In a circuit breaker having a thermal-magnetic trip, the voltage across the bimetal is used to sense load currents. This voltage signal representative of current through the bimetal can be used as an input to an arcing fault detector. The signal is converted to a bandwidth limited di/dt signal. If the magnitude of the di/dt signal exceeds a threshold indicative of the onset of an arc a predetermined number of times within a given interval, the circuit breaker is tripped. The voltage across the bimetal can also be used in other devices requiring a measure of load current such as, for example, a meter or an overcurrent alarm.

Patent
   5519561
Priority
Nov 08 1994
Filed
Nov 08 1994
Issued
May 21 1996
Expiry
Nov 08 2014
Assg.orig
Entity
Large
180
3
all paid
6. A circuit breaker for protecting an electrical system comprising:
separable contacts connected in series with said electrical system;
a trip mechanism opening said separable contacts when actuated;
an overcurrent detector including a bimetal responsive to selected overcurrent conditions in said electrical system for actuating said trip mechanism; and
response means comprising means sensing voltage across said bimetal representative of current flowing through said bimetal and means responsive to said voltage.
1. A circuit breaker for protecting an ac electrical system from overcurrents and arcing faults comprising:
separable contacts connected in series with said electrical system;
a trip mechanism opening said separable contacts when actuated;
an overcurrent detector including a bimetal responsive to selected overcurrent conditions in said electrical system for actuating said trip mechanism; and
an arcing fault detector comprising means for sensing voltage across said bimetal representative of current flowing through the bimetal, and arc responsive means actuating said trip mechanism in response to predetermined conditions of said current indicative of an arcing fault.
2. The circuit breaker of claim 1 wherein said arc responsive means includes means detecting step increases in said current represented by said voltage across said bimetal, and trigger means actuating said trip mechanism in response to a predetermined number of step increases in said current represented by said voltage across said bimetal in a given time interval.
3. The circuit breaker of claim 2 wherein said means detecting step increases in said current represented by said voltage across said bimetal comprises band pass filter means generating a bandwidth limited di/dt signal and means comparing a magnitude of said bandwidth limited di/dt signal to a selected threshold, and wherein said trigger means comprises counting means incrementing a count each time the magnitude of said bandwidth limited di/dt signal exceeds said threshold, means generating an actuation signal which actuates said trip mechanism when said count reaches said predetermined number, and means repetitively initiating timing of said given interval on a first count of said counting means and resetting said counting means at the end of said given interval.
4. The circuit breaker of claim 3 wherein said predetermined number is 2 and said given interval is about one second.
5. The circuit breaker of claim 3 wherein said trigger means includes a power supply generating a supply voltage for operating said trigger means and means resetting said counting means when said supply voltage is below a predetermined value.
7. The circuit breaker of claim 6 wherein said means responsive to said voltage across said bimetal representative of current through the bimetal comprises arc response means actuating said trip mechanism in response to predetermined conditions of said current indicative of an arcing fault.
8. The circuit breaker of claim 6 wherein said means responsive to said voltage across said bimetal representative of current through the bimetal comprises a meter providing an indication of a magnitude of said current.
9. The circuit breaker of claim 6 wherein said means responsive to said voltage across said bimetal representative of current through the bimetal comprises overcurrent indicating means.

1. Field of the Invention

This invention relates to circuit breakers having a thermal-magnetic trip mechanism, and in particular to such a circuit breaker which utilizes the bimetal of the thermal-magnetic trip mechanism for sensing current, such as for example, for an arcing fault detector, a meter or an overcurrent alarm.

2. Background Information

It has been observed that arcing type faults in a power distribution system typically do not trip the conventional circuit breaker. An arcing fault can be caused by bared conductors which intermittently touch and then separate due to magnetic forces generated by the fault current. Thus, the arcing fault is characterized by repetitive step increases in current. Such faults have a high resistance, and being intermittent they draw limited current and therefore do not trip the conventional circuit breaker. However, they can start a fire if combustible material is present.

If the settings of the conventional trip unit are lowered so that they trip in response to an arcing fault, an unacceptable number of nuisance trips can be induced by a number of common loads which generate a similar current step function.

A great deal of effort has been directed toward developing a circuit breaker which can respond to arcing faults in a power distribution system but be immune to nuisance tripping. One approach has been to analyze the current waveform produced by the arcs to identify unique arc characteristics. However, such detectors tend to be expensive, especially for the miniature circuit breakers typically used in residential and light commercial applications.

