Rf=0.29 (25% EtOAc in hexane).

b) 1-[2-(S)-[[(1,1-Dimethylethoxy]carbonyl]amino]-4-methylpentyl]-L-proline Methyl Ester.

Using a procedure similiar to that found in example 1b, 1-thio-1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-pr oline methyl ester (5.48 g) was dissolved in absolute ethanol (150 mL) and treated with #2-Raney nickel (70 mL of 1:1 v/v slurry in absolute ethanol) and refluxed for 2 hours. The reaction was cooled and filtered on a glass frit and washed with dichloromethane (350 mL) and ethanol (100 mL). The filtrates were combined, evaporated under reduced pressure and chromatographed on silica gel to provide 3.2 g (64%) of the title compound. The 1 H MNR of this compound was consistent with the structure.

Rf=0.43 (25% EtOAc in hexane).

Example 5 ##STR24## 1-[1-[2-[[(1,1-Dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline]-L - Isoleucine Phenylmethyl Ester.

A solution of 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline (97 mg), L-isoleucine benzyl ester tosylate salt (134 mg), and ethyl morpholine (236 uL) were dissolved in N,N-dimethylformamide (1 mL) and cooled to 4°C To this was added PPA (300 uL of 50% solution in CH2 Cl2). The reaction was stirred for 60 minutes at 4° C., then allowed to warm to 22°C The solution was stirred at 22°C for 3 hours, then concentrated under reduced pressure and dissolved in fresh CH2 Cl2. The CH2 Cl2 solution was washed with 1M citric acid, water, saturated sodium bicarbonate, saturated sodium chloride, dried (MgSO4), and chromatographed on silica gel to provide 129 mg (80%) of the title compound. The 1 H NMR of this compound was consistent with the structure.

Example 6 ##STR25## 1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-proli n e]-L-isoleucine Benzylamide.

Using the procedure described in Example 2, the coupling of 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]L-prolin e (210 mg) and L-isoleucine benzylamide (258 mg) provided 202 mg (59%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.30 (50% EtOAc in hexane). LSIMS=517; (mass calculated for C29 H48 N4 O4 =516.70).

Example 7 ##STR26## 1-[1-[2-(S)-[[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-1-oxo-3-cyclohex y lpropyl]amino]-3-methylpentyl]-L-proline]-L-isoleucine Benzylamide.

Using the procedure described in Example 2, the coupling of Boc-(L)-cyclohexylalanine (211 mg) and 1-[1-[2-(S)-amino-3-(S)-methylpentyl]-L-proline]-L-isoleucine benzylamide (162 mg) provided 99 mg (53%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.43 (4.8% methanol in dichloromethane). LSIMS=670; (mass calculated for C38 H63 N5 O5 =669.92).

Example 8 ##STR27## 1-[1-[2-(S)-[2-(S)-amino-1-oxo-3-cyclohexylpropyl]amino]-3-methylpentyl]-L - proline]-L-isoleucine Benzylamide.

1-[1-[2-(S)-[[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-1-oxo-3-cyclohexy lpropyl]amino]-3-methylpentyl]-L-proline]-L-isoleucine Benzylamide(93 mg) was dissolved in dichloromethane (1 mL) and treated with trifluoroacetic acid (2 mL). The reaction was stirred for 1 hour, then washed with satd aq NaHCO3, satd aq NaCl, dried (MgSO4) and chromatographed on acidic silica gel to provide 73 mg (88%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.21 (4.8% methanol in dichloromethane). LSIMS=571; (mass calculated for C33 H55 N5 O3 =569.81).

Example 9 ##STR28## 1-Methyl-1-[1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl] - L-proline]-L-Tyrosine(O-Methyl)Methyl Ester.

Using the procedure described in example 2, 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline (129 mg) and N-methyl-O-methyl-L-tyrosine methyl ester (101 mg) were coupled to provide 87 mg (41%) of the title compound. The 1 H MNR of this compound was consistent with the structure.

Example 10 ##STR29## 1-[1-[2-(S)-[[4-Amino-2-(S)-[[(1,1-dimethylethoxy)-carbonyl]amino]-1,4-dio x obutyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine Phenylmethyl Ester.

a) 1-[1-[2-(S)-Amino-4-methylpentyl]-L-proline]-L-Isoleucine Phenylmethyl Ester.

Using the procedure described in example 8, 1-[1-[2-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-proline]-L -Isoleucine phenylmethyl ester (106 mg) was treated with trifluoroacetic acid (1 mL) to provide 90 mg (105%) of the free amine. The 1 H MNR of this compound was consistent with the structure.

b) 1-[1-[2-(S)-[[4-Amino-2-(S)-[[(1,1-dimethylethoxy)-carbonyl]amino]-1,4-dio xobutyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine Phenylmethyl Ester.

