This invention relates to functionalized polymers and a method to obtain them comprising combing a living polymer or a polymer having a terminal halide with an alkylsilylpseudohalide.

Patent
   5580935
Priority
Jan 13 1995
Filed
Jan 13 1995
Issued
Dec 03 1996
Expiry
Jan 13 2015
Assg.orig
Entity
Large
28
10
EXPIRED
14. A polyisobutylene polymer functionalized with an alkylsilylpseudohalide compound consisting of one or more of the compounds having the formulae:
R3 SiX═Y═Z;
R3 SiX.tbd.Y;
Rn Si(X═Y═Z)4-n ; or
Rn Si(X.tbd.Y)4-n
wherein n=0, 1, 2, or 3; each R group is independently, hydrogen or a C1 to C30 linear, cyclic, or branched alkyl radical or aromatic radical or two or more of the R groups form a fused ring system or a hydrogenated fused ring system, provided that at least one of the R groups is an alkyl radical, and X, Y, and Z may be any combination of the elements carbon, nitrogen, sulfur, or oxygen, provided that at least one of X, Y, or Z is nitrogen, sulfur, or oxygen when X, Y and Z are present and at least one of X and Y is nitrogen, sulfur or oxygen when X and Y are present without Z.
1. A method for the functionalization of a polymer product comprising combining a living polymer or a polymer having a terminal halide with an alkylsilylpseudohalide consisting of one or more of the following compounds represented by the formulae:
R3 SiX═Y═Z;
R3 SiX.tbd.Y;
Rn Si(X═Y═Z)4-n ; or
Rn Si(X.tbd.Y)4-n
wherein n=0, 1, 2, or 3; each R group is independently, hydrogen or a C1 to C30 linear, cyclic, or branched alkyl radical or aromatic radical or two or more of the R groups form a fused ring system or a hydrogenated fused ring system, provided that at least one of the R groups is an alkyl radical, and X, Y, and Z may be any combination of the elements carbon, nitrogen, sulfur, or oxygen, provided that at least one of X, Y, or Z is nitrogen, sulfur, or oxygen when X, Y and Z are present and at least one of X and Y is nitrogen, sulfur or oxygen when X and Y are present without Z.
2. The method of claim 1 wherein the alkylsilylpseudohalide is represented by the formula: ##STR3## wherein R1, R2 and R3 are, independently, hydrogen or a C1 to C30 linear, cyclic, or branched alkyl radical or aromatic radical or two or more of R1, R2 and R3 may form a fused ring system or a hydrogenated fused ring system, provided that at least one of R1, R2 and R3 is an alkyl, and Q is a azide, isocyanate, thiocyanate, isothiocyanate or cyanide compound.
3. The method of claim 2 wherein R1, R2 and R3 are a C1 to C10 alkyl group.
4. The method of claim 2 wherein R1, R2 and R3 are the same C1 to C10 group.
5. The method of claim 2 wherein Q is N3, CN, NCO, or NCS.
6. The method of claim 1 wherein the living polymer is polyisobutylene.
7. The method of claim 1 wherein polymer is a halide terminated polymer and the alkylsilylpseudohalide is an azide.
8. The method of claim 1 wherein polymer is a halide terminated polymer and the alkylsilylpseudohalide is an isocyanate.
9. The method of claim 1 wherein polymer is a halide terminated polymer and the alkylsilylpseudohalide is an isothiocyanate.
10. The method of claim 1 wherein halide terminated polymer is terminated with chlorine.
11. The method of claim 1 further comprising contacting the polymer product produced by combining the living polymer and the alkylsilylpseudohalide with a reduction, oxidation, hydrolization or hydrogenation agent under reaction conditions.
12. The method of claim 1 further comprising contacting the polymer product produced by combining the living polymer and the alkylsilylpseudohalide with a reduction agent under reaction conditions.
13. The method of claim 1 further comprising contacting the polymer product produced by combining the living polymer and the alkylsilylpseudohalide with a hydrogenation agent under reaction conditions.

This invention relates to polymers containing functional groups and methods to obtain such polymers.