Commonly owned U.S. Pat. No. 5,224,006 discloses a circuit breaker which utilizes a bandwidth limited di/dt signal to detect arcing faults. The di/dt signal is generated by a sensing coil shared with a dormant oscillator type ground fault detector. Pending U.S. application Ser. No. 08/023,435 filed on Feb. 26, 1993, improves discrimination of arcing faults from current transients caused by commonly encountered loads by recognizing that such transients caused by the loads are typically singular events while the arcing fault is repetitive. Hence, this patent application discloses an arcing fault circuit breaker which only trips upon detection of two step increases in current within about a second. This patent application also suggests that as an alternative to the use of a detector coil to generate the di/dt signal, the resistance across a section of wire carrying the load current can be used to measure the current. In order to generate a signal of sufficient magnitude in a reasonable length of wire, the gauge of the wire had to be reduced. However, the smaller gauge wire was not able to sustain typical short circuit currents.

A typical thermal-magnetic circuit breaker has a bimetal which heats up and bends to unlatch a spring operated trip mechanism in response to sustained overcurrents. The magnetic trip is provided by an armature which is a magnetically attracted by current flowing through the bimetal to unlatch the trip mechanism in response to short circuit currents.

At present there is no simple way of determining the current flowing through a circuit breaker with a thermal-magnetic trip. It would be useful to be able to easily measure this current, either just to provide an accurate determination of the load current, or for use in devices responsive to current, such as for example, an arcing fault detector or an overload alarm.

There is a need for an improved circuit breaker with a thermal-magnetic trip device having a simple, inexpensive arrangement for determining current passing through the circuit breaker.

There is also a need for an improved circuit breaker providing protection against arcing faults which is reliable and inexpensive.

There is a further need for such an improved circuit breaker which does not require a coil to generate a di/dt signal for use in detecting arcing faults, yet can withstand typical short circuit currents.

There is a further need for such a circuit breaker in which the arcing fault detector requires a minimum of space.

These needs and others are satisfied by the invention which is directed to a circuit breaker having a trip mechanism including a bimetal connected at opposite ends in series with an ac electrical system for tripping separable contacts open in response to current in the electrical system flowing through the bimetal of predetermined magnitude/time characteristics, and response means connected to the opposite ends of the bimetal for responding to a voltage across the bimetal representative of the current in the electrical system flowing through the bimetal. The response means can include devices such as, for example, a meter calibrated to read the current flowing through the bimetal, a device which generates an auxiliary signal when a selected current condition is reached, or an arcing fault detector which trips the breaker.

In another respect, the invention is directed to a circuit breaker for protecting an electrical system from both overcurrents and arcing faults in which the arcing fault detector includes means sensing the voltage across the bimetal of the overcurrent detector and arc responsive means actuating a trip mechanism in response to predetermined conditions of the voltage across the bimetal which are indicative of an arcing fault. In particular, the arc responsive means includes means detecting step increases in the voltage across, and therefore current through, the bimetal and means actuating the trip mechanism in response to a predetermined number of step increases in the voltage across the bimetal in a given time interval. Preferably the means detecting the step increases in the voltage across the bimetal is a band pass filter which generates a bandwidth limited di/dt signal which is compared to a threshold value. A counter counts each time the magnitude of the bandwidth limited di/dt signal exceeds the threshold and a trip signal is generated when a predetermined count is reached. Preferably, the trip signal is generated when the count reaches two within about a one second interval.

A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:

FIG. 1 is a schematic diagram of a circuit breaker in accordance with the invention.

FIG. 2 is a schematic diagram of another embodiment of the invention.

The invention will be described as applied to a miniature circuit breaker such as that described in U.S. Pat. No. 4,081,852 which is hereby incorporated by reference. That circuit breaker incorporates a thermal magnetic-trip device comprising a bimetal and a magnetic armature which unlatch a spring driven mechanism which opens the contacts in response to a persistent overcurrent and a short circuit current, respectively. The circuit breaker of U.S. Pat. No. 4,081,852 includes a ground fault detector which can be replaced by or be used in addition to the arcing fault detector which can be used in the present invention.

Turning to FIG. 1, the electrical system 1 protected by the circuit breaker 3 includes a line conductor 5 and a neutral conductor 7 connected to provide power to a load 9. The circuit breaker 3 includes separable contacts 11 which can be tripped open by a spring operated trip mechanism 15. The trip mechanism may be actuated by a conventional thermal-magnetic overcurrent detector 17. The thermalmagnetic overcurrent detector 17 includes a bimetal 19 connected in series with the line conductor 5. Persistent overcurrents heat up the bimetal 19 causing it to bend and release a latch 21 which actuates the trip mechanism 15. Short circuit currents through the bimetal 19 magnetically attract an armature 23 which alternatively releases the latch 21 to actuate the tip mechanism.