1-[1-[2-(S)-amino-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester (47 mg) and N-Boc-L-asparigine (29 mg), hydroxybenzotriazole monohydrate (17 mg), ethyl morpholine (43 mg) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide (43 mg) were dissolved in N,N-dimethylformamide (300 uL). The reaction was stirred for 2.5 hours and then evaporated under reduced pressure. The residue was dissolved in dichloromethane and washed with saturated sodium bicarbonate, concentrated under reduced pressure and chromatographed to provide 40.6 mg (57%) of the title compound. The 1 H MNR of this compound was consistent with the structure.

Example 11 ##STR30## 1-[1-[2-[[3-Cyclohexyl-2-(S)-[[(1,1-dimethylethoxy)-carbonyl]amino]-1-oxop r opyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine Phenylmethyl Ester.

Using the procedure described in Example 5, 1-[1-[2-(S)-amino-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester (44 mg) and N-Boc-L-cyclohexylalanine (34 mg) provided 46 mg (64%) of the title compound. The 1 H MNR of this compound was consistent with the structure.

Example 12 ##STR31## 1-[1-[2-(S)-[[1-[2-(S) ,4-Diamino-1,4-dioxobutyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine Phenylmethyl Ester.

Using the procedure described in Example 8, 1-[1-[2-(S)-[[4-amino-2-(S)-[[(1,1-dimethylethoxy)-carbonyl]amino]-1,4-dio xobutyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester (20 mg) was treated with trifluoroacetic acid (300 uL) to provide 16 mg (91%) of the title compound. The 1 H NHR of this compound was consistent with the structure.

Example 13 ##STR32## 1-[1-[2-(S)-[[2-(S)-amino-3-cyclohexyl-1-oxopropyl]-amino]-4-methylpentyl] - L-proline]-L-isoleucine Phenylmethyl Ester.

Using the procedure described in Example 8, 1-[1-[2-[[3-cyclohexyl-2-(S)-[[(1,1-dimethylethoxy)-carbonyl]amino]-1-oxop ropyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester (24 mg) was treated with trifluoroacetic acid (300 uL) to provide 19 mg (94%) of the title compound as an oil. The 1 H MNR of this compound was consistent with the structure.

Example 14 ##STR33## 1-[1-[2-(S)-[[1-[1-[(1,1-Dimethylethoxy)carbonyl]-L-phenylalanyl]-L-aspara g inyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine Phenylmethyl Ester.

1-[1-[2-(S)-[[1-[2-(S),4-Diamino-1,4-dioxobutyl]amino]-4-methylpentyl]-L-pr oline]-L-isoleucine phenylmethyl ester (15.8 mg) and N-Boc-L-phenylalanine-N-hxdroxysuccinimide (13.3 mg) and N,N-diisopropylethylamine (10.5 uL) were dissolved in tetrahydrofuran (300 uL) and stirred for 6 hours. The reaction was concentrated under reduced pressure and dissolved in dichloromethane and washed with 1M citric acid, water, saturated sodium bicarbonate, dried with magnesium sulfate, and chromatographed on silica gel to provide 16.8 mg (72%) of the title compound. The 1 H NMR of this compound was consistent with the structure.

Example 15 ##STR34## 1-[1-[2-(S)-[[1-[2-(S)-Amino-1-Oxo-3-phenylpropyl]-L-asparaginyl]amino]-4- m ethylpentyl]-L-proline]-L-isoleucine Phenylmethyl Ester.

Using the procedure described in example 8, 1-[1-[2-(S)-[[1-[1-[(1,1-dimethylethoxy)carbonyl]-L-phenylalanyl]-L-aspara ginyl]amino]-4-methylpentyl]-L-proline]-L-isoleucine phenylmethyl ester (15.3 mg) was treated with trifluoroacetic acid (900 uL) to provide 11 mg (95%) of the title compound. The 1 H MNR of this compound was consistent with the structure.

Example 16 ##STR35## 1-[1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-cyclohexylpropyl]-L-pr o line]-L-isoleucine Benzylamide.

Using the procedure described in Example 2, the coupling of 1-[3-cyclohexyl-2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]propyl]-L-proli ne (208 mg) and L-isoleucine benzylamide (193 mg) provided 168 mg (51%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.30 (50% EtOAc in hexane). LSIMS=557; (mass calculated for C32 H52 N4 O4 =556.77).

Example 17 ##STR36## 1-[1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-methylbutyl]-L-proline ] -L-isoleucine Benzylamide.