End functionalized polymers, such as end functionalized polyisobutylenes, are useful as modifiers in oleaginous compositions, as well as being important starting materials for preparation of useful materials such as polyurethanes and amphiphilic networks. Typically functionalized polymers, such as functionalized polyisobutylenes, are prepared by multistep processes that require isolation of the polymer in at least two steps. However, multistep processes are commercially undesirable.

With the advent of carbocationic living polymerization, there have been attempts to functionalize the living polymers. The extent of success of these attempts are directly linked to the type of monomer being polymerized. Simple one-pot (or in-situ) chain end functionalization of more reactive carbocationic monomers, like isobutyl vinyl ether, can occur using ionic nucleophilic additives, i.e. methanol, alkyl lithium, etc. (see M. Sawamoto, et al. Macromolecules, 20, 1 (1987).) However, chain end functionalization does not occur when these additives are added to the living polymerization of less reactive monomers such as isobutylene. (see Z. Fodor, et al, Polym. Prepr. Amer. Chem. Soc., 35(2), 492 (1994).) Addition of these reagents at the end of isobutylene polymerization resulted in the consumption of the catalyst and the formation of t-alkyl chloride chain ends on the polyisobutylene rather than the desired nucleophilic substitution. Consequently, a multi-step process would be required to functionalize a living polymer from these less reactive monomers. Even when one considers that allylic chain ends can be provided by an in-situ functionalization of living polyisobutylene by adding allyltrimethylsilanes at the end of polymerization, (see EPA 0 264 214 or B. Ivan, et al, J. Polym. Sci., Part A, Polym. Chem., 28, 89 (1990) this functionalization limits the choice of chemistries to introduce functional groups, however. Thus, there is a need in the art to provide single and two or three step processes to provide functionalized living polymers comprising less reactive cationic monomers, such as isobutylene.

Electrophilic displacement reactions have thus far not been considered a viable option with living polymers since it is thought that the concentration of active chain ends is too small for further reaction. While such displacements have been carried out with non-polymeric halides, such as 1-adamantyl, there is no indication that such displacements will be successful with living polymers, such as polyisobutylene.

This invention relates to functionalized polymers, and a method to obtain them comprising combining a living polymer having a terminal cation with an alkylsilylpseudohalide. For the purposes of this invention, "living" cationic polymerization is defined as polymerization conditions under which control of molecular weight is determined by DPn =[M]/[I] (where DP is the number average degree of polymerization, [M] is the monomer concentration, and [I] is the initiator concentration), leading to a linear relationship between Mn and polymer yield within the scope of experimental error. Chain transfer as well as termination are essentially absent during and following the polymerization through a time, preferably of 2 to 3 hours or more, more preferably at least 5 minutes, in which functionalization can be effected. By "essentially absent" is meant 15% or less of the chains are permanently affected by chain transfer or termination. Thus a living polymer is a polymer having an active chain end that has not undergone termination or chain transfer. This invention further relates to novel compositions produced during and by the method above. To determine whether less than 15% of the polymer has undergone chain termination or transfer plot the theoretical Mn versus the yield, then compare the Mn value as measured by GPC, using calibration based on polyisobutylene standards. If the measured Mn value falls more than 15% above or below the line describing calculated Mn versus yield, then the system has more than 15% chain transfer or termination.

FIG. 1 illustrates how initiation sites control the number of functional chain ends.

This invention relates to functionalized polymers, preferably functionalized living polymers, even more preferably functionalized living carbocationic polymers. This invention further relates to a method to obtain such functionalized polymers comprising contacting the polymer with one or more alkylsilylpseudohalides under reaction conditions. In a preferred embodiment the alkylsilylpseudohalide is added to a living isobutylene polymerization just after 100% conversion of monomer to polymer. Furthermore this invention may be used to prepare functionalized narrow molecular weight distribution (Mw/Mn) polymers in a single reactor or in sequential reactors.