In addition to the thermal-magnetic overcurrent detector 17 which provides conventional protection, the circuit breaker 3 includes an arcing fault detector 25. This arcing fault detector includes a pair of leads 27 and 29 connected to sense the voltage across the bimetal 19. As the resistance of the bimetal 19 is known (for the exemplary bimetal, about 0.0025 ohms), this voltage is a measure of current flowing through the line conductor 5. The remainder of the arcing fault detector 25 comprises arc responsive circuit 31. This arc responsive circuit distinguishes step increases in the current through the conductor 5 indicative of arcing faults from transients caused by various loads such as thermostats in an appliance, dimmer switches and the like. To this end, the circuit 31 includes a band pass filter 33 having a low pass filter 35 formed by the resistor 37 and shunt capacitor 39, and a high pass filter 41 made up of the capacitor 43 and resistor 45. The band pass filter 33 produces a bandwidth limited di/dt signal which is applied to a window comparator implemented on an integrated circuit chip 47. A similar window comparator is disclosed in U.S. Pat. No. 5,224,006 which is hereby incorporated by reference. The chip 47 is powered by current drawn from the line conductor 5 through a solenoid 48 and a diode 49. This half wave current is filtered by a filter 51 to generate the 26 volt supply for the chip 47. When the bandwidth limited di/dt signal produced by the band pass filter 33 exceeds a positive threshold on positive half cycles or a negative threshold on negative half cycles, the SCR output of the chip 47 goes high. The gain of the amplifier of the chip 47 is set by the feedback resistor 53 and noise immunity is provided by the capacitor 54. Additional noise immunity is provided by the capacitor 55. The capacitor 56 bypasses ac signals on the COMN lead which is at one-half the supply voltage.

As mentioned, the arcing fault detector 25 further discriminates arcing faults from other types of disturbances in the electrical circuit 1 by counting the number of times that the bandwidth limited di/dt signal exceeds the thresholds within a given time interval. More specifically, the arc responsive circuit 31 generates a trip signal if the bandwidth limited di/dt signal exceeds the threshold twice within about one second. In order to perform this function, the circuit 31 includes a counter 57 and a timer 59 to time the interval. The counter 57 comprises a CMOS dual multivibrator 61 having one-half 63 configured as a MONOSTABLE and the other half 65 configured as a latch. The dual multivibrator 61 is powered from the 26 volt supply for the chip 47 by a five volt supply 67 generated by the voltage divider formed by resistors 69 and 71, and the capacitor 73. This five volt supply also releases the reset on the bistable 63 through the inverse reset input R when the circuit is energized, with a momentary delay provided by the capacitor 75 and resistor 74 to allow the circuit to stabilize. With the bistable 63 reset, its Q output is low to hold the latch 65 in the reset condition.

In the absence of an arcing fault, a pull-up resistor 76 holds the B trigger of bistable 63 at 5 volts. When the bandwidth limited di/dt signal exceeds either the positive or negative threshold and the SCR output of the chip 47 goes high, a level shifting transistor 77 is turned on. This pulls down the B trigger of the monostable 63 causing the Q output to go high. This in turn releases the reset on the latch 65. However, as the latch 65 is responsive to the negative going edges of pulses applied to its B trigger and the latch 67 was still in reset at the time the transistor 75 was turned on to cause such a pulse edge, the latch 67 does not respond to the first step increase in current detected by the window comparator in the IC 47. However, the second time that the bandwidth limited di/dt signal exceeds a threshold and the SCR output of the chip 47 goes high, the leading edge of the pulse created by turn-on of the transistor 77 toggles the latch 65. This causes the Q output of the latch 65 to go high to turn on an SCR 79. Turn on of the SCR 79 energizes the solenoid 48. This in turn unlatches the latch 21 to actuate the trip mechanism 15 and open the contacts 11. While current continually passes through the diode 49 to provide power to the circuit 31, this current is insufficient to actuate the solenoid 48. However with the SCR 79 turned on sufficient current passes through the solenoid 48 to actuate it. The latch 65 continues to energize the gate of the SCR 79 so that it is fired on successive half cycles of the half wave current drawn from the line conductor until the contacts 11 open. The gate signal from the latch is applied through the resistor 80. The capacitor 81 protects the SCR from noise. The SCR 79 is also protected by the metal oxide varistor 83.