Using the procedure described in Example 2, the coupling of 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-methylbutyl]L-proline (208 mg) and L-isoleucine benzylamide (271 mg) provided 264 mg (76%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.28(50% EtOAc in hexane). LSIMS=503; (mass calculated for C28 H46 N4 O4 =502.68).

Example 18 ##STR37## 1-[1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-homopr o line]-L-isoleucine Benzylamide.

Using the procedure described in Example 3, 1-[2-[[(1,1-dimethylethoxy)carbonyl]amino]-4-methylpentyl]-L-homoproline (102 mg) and L-isoleucine benzylamide (148 mg) provided 61 mg (37%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.67 (EtOAc). LSIMS=531; (mass calculated for C30 H50 N4 O4 =530.73).

Example 19 ##STR38## 1-[1-[2-(S)-[[(1,1-Dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-ho m oproline]-L-threonene(O-Benzyl Ether)Benzylamide.

Using the procedure described in Example 3, 1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-homop roline (1.22 g) and L-threonine(O-benzyl ether)benzylamide (1.42 g) provided 1.42 g (63%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.67 (EtOAc). LSIMS=609; (mass calculated for C35 H52 N4 O5 =608.80).

Example 20 ##STR39## 1-[1-[2-(S)-Amino-3-(S)-methylpentyl]-L-homoproline]-L-isoleucine Benzylamide.

Using the procedure described in example 8, 1-[1-[2-(S)-[[(1,1-dimethylethoxy)carbonyl]amino]-3-(S)-methylpentyl]-L-ho moproline]-L-isoleucine benzylamide (1.45 g) was treated with trifluoroacetic acid (5 mL) to provide 722 mg (63%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.06 (EtOAc).

Example 21 ##STR40## 1-[1-[2-(S)-[(2,2-Dimethyl-propionyl)-amino]-3-(S)-methylpentyl]-L-homopro l ine]-L-isoleucine benzylamide.

1-[1-[2-(S)-amino-3-(S)-methylpentyl]-L-homoproline]-L-isoleucine benzylamide (95 mg) was dissolved in CH2 Cl2 (2 mL) and triethylamine (93 uL) was added. The reaction vessel was cooled to 4°C and trimethylacetyl chloride (30 uL) was added. The reaction was stirred 30 minutes at this temperature then warmed to 22°C and stirred for 60 minutes. The reaction was concentrated under reduced pressure and the crude product was chromatographed on silica gel to give 80 mg (70%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.72 (9.1% methanol in dichloromethane). LSIMS=515; (mass calculated for C30 H50 N4 O3 =514.73).

Example 22 ##STR41## 1-[1-[2-(S)-[(3,3-dimethyl-butyryl)-amino]-3-(S)-methylpentyl]-L-homoproli n e]-L-isoleucine benzylamide

Using the procedure described in example 1, 1-[1-[2-(S)-amino-3-(S)-methylpentyl]-L-homoproline]-L-isoleucine benzylamide (112.5 mg) and tert-butylacetyl chloride (40 uL) provided 70 mg (51%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.72 (9.1% methanol in dichloromethane). LSIMS=530; (mass calculated for C31 H52 N4 O3 =528.76).

Example 23 ##STR42## 1-[1-[2-(S)-[(3-methyl-butyryl)-amino]-3-(S)-methylpentyl]-L-homoproline]- L -isoleucine benzylamide

Using the procedure described in example 1, 1-[1-[2-(S)-amino-3-(S)-methylpentyl]-L-homoproline]-L-isoleucine benzylamide (99 mg) and isovaleryl chloride (31 uL) provided 78 mg (66%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.70 (9.1% methanol in dichloromethane). LSIMS=515; (mass calculated for C30 H50 N4 O3 =514.73).

Example 24 ##STR43## 1-[1-[2-(S)-butyrylamino]-3-(S)-methylpentyl]-L-homoproline]-L-isoleucine benzylamide.

Using the procedure described in example 1, 1-[1-[2-(S)-amino-3-(S)-methylpentyl]-L-homoproline]-L-isoleucine benzylamide (105 mg) and butyryl chloride (28 uL) provided 83 mg (68%) of the title compound. The 1 H MNR and Mass spectrum analysis of this compound was consistent with the structure.

Rf=0.67 (9.1% methanol in dichloromethane). LSIMS=501; (mass calculated for C29 H48 N4 O3 =500.70).

The immunosuppressive properties of the present compounds were evaluated in the following assays:

1) Inhibition of PPIase Activity

This assay follows in principle the procedure described in Kofron et al., 1991, Biochemistry 30:6127. The three main reagents used are PPIase, a substrate for PPIase, and a selected inhibitor compound of the present invention. The basic principle behind this assay is the conversion of the cis isomer of the substrate to the trans form, which conversion is catalyzed by PPIase. Essentially, inhibition of this PPIase activity is measured for the selected compounds. A peptide chymotrypsin substrate containing a proline in the P2 position is only cleaved by chymotrypsin when the Phe-Pro bond is in the trans isomeric configuration. In the presence of excess chymotrypsin, all of the trans peptide isomers are cleaved within approximately five seconds, leaving only cis forms.