In a preferred embodiment the polymer to be combined with the alkylsilylpseudohalide is preferably a polymer comprising one or more monomers selected from olefinic, α-olefinic, di-substituted olefinic or styrenic monomers. Preferred monomers include any hydrocarbon monomer that is cationically polymerizable, i.e. capable of stabilizing a cation or propagating center because the monomer contains an electron donating group. A suitable list of these monomers includes, but not limited to, those monomers described in J. P. Kennedy, Cationic Polymerization of Olefins: A Critical Inventory, John Wiley and Sons, New York, 1975, which is incorporated by reference herein. Particularly preferred monomers include one more of olefins, α-olefins, disubstituted olefins, isoolefins, styrenics and/or substituted styrenics containing 1 to 20 carbon atoms, more preferably 1 to 8, even more preferably 2 to 6 carbon atoms. Examples of preferred monomers include styrene, para-alkylstyrene, paramethylstyrene, alpha-methyl styrene, isobutylene, 2-methylbutene, 2-methylpentene, isoprene, butadiene and the like. A particularly preferred monomer combination comprises isobutylene and para-methyl styrene, while a particularly preferred homopolymer is polyisobutylene.

The polymer to be combined with the alkylsilylpseudohalide may be any molecular weight, including Mn's from as low as 200, or 500 to one million or more. Depending on the end use desired, various Mn's are preferred. For example, for use in various oleaginous composition, such as additives and lubricants, Mn's of about 300 to 10,000 are preferred, with Mn's of about 450 to about 4,000 being especially preferred. In alternate embodiments Mn's of about 500 to about 2200 are preferred, Mn's of 500 to about 1300 are more preferred, while Mn's of between about 450 to about 950 are particularly preferred. In additional embodiments, functionalized polymers of higher molecular weights are preferred. For example, functionalized polymers with Mn's of up to 300,000 or more may be used in the tire and rubber industry as base polymers or modifying polymers for blending.

Methods to obtain living polymers that may be combined with the alkylsilylpseudohalide include those methods disclosed in EPA 206 756; U.S. Pat. Nos. 5,350,819; 5,169,914; 4,910,321; and U.S. Ser. No. 08/128,449 filed Sep. 28, 1993, all of which are incorporated by reference herein. Halide terminated polymers may be prepared by non-living polymerization techniques. Examples include U.S. Pat. Nos. 4,276,394; 4,524,188; 4,342,849; and 4,316,973, which are incorporated by reference herein. In a particularly preferred embodiment dimethyl aluminum chloride combined with any tertiary alkyl initiator in a solvent system having a dielectric constant between about 2.5 and about 4.0 is selected to produce the living polymer.

Living polymerization may be achieved using a variety of methods, some of which are described in U.S. Pat. Nos. 5,350,819; 5,169,914; and 4,910,321. General conditions under which living polymerizations can be achieved for isobutylene include:

(1) a catalyst comprising an initiator of a tertiary alkyl halide, a tertiary aralkyl halide, a tertiary alkyl ether, a tertiary aralkyl ether, a tertiary alkyl ester, a tertiary aralkyl ester, or the like;

(2) a Lewis acid co-initiator which typically comprises a halide of titanium, boron or aluminum;

(3) a proton scavenger and/or electron donor;

(4) a solvent whose dielectric constant is selected considering the choice of the Lewis acid and the monomer in accord with known cationic polymerization systems; and

(5) monomers.

A proton scavenger is defined in U.S. Pat. No. 5,350,819. Electron donors have been defined in EPA 341 012. Both of which are incorporated by reference herein.

Methods to obtain polymers having a terminal halide group include using a system of initiator-transfer agents, called inifers. Using inifers for isobutylene polymerization, one can prepare polymer chains terminated in a halide group. These are referred to as telechelic polymers. A detailed discussion of the uses for these inifers and the types of telechelic polymers prepared is found in U.S. Pat. Nos. 4,316,673 and 4,342,849, which is incorporated by reference herein. Such polyisobutylenes terminated with tertiary halides, typically tertiary chlorines, may be combined with the silyl enol ethers of this invention to produce functionalized polymer under the methods described herein. These pre-made halogenated polymers may be thought of as a substitute for the initiator and monomer present in a living polymerization framework and are treated as equivalent, in terms of end group functionality, to the polymers prepared by the living polymerization of isobutylene. Typically these halogenated polymers are added to the catalyst system by dissolving the polymer in solvent of choice, much the same way that monomer and initiator are added to a living polymerization charge. The stoichiometry of the catalyst ingredients are calculated assuming that the pre-made polymer is a substitute for the initiator, i.e. one halide terminus is equal to one initiator site. All ingredients are added and equilibrated at the desired temperature before the Lewis acid is introduced. After an equilibration time of 0.5 to 20 minutes, the mixture is considered as the equivalent to the living polymer prepared under these catalyst conditions at complete monomer conversion. Functionalization proceeds according to the method described herein.