The timer 59 comprises a capacitor 85 charged by the 5 volt power supply through the resistor 87. The node 89 between the capacitor 85 and resistor 87 is connected to the RC input of the monostable 63. When the first pulse is applied to the B trigger of the bistable 63, the capacitor 85 is discharged through an internal resistance connected to the RC input, and then the capacitor 85 begins to charge again. When the voltage on the capacitor 85 reaches a high threshold value, the monostable 63 is reset so that the Q output goes to 0 to reset the latch 65. If this occurs before detection of a second step increase in load current, the counter is reset. As mentioned above, the interval in the exemplary circuit is set to about one second. Hence, the band pass limited di/dt signal must exceed the threshold set by the window comparator on the chip 47 twice within the one second interval in order to generate a trip. These parameters are selected to distinguish the repetitive arcing fault from singular events such as switching of a thermostat and other such load responses. The interval is not made longer to minimize the risk that two such non-arcing events could generate a trip.

In order to preclude transients during start-up from being counted by the counter 57, the capacitor 75 is discharged through a diode 90 and resistor 91 when power is removed from the circuit 31. When power is restored and the voltage generated by the power supply approaches its operating value, a zener diode 93 passes current through the resistor 91 to back bias the diode 90 and permit the capacitor 75 to charge, thereby removing the reset from the monostable 63. The monostable is also reset when the power supply voltage drops to a value (about 13 volts in the exemplary circuit) at which the diode 90 is no longer back biased.

As shown in FIG. 2, the voltage across the bimetal 19, which is representative of load current, can be tapped by leads 95 for use by other response devices 97. Examples of response devices include a meter 99 providing a measure of the load current. The meter 99 need not be a part of the circuit breaker 3. Instead the circuit breaker need only have a pair of terminals 101 to which an external meter may be temporarily or permanently connected. Other types of response devices include an alarm comprising a relay 103 and a light 105 which would signal an overcurrent condition that, if permitted to persist, could result in a trip. Again, a response device in a form of an alarm could be either incorporated in the circuit breaker 3 or provided external to the circuit breaker and connected through the terminals 101.

While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.

Mrenna, Stephen A., Wood, David M., Mackenzie, Raymond W.