The cis peptide will spontaneously convert to the trans isomer at a slow rate. The cis to trans conversion is catalyzed by isomerases at a much faster rate than this spontaneous conversion. Proteins with PPIase activity are examples of such isomerases. After isomerization, the peptide is cleaved by chymotrypsin releasing p-nitroaniline which can be monitored at 390 nm. The rate of release is then calculated using a first order rate plus offset equation utilizing the ENZFITTER program (Leatherbarrow, BIOSOFT, Cambridge, United Kingdom).

PPIase Inhibition Assay

In a plastic cuvette are added 950 ul of ice cold assay buffer (25 mM HEPES, pH 7.8, 100 mM NaCl), 10 uL of FKBP (2.5 uM in 10 mM Tris-Cl pH 7.5, 100 mM NaCl, 1 mM dithiothreitol), 25 ul of chymotrypsin (50 mg/ml in 1 mM HCl) and 10 ul of the test compound at various concentrations in dimethyl sulphoxide. The reaction is initiated by addition of 5 ul of substrate (Succinyl-Ala-Phe-Pro-Phe-para-nitroanilide, 5 mg/ml in 235 mM LiCl in trifluoroethanol).

The absorbance at 390 nm versus time is monitored for 90 sec using a Beckman DU70 spectrophotometer. The absorbance versus time data files are transferred to an IBM XT computer and the rate constants determined using the commercial Enzfitter program. For each set of data, the uncatalyzed rate of conversion is measured and the uninhibited enzymatic rate determined. The data are expressed as % Inhibition and are calculated as follows: ##EQU1## where kobs is the rate in the presence of a selected test compound, kuncat is the rate in the absence of enzyme, and kuninh is the rate in the presence of enzyme and absence of inhibitor. Data are plotted as percent inhibition versus concentration of inhibitor. The values of the concentration of inhibitor required for 50% inhibition of enzyme activity (IC50) were determined by nonlinear least squares regression analysis.

TABLE 1
______________________________________
FKBP IC50 FKBP IC50
Example No. (μM) Example No. (μM)
______________________________________
1 >50 11 8.4
2 0.57 12 2.4
3 5 13 1.3
4 >50 14 <50
5 3 15 2.5
6 0.39 16 >5
7 0.13 17 0.47
8 0.16 18 1.3
9 >50 19 5
10 0.9 20 ND
21 ND
22 ND
23 ND
24 ND
______________________________________
where ND means "not determined

Results: The results of the compound testing are presented in TABLE 1, above. As stated previously, it was not initially apparent whether or not inhibition of PPIase activity was necessary and sufficient for immunosuppression. Presently, the prevailing thought is that binding to the PPIase enzyme may be necessary but is not sufficient. Therefore, the data on PPIase inhibition may be viewed as an assay to detect whether or not a given compound is capable of interacting productively with FKBP.

2) Human T Lymphocyte Inhibition

Inhibition of mitogen-induced T-cell proliferation can be used to profile immunosuppressive activity of test compounds. In the description of the assay which follows, mitogen-induced T-cell proliferation was used to test the inhibitory potencies of select compounds of the present invention.

In an assay similar to that described by Bradley in Mishell et al. (Eds.), 1980, Selected Methods in Cellular Immunology, pp 156-161, W. H. Freeman & Co., San Fransisco, Calif., T-cells were stimulated by incubation with phytohemagglutinin (PHA) which binds to cell surface molecules, including the T-cell receptor. This stimulation results in proliferation which can be measured by incorporation of [3 H]-thymidine into cellular DNA.

The immunosuppressive properties of the compounds of the present invention can be determined by adding various concentrations of the compounds to these cultures and measuring the effect on T-cell proliferation.

Suppression of Human T-Cell Proliferation Assay

Fresh LeukoPaks were obtained from the New York Blood Center, New York, N.Y. The cells, including erythrocytes and leukocytes, were diluted with Hank's Balanced Salt Solution (HBSS) (GIBCO, Grand Island, N.Y.) and layered over Lymphoprep (Nycomed Pharma AS, Oslo, Norway) in sterile 50 ml conical centrifuge tubes. Lymphocytes were isolated at the Hank's/Nycomed interface after centrifugation at 2000×g, 4°C for 15 min. The lymphocytes were washed with Minimal Essential Medium (GIBCO) containing 2% fetal bovine serum (FBS) (Sigma Chemical Co., St. Louis, Mo.), 1% HEPES buffer (GIBCO) and 1% Penicillin-Stretomycin solution (GIBCO).