A telechelic polymer is defined to be an oligomer with known functional end groups in accordance with the definition given in H. G. Elias, Macromolecules, Plenum Press, New York, 1984 Vol. 1, pg 6, which is incorporated by reference herein.

Preferred alkylsilylpseudohalides are those compounds that contain at least one alkyl group, at least one pseudohalide and at least one Si atom, provided that the Si atom is bound to the pseudohalide. Preferred alkyl pseudohalides are represented by the following formulae:

R3 SiX═Y═Z;

R3 SiX.tbd.Y;

Rn Si(X═Y═Z)4-n ; or

Rn Si(X.tbd.Y)4-n

wherein n=0, 1, 2, or 3; each R group is independently, hydrogen or a C1 to C30 linear, cyclic, or branched alkyl radical or aromatic radical or two or more of the R groups form a fused ring system or a hydrogenated fused ring system, provided that at least one of the R groups is an alkyl radical, and X, Y, or Z may be any combination of the elements carbon, nitrogen, sulfur, or oxygen, provided that at least one of X, Y, or Z is nitrogen, sulfur, or oxygen when X, Y and Z are present and at least one of X and Y is nitrogen, sulfur or oxygen when X and Y are present without Z.

For the purposes of this invention and the claims thereto a pseudohalide is any compound that is an azide, isocyanate, thiocyanate, isothiocyanate or a cyanide. In a preferred embodiment the pseudohalide is N3, NC, CN, NCS, NCO or SCN compound.

In another preferred embodiment the alkylsilylpseudohalide is represented by the formula: ##STR1## wherein R1, R2 and R3 are, independently, hydrogen or a C1 to C30 linear, cyclic, or branched alkyl radical or aromatic radical or two or more of R1, R2 and R3 may form a fused ring system or a hydrogenated fused ring system, provided that at least one of R1, R2 and R3 is an alkyl, and Q is a pseudohalide. In another preferred embodiment R1, R2 and R3 are a C1 to C10 alkyl group, preferably the same C1 to C10 group. Further in another preferred embodiment Q is CN, NCO, or NCS.

Techniques under which the living polymer or a polymer terminated with a halogen and the alkylsilylpseudohalide are combined are typical conditions known to those of ordinary skill in the art, such as, but not limited to, suspending the pseudohalide in a solvent and thereafter combining with the neat, suspended or dissolved living polymer. The neat pseudohalide may also be directly added to the neat, suspended or dissolved living polymer.

The number of functional groups on the polymeric pseudohalides is determined by the number of initiator sites in the initiator. For example, initiation of isobutylene from 2-chloro-2,4,4-trimethylpentane leads to a polymer with one functional group per chain. Whereas 1,3,5-(1-chloro-1-methylethyl)benzene will produce a polymer with three functional groups per chain. The molecular weight of the polymer chain can be manipulated by varying the ratio of the concentrations of the monomer to the initiator as in most living polymerizations. See for example U.S. Pat. Nos. 5,350,819; 5,169,914; 4,910,321 and U.S. Ser. No. 128,449 filed Sep. 28, 1993, which are incorporated by reference herein.

In a preferred embodiment as little as one equivalent of alkylsilylpseudohalide per chain end is sufficient to carry out the functionalization. Greater amounts of pseudohalide are of course useful, however the preferred ranges of pseudohalide to chain end are 0.5 to 20 equivalents per chain end, preferably 1 to 5 equivalents per chain end, even more preferably 1 to 2 equivalents per chain end. (Chain ends are determined by ascertaining the number of initiation sites per initiator molecule and multiplying that number by the number of initiator molecules present.) Typically the reaction is rapid and quantitative at various temperatures. FIG. 1 helps visualize the determination of the number of initiator sites, which in turn leads to the number of functional chain ends per polymer as determined by the initiator used.