Patent Priority Assignee Title
10180447, Nov 03 2015 EATON INTELLIGENT POWER LIMITED Electric fuse current sensing systems and monitoring methods
10224155, May 06 2014 GOOGLE LLC Circuit breakers with integrated safety, control, monitoring, and protection features
10367347, Jul 29 2011 Leviton Manufacturing Company, Inc. Arc fault circuit interrupter
10401413, Apr 25 2014 Leviton Manufacturing Company, Inc. Ground fault detector
10598703, Jul 20 2015 EATON INTELLIGENT POWER LIMITED Electric fuse current sensing systems and monitoring methods
10641812, Apr 25 2014 Leviton Manufacturing Company, Inc. Ground fault detector
10656199, Jan 29 2008 Leviton Manufacturing Company, Inc. Self testing fault circuit apparatus and method
10931093, Jun 18 2014 Ellenberger & Poensgen GmbH Disconnect switch for interupption dc circuit between DC power source and load
11024474, May 06 2014 GOOGLE LLC Circuit breakers with integrated safety, control, monitoring, and protection features
11105864, Jul 29 2011 Leviton Manufacturing Co., Inc. Arc fault circuit interrupter
11112453, Jan 29 2008 Leviton Manufacturing Company, Inc. Self testing fault circuit apparatus and method
11143718, May 31 2018 EATON INTELLIGENT POWER LIMITED Monitoring systems and methods for estimating thermal-mechanical fatigue in an electrical fuse
11225157, Dec 29 2017 EV home charging unit and method of use
11289298, May 31 2018 EATON INTELLIGENT POWER LIMITED Monitoring systems and methods for estimating thermal-mechanical fatigue in an electrical fuse
5706154, Oct 04 1996 General Electric Company Residential circuit breaker with arcing fault detection
5745355, Jun 25 1996 Powerware Corporation Wireless selective tripping of AC power systems connected in parallel
5805397, Sep 29 1997 Eaton Corporation Arcing fault detector with multiple channel sensing and circuit breaker incorporating same
5805398, Sep 29 1997 Eaton Corporation Arc fault detector with immunity to tungsten bulb burnout and circuit breaker incorporating same
5815352, Sep 29 1997 Eaton Corporation Arc fault detector with limiting of sensed signal to shape response characteristic and circuit breaker incoprorating same
5818671, Oct 04 1996 General Electric Company Circuit breaker with arcing fault detection module
5825598, Feb 11 1997 Square D Company Arcing fault detection system installed in a panelboard
5831509, Oct 22 1997 Eaton Corporation Circuit breaker with sense bar to sense current from voltage drop across bimetal
5839092, Mar 26 1997 Square D Company Arcing fault detection system using fluctuations in current peaks and waveforms
5847913, Feb 21 1997 Square D Company Trip indicators for circuit protection devices
5886861, Sep 15 1997 Eaton Corporation Apparatus providing response to arc faults in a power distribution cable protected by cable limiters
5889643, Sep 29 1997 Eaton Corporation Apparatus for detecting arcing faults and ground faults in multiwire branch electric power circuits
5896262, Feb 26 1998 Eaton Corporation Arc fault detector with protection against nuisance trips and circuit breaker incorporating same
5946179, Mar 25 1997 Square D Company Electronically controlled circuit breaker with integrated latch tripping
5969920, Mar 27 1998 Eaton Corporation Test circuit for verifying operation of an arc fault detector
5969921, Jan 29 1998 Eaton Corporation Ground fault electrical switching apparatus for coordinating tripping with a downstream ground fault switch
5982593, May 12 1998 Eaton Corporation Circuit interrupter with test actuator for ground fault and arc fault test mechanisms
5986860, Feb 19 1998 Square D Company Zone arc fault detection
6002561, Jan 14 1998 ABB Schweiz AG Arcing fault detection module
6011680, Jan 19 1996 Siemens AG Connector, in particular a plug-in connector for TT and TN networks
6014297, Sep 29 1997 Eaton Corporation Apparatus for detecting arcing faults and ground faults in multiwire branch electric power circuits
6034611, Feb 04 1997 Square D Company Electrical isolation device
6037555, Jan 05 1999 ABB Schweiz AG Rotary contact circuit breaker venting arrangement including current transformer
6051954, May 30 1997 Canon Kabushiki Kaisha Charge control apparatus
6057997, Feb 26 1993 Eaton Corporation Circuit breaker responsive to repeated in-rush currents produced by a sputtering arc fault
6072317, Mar 27 1998 Eaton Corporation Plug-in multifunction tester for AC electrical distribution system
6087913, Nov 20 1998 ABB Schweiz AG Circuit breaker mechanism for a rotary contact system
6114641, May 29 1998 ABB Schweiz AG Rotary contact assembly for high ampere-rated circuit breakers
6128168, Jan 14 1998 General Electric Company Circuit breaker with improved arc interruption function
6166344, Mar 23 1999 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker handle block