T-cells were further purified essentially by sheep erythrocyte (SRBC) rosetting as described by Morimoto et al., 1983, J. Immunol. 130:157. The isolated lymphocytes were adjusted to 2×107 cells/ml and 5 ml aliquots of the cell suspension were incubated for 10 minutes at room temperature with 5 ml of a 5% SRBC (Cappel, Organon Technika Corp., West Chester, Pa.) suspension. The cells were gently pelleted by centrifugation at 300 rpm for 10 minutes, followed by a 1 hour incubation at room temperature to allow rosette formation. The cells were gently resuspended, layered over Lymphoprep and centrifuged for 30 minutes at 500×g. The pellet, containing rosetted T-cells and SRBC was treated with ice cold buffered ammonium chloride (GIBCO) to lyse the erythrocytes. T-cells were washed twice with HBSS.

Purified T-cells were resuspended at 2×106 cells/ml in complete culture medium composed of RPMI-1640 (Whittaker Bioproducts, Walkerville, Md.) with 10% FBS (Sigma), 2 mM L-glutamine (GIBCO), 1% Penicillin-Streptomycin (GIBCO) and 15 mM HEPES (GIBCO). In 96-well plates (Becton Dickinson, Lincoln Park, N.J.), 0.1 ml aliquots of T-cell suspension were mixed with 0.05 ml of 40 μg/ml PHA-M (Sigma). The compounds of this invention were dissolved in dimethylsulfoxide at 10 mM and various dilutions in complete medium were added in duplicate wells (0.05 ml/well). The plates were incubated at 37°C in a humidified atmosphere of 5% carbon dioxide and 95% air for 72 hours.

Proliferation was assessed by measurement of [3 H]-thymidine incorporation. During the last 6 hours of incubation, the cells were pulse labelled with 1 μCi/well of [3 H]-thymidine (New England Nuclear, Boston, Mass.). The cells were harvested onto glass fiber paper using a plate harvester and the radioactivity incorporated into cellular DNA corresponding to individual wells was measured by standard liquid scintillation counting methods. The mean counts per minute (CPM) of replicate wells was calculated and linear regression analysis of mean CPM versus compound concentration was used to determine the concentration of compound which would inhibit [3 H]-thymidine incorporation of T-cells by 50% (IC50).

The results of this assay, presented in Table 2, are representative of the intrinsic immunosuppresive activity of the compounds of the present invention. Thus, concentrations less than 10 μM of some of the preferred compounds suppress the T-cell proliferative response by 50%.

______________________________________
Example No. IC50 (μM)
Example No. IC50 (μM)
______________________________________
1 29 11 <6
2 7 12 <6
3 0.7 13 <6
4 >50 14 <6
5 27 15 ND
6 6 16 6
7 3 17 14
8 5 18 4
9 16 19 17
10 30 20 ND
21 .72
22 1.0
23 .9
24 1.7
______________________________________
where ND means "not determined

3) NF-AT Assay

Stimulation of T-cells leads to the appearance of several transcription factors, including one designated "NF-AT". These factors are involved in regulation of gene expression required for immunologic activation. Some of these transcription factors appear to have functions in a wide variety of cell types. By contrast, NF-AT is found primarily in T-cells and its role is restricted to early gene activation. In addition, NF-AT activity is inhibited by the immunosuppressant drugs, Cyclosporin A and FK506 (Schreiber and Crabtree, 1992, Immunology Today 13:136).

Inhibition of NF-AT activity is measured using FGL-5 cells. FGL-5 is a cloned line of stably transfected Jurkat T-cells that contain a construct in which three tandem copies of the NF-AT DNA binding site direct transcription of the lacZ gene, encoding β-galactosidase (Fiering et al., 1990, Genes & Development 4:1823). When these cells are stimulated with phorbol esters which activate protein kinase C and calcium ionophore to raise the intracellular calcium concentration, transcriptionally active NF-AT is produced. In T-cells, this normally leads to the expression of IL-2, T-cell growth factor. However, in FGL-5 cells NF-AT activation leads to the production of β-galactosidase which can be detected using an appropriate substrate.

FGL-S cells were cultured with phorbol ester, calcium ionophore and the compounds of the present invention to measure inhibition of β-galactosidase activity, as shown below.

NF-AT Inhibition Assay Directed β-Galactosidase Expression

This assay was performed essentially as described (Bierer et al., 1990, Proc. Natl. Acad. Sci. 87:923 1). FGL-5 cells were maintained in medium consisting of RPMI-1640 with 10% FBS, 2 mM L-glutamine, 1% Penicillin-Streptomycin and 15 mM HEPES buffer. The assays were done with exponentially growing cells whose density was not greater than 0.5 million cells/ml. The cells were resuspended to 3 million cells/ml in medium and 0.1 ml was added to wells of a 96-well plate.