The alkylsilylpseudohalide may be added neat or more preferably as a solution of the pseudohalide in the chosen solvent for the polymerization. The addition may be singular and immediate or may be a more slowly controlled, metered addition. Additionally, the pseudohalide may be added with additional Lewis acid catalyst, proton trap, electron donor, or any combination thereof which are typical components of the aforementioned living polymerization systems. In a preferred embodiment the Lewis acid does not irreversibly react with the pseudohalide.

Once the living polymer has been reacted with the pseudohalide, it may be used in that form or modified to form another functional group by known chemistries. For example the functional group may be reduced, oxidized, hydrogenated and/or hydrolyzed. These reactions may be performed in the same reactor since isolation of the pseudohalide containing polymer is optional. For example, alcohol, lithium aluminum hydride, water and sodium borohydride may all be employed to alter the functional group to another form. To illustrate this point the conversion of an azide group is illustrated. This illustration does not intend to limit the scope of the instant invention. A polymer containing an azide end group may be reduced with lithium aluminum hydride to an amine group. A variety of other reducing agents many of which are described in J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in Organic Synthesis, VCH Publishers, New York, 1991, which is incorporated by reference herein, may also be used to reduce the azide to an amine. Other means of converting an azide to an amine or to other functional groups are commonly known in the art. (See, for example, R. C. Larock, Comprehensive Organic Transformations, VCH Publishers, New York, 1989 which is incorporated by reference herein.) Similar constructions for functional group conversions could be constructed for other pseudohalide chain ended polymers. For a list of additional many of the possible modifications see page 56, et seq, of U.S. Ser. No. 992,516, filed Dec. 17, 1992 and page PCT WO 9413718, both of which are incorporated by reference herein.

A class of preferred products of this invention have a narrow molecular weight distribution (Mw/Mn), preferably of about 4 or less, more preferably of about 2.5 or less, even more preferably 1.75 or less. Likewise the methods described above produce polymers having a greater degree of functionalization than previously available by commercially viable processes. In a preferred embodiment the degree of functionalization is about 70% or more, preferably 80% or more, even more preferably 90% or more, as determined by proton NMR.

Another preferred class of products produced according to this invention may be used as starting materials for other desired products such as polyurethanes, amphiphilic networks or epoxy resins. For more information on using such starting materials for polyurethane or epoxy synthesis please see U.S. Pat. Nos. 4,939,184 and 4,888,389, and examples in U.S. Pat. Nos. 4,942,204 and 4,429,099 which are incorporated by reference herein in their entirety.

In a particularly preferred embodiment the functionalized polymer is a functionalized polyisobutylene polymer. In particular polyisobutylene of Mn's of between about 200 and 3000, preferably between about 450 and about 2200, more preferably between about 450 and about 1300, even more preferably between about 500 and about 950 are particularly preferred especially when functionalized with an azide to convert to an amine functional group or when functionalized with a thiocyanate to be converted into a thiocarbamate. These preferred polymers and other similarly functionalized polymers can be used in a variety of oleaginous compositions as modifiers. Preferred uses include lube oil, additive and dispersant uses. For an exhaustive list of the many possible uses of functionalized polymers see U.S. Ser. No. 992,516, filed Dec. 17, 1992 and PCT WO 9413718, both of which are incorporated by reference herein.

Preferred products produced by the methods described above include those compounds represented by the formulae: ##STR2## wherein P is the polymer chain and R1, R2, X, Y, and Z are as described above.

A listing of the many pseudohalide containing polymers that can be prepared using the method described herein include those disclosed in U.S. Pat. No. 5,032,653.

Molecular weight (Mw and Mn) were measured by Gel Permeation Chromotography using a Waters 150 gel permeation chromatograph equipped with a differential refractive index (DRI) detector and polystyrene standards. The numerical analyses were performed using a commercially available standard Gel Permeation Software package.

Percent functionalization is measured by proton NMR on a 250 MHz Bruker AC-250 Spectrometer from CDCl3 solutions.