6172584, Dec 20 1999 General Electric Company Circuit breaker accessory reset system
6175288, Aug 27 1999 ABB Schweiz AG Supplemental trip unit for rotary circuit interrupters
6184761, Dec 20 1999 ABB Schweiz AG Circuit breaker rotary contact arrangement
6188036, Aug 03 1999 General Electric Company Bottom vented circuit breaker capable of top down assembly onto equipment
6195241, Mar 13 1995 Squares D Company Arcing fault detection system
6204743, Feb 29 2000 General Electric Company Dual connector strap for a rotary contact circuit breaker
6211757, Mar 06 2000 ABB Schweiz AG Fast acting high force trip actuator
6211758, Jan 11 2000 ABB Schweiz AG Circuit breaker accessory gap control mechanism
6215379, Dec 23 1999 ABB Schweiz AG Shunt for indirectly heated bimetallic strip
6218917, Jul 02 1999 General Electric Company Method and arrangement for calibration of circuit breaker thermal trip unit
6218919, Mar 15 2000 General Electric Company Circuit breaker latch mechanism with decreased trip time
6225881, Apr 29 1998 ABB Schweiz AG Thermal magnetic circuit breaker
6229413, Oct 19 1999 ABB Schweiz AG Support of stationary conductors for a circuit breaker
6229679, Dec 15 1998 Pass & Seymour, Inc Arc fault circuit interrupter without DC supply
6232570, Sep 16 1999 General Electric Company Arcing contact arrangement
6232856, Nov 02 1999 General Electric Company Magnetic shunt assembly
6232857, Sep 16 1999 ABB Schweiz AG Arc fault circuit breaker
6232859, Mar 15 2000 GE POWER CONTROLS POLSKA SP Z O O Auxiliary switch mounting configuration for use in a molded case circuit breaker
6239395, Oct 14 1999 General Electric Company Auxiliary position switch assembly for a circuit breaker
6239398, Feb 24 2000 General Electric Company Cassette assembly with rejection features
6239677, Feb 10 2000 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker thermal magnetic trip unit
6239962, Feb 09 1999 ABB Schweiz AG ARC fault circuit breaker
6242993, Mar 13 1995 Square D Company Apparatus for use in arcing fault detection systems
6246556, Mar 13 1995 Square D Company Electrical fault detection system
6252365, Aug 17 1999 General Electric Company Breaker/starter with auto-configurable trip unit
6259048, May 29 1998 GE POWER CONTROLS POLSKA SP Z O O Rotary contact assembly for high ampere-rated circuit breakers
6259340, May 10 1999 ABB Schweiz AG Circuit breaker with a dual test button mechanism
6259996, Feb 19 1998 Square D Company Arc fault detection system
6262642, Nov 03 1999 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker rotary contact arm arrangement
6262872, Jun 03 1999 General Electric Company Electronic trip unit with user-adjustable sensitivity to current spikes
6268989, Dec 11 1998 ABB Schweiz AG Residential load center with arcing fault protection
6268991, Jun 25 1999 General Electric Company Method and arrangement for customizing electronic circuit interrupters
6275044, Jul 15 1998 Square D Company Arcing fault detection system
6281461, Dec 27 1999 General Electric Company Circuit breaker rotor assembly having arc prevention structure
6300586, Dec 09 1999 General Electric Company Arc runner retaining feature
6310307, Dec 17 1999 ABB Schweiz AG Circuit breaker rotary contact arm arrangement
6313425, Feb 24 2000 General Electric Company Cassette assembly with rejection features
6313641, Mar 13 1995 Square D Company Method and system for detecting arcing faults and testing such system
6313642, Mar 13 1995 Square D Company Apparatus and method for testing an arcing fault detection system
6317018, Oct 26 1999 GE POWER CONTROLS POLSKA SP Z O O Circuit breaker mechanism
6326868, Jul 02 1997 ABB Schweiz AG Rotary contact assembly for high ampere-rated circuit breaker
6326869, Sep 23 1999 ABB Schweiz AG Clapper armature system for a circuit breaker
6340925, Mar 01 2000 ABB Schweiz AG Circuit breaker mechanism tripping cam
6346868, Mar 01 2000 ABB Schweiz AG Circuit interrupter operating mechanism
6346869, Dec 28 1999 ABB Schweiz AG Rating plug for circuit breakers
6356426, Jul 19 1999 ABB Schweiz AG Residential circuit breaker with selectable current setting, load control and power line carrier signaling
6362711, Nov 10 2000 General Electric Company Circuit breaker cover with screw locating feature
6366188, Mar 15 2000 ABB Schweiz AG Accessory and recess identification system for circuit breakers
6366438, Mar 06 2000 ABB Schweiz AG Circuit interrupter rotary contact arm
6373010, Mar 17 2000 ABB Schweiz AG Adjustable energy storage mechanism for a circuit breaker motor operator
6373257, Dec 09 1998 Pass & Seymour, Inc. Arc fault circuit interrupter
6373357, May 16 2000 ABB Schweiz AG Pressure sensitive trip mechanism for a rotary breaker
6377144, Nov 03 1999 General Electric Company Molded case circuit breaker base and mid-cover assembly