The compounds of the present invention were dissolved in either ethanol or dimethylsulfoxide at 10 mM and 0.05 ml/well of various dilutions in medium were added to cells in duplicate wells. Treatment controls consisted of duplicate wells to which 0.05 ml/well of either medium, ethanol or dimethylsulfoxide was added. The ethanol and dimethyl sulfoxide were at the same concentration as was used for the compounds. Cells were incubated with compounds at room temperature for 10-15 minutes. Phorbol dibutyrate (Sigma) and Ionomycin (Calbiochem) were dissolved at 50 μg/ml and 2 mM, respectively and stored at -70°C

FGL-5 cells were stimulated by diluting these reagents with medium to 200 ng/ml and 8 μM, respectively and adding of 0.05 ml/well. For unstimulated cell controls, 0.05 ml/well of medium was added to duplicate wells. The plates were incubated overnight (16-18 hours) at 37°C in a humidified atmosphere of 5% CO2 and air.

β-galactosidase activity was measured as the fluorescence generated by the cleavage of 4-methyl umbelliferyl-β-D-galactoside (Sigma) at the β-galactoside bond. After overnight incubation, the cells were centrifuged at 500×g for 3 minutes in the 96-well plates and washed 3 times with PBS. The cells were then resuspended in 0.18 ml/well of reaction medium containing 100 mM sodium phosphate buffer, pH 7.0, 10 mM potassium chloride, 1 mM magnesium sulfate, 0.1% Triton X-100 (Pierce, Rockford, Ill.), and 0.5 mM 4-methylumbelliferyl-β-D-galactoside.

The fluorescence at 460 nm using 3 55 nm excitation was measured at intervals over 1-2 hours (during which fluorescence increased linearly with time) with a LS50 Luminescence Spectrometer (Perkin Elmer).

The percent inhibition by each concentration of the compounds was calculated as: ##EQU2##

The values of the concentration of compounds required for 50% inhibition (IC50) were determined by linear regression analysis of the percent inhibition at various compound concentrations.

The results of this assay presented in TABLE 3 are representative of the intrinsic immunosuppresive activity of the compounds of the present invention. Compounds that inhibited NF-AT directed β-galactosidase expression by stimulated FGL-5 cells with IC50 of 10 βM or less also inhibited mitogen induced T-cell proliferation, e.g., compounds of Example Nos. 14, and 17.

TABLE 3
______________________________________
Example No. IC50 (μM)
Example No. IC50 (μM)
______________________________________
1 ND 11 ND
2 13 12 ND
3 1 13 ND
4 ND 14 ND
5 ND 15 ND
6 8 16 19
7 >15 17 29
8 >15 18 >15
9 ND 19 9
10 ND 20 ND
21 ND
22 ND
23 ND
24 ND
______________________________________
where ND means "not determined

4) Adjvant Arthritis

Rats sensitized to mycobacterial antigens in Complete Freund's Adjuvant can develop a rapidly destructive adjuvant arthritis. Adjuvant arthritis appears to be an autoimmune disease. Thus, T lymphocytes from immunized donors can transfer the disease to naive recipients (Pearson and Wood, 1964, J. Exp. Med. 120:547.) and susceptibility is controlled, at least in part, by class II MHC genes (Batisto, et al. 1982, Arthritis Rheum. 25:1194). The induction of adjuvant arthritis can be inhibited by immunosuppressant drugs, e.g., Cyclosporin A (Borel, et al., 1976, Agents and Actions. 6:468) and azaspiranes (Badger, et al. 1989, Int. J. Immunopharmac. 11:839)

Adjuvant Arthritis Model in the Rat

Complete Freund's adjuvant is made by supplementing extra heavy mineral oil with 10 mg/ml heat killed Mycobacterium butyricum (Difco Laboratories, Detroit, Mich.). Lewis rats (Charles Rivers, Willmington, Mass.) are given a 0.1 ml injection of adjuvant (1 mg/animal mycobacterium) subcutaneously into the right hind footpad. In the injected foot, an acute inflammatory reaction occurs which is characterized by erythema, edema and a predominantly neutrophilic cell infiltrate. This is followed by edema in the uninjected contralateral foot by days 10-12. This secondary response is accompanied by a predominantly mononuclear cell infiltrate, indicating the presence of cell-mediated immunity.