In a glass reactor, cooled to -30°C or below, living polymer (about 1400 Mn) was made under the following conditions:

[Isobutylene monomer]=3.17 mol/l;

[Initiator]=0.137 mol/l of either 2-chloro-2,4,4-trimethylpentane (TMPCl) or 3-t-butyl-1,5-bis(1-chloro-1-methylethyl)benzene (BClME);

[Proton scavenger]=0.011 mol/l of di-tertbutylpyridine;

[Co-initiator]=0.067 mol/l of TiCl4 ;

Solvent=60/40 volume/volume//hexane/methylene chloride;

Time=five minutes at -80°C ten minutes at -30°C and 5 minutes at -50°C

Once monomer conversion reached 100% the alkylsilylpseudohalide (ASPH) was added, at 1.5 equivalents per initiation site, (i.e. 0.21 mol/l for reactions initiated with 2-chloro-2,4,4-trimethylpentane (TMPCl) and 0.41 mol/l for reactions initiated with 3-t-butyl-1,5-bis(1-chloro-1-methylethyl)benzene (BClME)), either neat or in at least 50 volume percent solution of the pseudohalide in the polymerization solvents was added in one addition to the polymerization mixture. The resulting mixture was allowed to react at the polymerization temperature or permitted to warm toward ambient temperature for at least one hour. The reaction was then quenched with methanol addition ([MeOH]=four times the [TiCl4 ]). Thereafter the polymer was separated with a deionized water wash until neutral and the solvents were removed by vacuum. The data are listed in Table

TABLE 1
______________________________________
Lewis
Run Acid ASPH % Funct.
Initiator
Temp (°C.)
______________________________________
1 TiCl4
Me3 SiN3
90 BClME -80 to RT
2 TiCl4
Me3 SiN3
>95 BClME -80 to RT
3 TiCl4
Me3 SiN3
>95 TMPCl -50
4 TiCl4
Me3 SiN3
>95 TMPCl -50 to RT
5 BCl3
Me3 SiN3
>90 TMPCl -50
6 TiCl4
Me3 SiN3
100 TMPCl -50
7 TiCl4
Me3 SiN3
>95 TMPCl -30
8 TiCl4
Me3 SiCN
0 TMPCl -30
9* TiCl4
Me3 SiNCS
>95 TMPCl -50
______________________________________
%Funct = percent functionalization
ASPH = alkylsilylpseudohalide
BClME = 3t-butyl-1,5-bis(1-chloro-1-methylethyl)benzene
TMPCl = 2chloro-2,4,4-trimethylpentane
RT = room temperature
*reaction was two hours not one hour.

All references, testing procedures and priority documents are incorporated by reference herein. As is apparent from the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby.

Shaffer, Timothy D.