6377427, Mar 13 1995 Square D Company Arc fault protected electrical receptacle
6379196, Mar 01 2000 ABB Schweiz AG Terminal connector for a circuit breaker
6380829, Nov 21 2000 ABB Schweiz AG Motor operator interlock and method for circuit breakers
6388213, Mar 17 2000 General Electric Company Locking device for molded case circuit breakers
6388547, Mar 01 2000 General Electric Company Circuit interrupter operating mechanism
6388849, Feb 14 2000 EATON INTELLIGENT POWER LIMITED ARC fault detector responsive to average instantaneous current and step increases in current and circuit breaker incorporating same
6396369, Aug 27 1999 ABB Schweiz AG Rotary contact assembly for high ampere-rated circuit breakers
6400245, Oct 13 2000 General Electric Company Draw out interlock for circuit breakers
6400543, Jun 03 1999 ABB Schweiz AG Electronic trip unit with user-adjustable sensitivity to current spikes
6404314, Feb 29 2000 General Electric Company Adjustable trip solenoid
6421217, Mar 16 2000 ABB Schweiz AG Circuit breaker accessory reset system
6429659, Mar 09 2000 General Electric Company Connection tester for an electronic trip unit
6429759, Feb 14 2000 General Electric Company Split and angled contacts
6429760, Oct 19 2000 General Electric Company Cross bar for a conductor in a rotary breaker
6448521, Mar 01 2000 ABB Schweiz AG Blocking apparatus for circuit breaker contact structure
6448522, Jan 30 2001 ABB Schweiz AG Compact high speed motor operator for a circuit breaker
6452767, Mar 13 1995 Square D Company Arcing fault detection system for a secondary line of a current transformer
6459059, Mar 16 2000 ABB Schweiz AG Return spring for a circuit interrupter operating mechanism
6459349, Mar 06 2000 ABB Schweiz AG Circuit breaker comprising a current transformer with a partial air gap
6466117, Mar 01 2000 ABB Schweiz AG Circuit interrupter operating mechanism
6466424, Dec 29 1999 General Electric Company Circuit protective device with temperature sensing
6469882, Oct 31 2001 ABB S P A Current transformer initial condition correction
6472620, Mar 17 2000 ABB Schweiz AG Locking arrangement for circuit breaker draw-out mechanism
6476335, Mar 17 2000 ABB Schweiz AG Draw-out mechanism for molded case circuit breakers
6476337, Feb 26 2001 ABB Schweiz AG Auxiliary switch actuation arrangement
6476698, Mar 17 2000 General Electric Company Convertible locking arrangement on breakers
6477021, Feb 19 1998 Square D Company Blocking/inhibiting operation in an arc fault detection system
6479774, Mar 17 2000 ABB Schweiz AG High energy closing mechanism for circuit breakers
6496347, Mar 08 2000 General Electric Company System and method for optimization of a circuit breaker mechanism
6522509, Jul 21 2000 EATON INTELLIGENT POWER LIMITED Arc fault detection in ac electric power systems
6531941, Oct 19 2000 General Electric Company Clip for a conductor in a rotary breaker
6532424, Mar 13 1995 Square D Company Electrical fault detection circuit with dual-mode power supply
6534991, Mar 09 2000 General Electric Company Connection tester for an electronic trip unit
6538862, Nov 26 2001 ABB Schweiz AG Circuit breaker with a single test button mechanism
6559743, Mar 17 2000 ABB Schweiz AG Stored energy system for breaker operating mechanism
6567250, Feb 19 1998 Square D Company Arc fault protected device
6586693, Mar 17 2000 ABB Schweiz AG Self compensating latch arrangement
6590482, Mar 01 2000 ABB Schweiz AG Circuit breaker mechanism tripping cam
6591482, Mar 13 1995 Square D Company Assembly methods for miniature circuit breakers with electronics
6621669, Feb 19 1998 Square D Company Arc fault receptacle with a feed-through connection
6625550, Feb 19 1998 Square D Company Arc fault detection for aircraft
6639168, Mar 17 2000 General Electric Company Energy absorbing contact arm stop
6639768, Dec 20 2001 EATON INTELLIGENT POWER LIMITED Arc fault detector immune to dimmer transients and a circuit breaker incorporating the same
6642832, Dec 08 2000 SENSATA TECHNOLOGIES MASSACHUSETTS, INC ARC responsive thermal circuit breaker
6678135, Sep 12 2001 General Electric Company Module plug for an electronic trip unit
6678137, Aug 04 2000 General Electric Company Temperature compensation circuit for an arc fault current interrupting circuit breaker
6710988, Aug 17 1999 General Electric Company Small-sized industrial rated electric motor starter switch unit
6714116, Jan 22 2002 The Wiremold Company Circuit breaker switch
6717786, Oct 30 2001 The Boeing Company Automatic voltage source selector for circuit breakers utilizing electronics
6724286, Feb 29 2000 General Electric Company Adjustable trip solenoid
6728085, May 21 2001 EATON INTELLIGENT POWER LIMITED Circuit breaker with shunt
6747535, Mar 27 2000 General Electric Company Precision location system between actuator accessory and mechanism