The immune response is quantitated by measuring the change in ankle diameter of the uninjected hind paw from day 0 to day 16 post sensitization. This is accomplished using a hand-held dial micrometer. Animals are administered test drugs, suspended in a vehicle consisting of 5% polyethylene glycol and 0.5% Tween-80 (Sigma Chemical Co., St. Louis, Mo.) in phosphate buffered saline (GIBCO, Grand Island, N.Y.), i.p. on days -1, 0, 2, 5, 7, 9, 12 and 14. Several compounds when administered at 10 mg/kg/dose inhibited the swelling in the uninjected limb compared with the control groups that were sensitized with Complete Freund's Adjuvant but received only the vehicle i.p. (Table 4).

TABLE 4
______________________________________
ΔAnkle
Experiment No.
Compound Diameter % Inhibition
______________________________________
Experiment 1
None 3.3 ± 0.5 (mm)
0
Example 6 3.2 ± 0.3 (mm)
4
Experiment 2
None 3.7 ± 0.6 (mm)
0
Example 3 2.6 ± 0.4 (mm)
30
Example 19 2.1 ± 0.6 (mm)
43
______________________________________

Schneider, Stephan, Hanko, Rudolf, Connell, Richard D., Osterman, David G., Katz, Michael E.

Patent Priority Assignee Title
5614547, Jun 07 1995 GLIAMED, INC Small molecule inhibitors of rotamase enzyme
5696135, Jun 07 1995 GLIAMED, INC Inhibitors of rotamase enzyme activity effective at stimulating neuronal growth
5786378, Sep 25 1996 GLIAMED, INC Heterocyclic thioesters
5795908, May 21 1996 GLIAMED, INC Small molecule inhibitors of rotamase enzyme activity
5798355, Jun 07 1995 GLIAMED, INC Inhibitors of rotamase enzyme activity
5801187, Sep 25 1996 GLIAMED, INC Heterocyclic esters and amides
5846979, Feb 28 1997 GLIAMED, INC N-oxides of heterocyclic esters, amides, thioesters, and ketones
5859031, Jun 07 1995 GLIAMED, INC Small molecule inhibitors of rotamase enzyme activity
5935989, Dec 31 1996 GLIAMED, INC N-linked ureas and carbamates of heterocyclic thioesters
5945441, Jun 04 1997 GLIAMED, INC Pyrrolidine carboxylate hair revitalizing agents
5958949, Dec 31 1996 GLIAMED, INC N-linked ureas and carbamates of piperidyl thioesters
5990131, Sep 25 1996 GLIAMED, INC Heterocyclic thioesters and ketones
6004993, Jun 04 1997 GLIAMED, INC N-linked sulfonamide of heterocyclic thioester hair growth compounds and uses
6140305, Apr 04 1996 BIO-RAD LABORATORIES, INC Hereditary hemochromatosis gene products
6140357, May 21 1996 GLIAMED, INC Small molecule inhibitors of rotamase enzyme activity
6172087, Jun 03 1998 GLIAMED, INC N-oxide of heterocyclic ester, amide, thioester, or ketone hair growth compositions and uses
6177455, Jun 04 1997 GLIAMED, INC Pyrrolidine derivative hair growth compositions and uses
6184243, Dec 31 1996 GLIAMED, INC N-linked ureas and carbamates of heterocyclic thioesters
6187784, Jun 03 1998 GLIAMED, INC Pipecolic acid derivative hair growth compositions and uses
6187796, Jun 03 1998 GLIAMED, INC Sulfone hair growth compositions and uses
6187806, Jun 04 1997 GLIAMED, INC N-linked sulfone of heterocyclic thioester hair growth compositions and uses
6191125, Jun 04 1997 GLIAMED, INC Small molecule pipecolic acid derivative hair growth compositions and uses
6194440, Jun 04 1997 GLIAMED, INC Small molecule carbamate or urea hair growth compositions and uses
6218424, Sep 25 1996 GLIAMED, INC Heterocyclic ketone and thioester compounds and uses
6239164, Jun 04 1997 GLIAMED, INC Pyrrolidine carboxylate and pyrrolidine amide hair revitalizing agents
6251892, Feb 28 1997 GLIAMED, INC N-oxides of heterocyclic esters, amides, thioesters, and ketones
6271244, Jun 03 1998 GLIAMED, INC N-linked urea or carbamate of heterocyclic thioester hair growth compositions and uses
6274602, Jun 03 1998 GLIAMED, INC Heterocyclic thioester and ketone hair growth compositions and uses
6274607, Dec 31 1996 GLIAMED, INC N-linked ureas and carbamates of heterocyclic thioesters
6274617, Jun 03 1998 GLIAMED, INC Heterocyclic ester and amide hair growth compositions and uses