Patent Priority Assignee Title
6444768, Nov 15 1999 ExxonMobil Chemical Patents INC Production of polyisobutylene copolymers
6462141, Mar 23 1999 Korea Research Institute of Chemical Technology Diene copolymer substituted by alkoxy silane, and organic and inorganic hybrid composition comprising the same
6620898, Nov 15 1999 ExxonMobil Chemical Patents Inc. Production of polyisobutylene copolymers
6858690, Nov 15 1999 ExxonMobil Chemical Patents INC Process for polymerizing cationically polymerizable monomers
6969744, Jun 19 2003 University of Southern Mississippi Living and quasiliving cationic telechelic polymers quenched by N-substituted pyrrole and methods for their preparation
7576161, Jun 19 2003 Chevron Oronite Company LLC; The University of Southern Mississippi Process for preparing terminally functionalized living and quasiliving cationic telechelic polymers
7705090, Aug 20 2004 University of Southern Mississippi Method for preparing polyolefins containing a high percentage of exo-olefin chain ends
7709580, Aug 20 2004 University of Southern Mississippi Method for preparation of polylefins containing exo-olefin chain ends
7816459, Dec 30 2005 University of Southern Mississippi Method for preparing polyolefins containing vinylidine end groups using polymeric nitrogen compounds
8013073, Dec 30 2005 University of Southern Mississippi Method for preparing polyolefins containing vinylidine end groups using nonaromatic heterocyclic compounds
8063154, Jun 24 2008 University of Southern Mississippi Preparation of exo-olefin terminated polyolefins via quenching with alkoxysilanes or ethers
8133954, Oct 22 2008 Chevron Oronite Company LLC Production of vinylidene-terminated and sulfide-terminated telechelic polyolefins via quenching with disulfides
8344073, Jan 16 2009 University of Southern Mississippi Functionalization of polyolefins with phenoxy derivatives
8383760, Oct 22 2008 Chevron Oronite Company LLC Production of vinylidene-terminated and sulfide-terminated telechelic polyolefins via quenching with disulfides
8394897, Mar 25 2008 Chevron Oronite Company LLC Production of vinylidene-terminated polyolefins via quenching with monosulfides
8394898, Jul 31 2009 The University of Southern Mississippi In situ formation of hydroxy chain end functional polyolefins
8492491, Jun 10 2010 Chevron Oronite Company LLC Methods for producing telechelic polyolefins from terpene initiators
8507641, Oct 22 2008 Chevron Oronite Company LLC Production of vinylidene-terminated and sulfide-terminated telechelic polyolefins via quenching with disulfides
8530586, Aug 20 2004 Chevron Oronite Company LLC; The University of Southern Mississippi Method for preparing polyolefins containing a high percentage of exo-olefin chain ends
8552122, Mar 31 2009 University of Southern Mississippi Amine-terminated telechelic polymers and precursors thereto and methods for their preparation
8592527, Jun 14 2010 University of Southern Mississippi Vinyl ether end-functionalized polyolefins
8895672, Oct 22 2008 Chevron Oronite Company LLC Production of vinylidene-terminated and sulfide-terminated telechelic polyolefins via quenching with disulfides
8937134, Jun 14 2010 University of Southern Mississippi Vinyl ether end-functionalized polyolefins
8969484, Jul 08 2011 Chevron Oronite Company LLC Methods of producing mono- and multi-functional polymers from terpene-based initiators
9150672, Jul 31 2009 University of Southern Mississippi In situ formation of hydroxy chain end functional polyolefins
9187581, Jun 10 2010 Chevron Oronite Company LLC Methods for producing telechelic polyolefins from terpene initiators
9315595, Mar 31 2009 University of Southern Mississippi Amine-terminated telechelic polymers and precursors thereto and methods for their preparation
9650449, Jan 16 2009 The University of Southern Mississippi Functionalization of polyolefins with phenoxy derivatives
Patent Priority Assignee Title
3775386,
4882384, Feb 01 1988 SHELL ELASTOMERS LLC Modified block copolymers
4888389, Feb 05 1985 University of Akron Amphiphilic polymers and method of making said polymers
4939184, Mar 07 1989 University of Akron, The Polyurethane foam
5032653, Jun 28 1988 EXXON CHEMICAL PATENTS INC , A CORP OF DE Direct synthesis by cationic polymerization of nitrogen-containing polymers
DE4018523,
EP243124,
EP264214,
EP295811,
WO9413706,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 13 1995Exxon Chemical Patents Inc.(assignment on the face of the patent)
Jan 13 1995SHAFFER, TIMOTHY D Exxon Chemical Patents INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0073160307 pdf
Date Maintenance Fee Events
May 19 2000ASPN: Payor Number Assigned.
May 19 2000M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 29 2004M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 09 2008REM: Maintenance Fee Reminder Mailed.
Dec 03 2008EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Dec 03 19994 years fee payment window open
Jun 03 20006 months grace period start (w surcharge)
Dec 03 2000patent expiry (for year 4)
Dec 03 20022 years to revive unintentionally abandoned end. (for year 4)
Dec 03 20038 years fee payment window open
Jun 03 20046 months grace period start (w surcharge)
Dec 03 2004patent expiry (for year 8)
Dec 03 20062 years to revive unintentionally abandoned end. (for year 8)
Dec 03 200712 years fee payment window open
Jun 03 20086 months grace period start (w surcharge)
Dec 03 2008patent expiry (for year 12)
Dec 03 20102 years to revive unintentionally abandoned end. (for year 12)