6782329, Feb 19 1998 Square D Company Detection of arcing faults using bifurcated wiring system
6804101, Nov 06 2001 ABB S P A Digital rating plug for electronic trip unit in circuit breakers
6806800, Oct 19 2000 ABB Schweiz AG Assembly for mounting a motor operator on a circuit breaker
6882258, Feb 27 2001 ABB Schweiz AG Mechanical bell alarm assembly for a circuit breaker
6919785, May 16 2000 ABB S P A Pressure sensitive trip mechanism for a rotary breaker
6995640, May 16 2000 General Electric Company Pressure sensitive trip mechanism for circuit breakers
7026728, Mar 27 2002 Siemens Aktiengesellschaft System for supplying electrical power to a load by a transmission path which has been split into two parts
7033186, Aug 09 2004 Autonetworks Technologies, Ltd.; Sumitomo Wiring Systems, Ltd.; Sumitomo Electric Industries, Ltd. Electrical connection box
7068480, Oct 17 2001 Square D Company Arc detection using load recognition, harmonic content and broadband noise
7151656, Oct 17 2001 Square D Company Arc fault circuit interrupter system
7193830, Apr 10 2003 American Power Conversion Corporation Surge suppressor
7253637, Sep 13 2005 SCHNEIDER ELECTRIC USA, INC Arc fault circuit interrupter system
7301742, Sep 12 2001 General Electric Company Method and apparatus for accessing and activating accessory functions of electronic circuit breakers
7460346, Mar 24 2005 Honeywell International Inc. Arc fault detection and confirmation using voltage and current analysis
7535234, Dec 22 2003 Leviton Manufacturing Co., Inc. ARC fault detector
7633399, Feb 27 2007 EATON INTELLIGENT POWER LIMITED Configurable arc fault or ground fault circuit interrupter and method
7907371, Aug 24 1998 Leviton Manufacturing Company, Inc. Circuit interrupting device with reset lockout and reverse wiring protection and method of manufacture
7924537, Jul 09 2008 LEVITON MANUFACTURING CO , INC Miswiring circuit coupled to an electrical fault interrupter
7925458, Oct 03 2002 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
7986148, Dec 22 2003 LEVITON MANUFACTURING CO , INC Arc fault detector
8054595, Aug 24 1998 Leviton Manufacturing Co., Inc. Circuit interrupting device with reset lockout
8130480, Aug 24 1998 Leviton Manufactuing Co., Inc. Circuit interrupting device with reset lockout
8373570, Oct 26 2010 EATON INTELLIGENT POWER LIMITED ARC fault detection method and apparatus
8564307, Oct 03 2002 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
8599523, Jul 29 2011 LEVITON MANUFACTURING COMPANY, INC Arc fault circuit interrupter
9347978, Oct 03 2002 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
9577420, Jul 29 2011 Leviton Manufacturing Company, Inc. Arc fault circuit interrupter
9659721, May 06 2014 GOOGLE LLC Circuit breakers with integrated safety, control, monitoring, and protection features
9709626, Jan 29 2008 Leviton Manufacturing Company, Inc. Self testing fault circuit apparatus and method
9759758, Apr 25 2014 Leviton Manufacturing Co., Inc. Ground fault detector
9966206, May 06 2014 GOOGLE LLC Circuit breakers with integrated safety, control, monitoring, and protection features
Patent Priority Assignee Title
4081852, Sep 11 1972 Westinghouse Electric Corporation Ground fault circuit breaker
5224006, Sep 26 1991 Westinghouse Electric Corp. Electronic circuit breaker with protection against sputtering arc faults and ground faults
5420740, Sep 15 1993 Eaton Corporation Ground fault circuit interrupter with immunity to wide band noise
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 07 1994MRENNA, STEPHEN A Eaton CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0072270542 pdf
Nov 07 1994WOOD, DAVID M Eaton CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0072270542 pdf
Nov 07 1994MACKENZIE, RAYMOND W Eaton CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0072270542 pdf
Nov 08 1994Eaton Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 28 1995ASPN: Payor Number Assigned.
Oct 28 1999M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 26 2003M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 20 2007M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 21 19994 years fee payment window open
Nov 21 19996 months grace period start (w surcharge)
May 21 2000patent expiry (for year 4)
May 21 20022 years to revive unintentionally abandoned end. (for year 4)
May 21 20038 years fee payment window open
Nov 21 20036 months grace period start (w surcharge)
May 21 2004patent expiry (for year 8)
May 21 20062 years to revive unintentionally abandoned end. (for year 8)
May 21 200712 years fee payment window open
Nov 21 20076 months grace period start (w surcharge)
May 21 2008patent expiry (for year 12)
May 21 20102 years to revive unintentionally abandoned end. (for year 12)