6291510, Aug 06 1996 GLIAMED, INC Small molecule inhibitors of rotamase enzyme activity
6300341, Sep 30 1998 The Procter & Gamble Co. 2-substituted heterocyclic sulfonamides
6307049, Sep 30 1998 The Procter & Gamble Co. Heterocyclic 2-substituted ketoamides
6417209, Sep 25 1996 GLIAMED, INC Heterocyclic ketone and thioester compounds and uses
6429215, Jun 03 1998 GLIAMED, INC N-oxide of heterocyclic ester, amide, thioester, or ketone hair growth compositions and uses
6486151, Feb 28 1997 GLIAMED, INC N-oxides of heterocyclic esters, amides, thioesters, and ketones
6509477, Nov 12 1998 GLIAMED, INC Small molecule inhibitors of rotamase enzyme activity
6849399, May 23 1996 BIO-RAD LABORATORIES, INC Methods and compositions for diagnosis and treatment of iron misregulation diseases
6943187, Jun 04 1997 GLIAMED, INC Pyrrolidine derivative hair growth compositions and uses
6984639, Sep 25 1996 GLIAMED, INC Heterocyclic ketone and thioester compounds and uses
7026116, Apr 04 1996 BIO-RAD LABORATORIES, INC Polymorphisms in the region of the human hemochromatosis gene
7052845, Apr 04 1996 Bio-Rad Laboratories, Inc. Polymorphisms in the region of the human hemochromatosis gene
7056935, Jun 07 1995 GLIAMED, INC Rotamase enzyme activity inhibitors
7067255, Apr 04 1996 Bio-Rad Laboratories, Inc. Hereditary hemochromatosis gene
7078513, Apr 04 1996 Bio-Rad Laboratories, Inc. Plasmids comprising nucleic acids from the hereditary hemochromatosis gene
7282510, Jun 07 1995 GLIAMED, INC Small molecule inhibitors of rotamase enzyme activity
7374765, May 23 1996 Bio-Rad Laboratories, Inc. Methods and compositions for diagnosis and treatment of iron misregulation diseases
7374892, Jun 13 1997 Bio-Rad Laboratories, Inc.; California Institute of Technology Methods and compositions for diagnosis and treatment of iron overload diseases and iron deficiency diseases
7579169, Apr 04 1996 Bio-Rad Laboratories, Inc. Hereditary hemochromatosis gene
7595385, Apr 04 1996 Bio-Rad Laboratories, Inc. Polymorphisms in the region of the human hemochromatosis gene
7652060, Jun 07 1995 Glia Med, Inc Small molecule rotamase enzyme inhibitors
7960570, Jun 07 1995 GliaMed, Inc. Small molecule inhibitors of rotamase enzyme activity
7998680, Apr 04 1996 Bio-Rad Laboratories, Inc. Determining genotype of a polymorphic site in the hereditary hemochromatosis gene
8257927, Apr 04 1996 Bio-Rad Laboratories, Inc. Hereditary hemochromatosis gene
Patent Priority Assignee Title
EP352000,
EP361341,
EP374097,
EP374756,
EP350102,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 09 1993Miles Inc.(assignment on the face of the patent)
Mar 16 1993CONNELL, RICHARD D MILES INC ASSIGNMENT OF ASSIGNORS INTEREST 0064880594 pdf
Mar 16 1993OSTERMAN, DAVID G MILES INC ASSIGNMENT OF ASSIGNORS INTEREST 0064880594 pdf
Mar 16 1993KATZ, MICHAEL E MILES INC ASSIGNMENT OF ASSIGNORS INTEREST 0064880594 pdf
Mar 16 1993HANKO, RUDOLFMILES INC ASSIGNMENT OF ASSIGNORS INTEREST 0064880594 pdf
Mar 16 1993SCHNEIDER, STEPHANMILES INC ASSIGNMENT OF ASSIGNORS INTEREST 0064880594 pdf
Date Maintenance Fee Events
Mar 27 1998ASPN: Payor Number Assigned.
Jul 30 1998M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 30 2002M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 16 2006REM: Maintenance Fee Reminder Mailed.
Jan 31 2007EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 31 19984 years fee payment window open
Jul 31 19986 months grace period start (w surcharge)
Jan 31 1999patent expiry (for year 4)
Jan 31 20012 years to revive unintentionally abandoned end. (for year 4)
Jan 31 20028 years fee payment window open
Jul 31 20026 months grace period start (w surcharge)
Jan 31 2003patent expiry (for year 8)
Jan 31 20052 years to revive unintentionally abandoned end. (for year 8)
Jan 31 200612 years fee payment window open
Jul 31 20066 months grace period start (w surcharge)
Jan 31 2007patent expiry (for year 12)
Jan 31 20092 years to revive unintentionally abandoned end. (for year 12)