A method of thawing of cryosurgical apparatus, and in particular a cryosurgical probe, subsequent to a freezing process involves the interuption of the cryogen supply to the probe followed by the introduction of a warmed inert gas. The gas is circulated within the probe cryogen circulation system to affect thawing of the apparatus so that the probe may easily be withdrawn from the body. The gas, which may be nitrogen, is preferably passed through a heat exchange arrangement before being introduced into the probe.

Patent
   5632743
Priority
Nov 05 1991
Filed
May 31 1994
Issued
May 27 1997
Expiry
May 27 2014
Assg.orig
Entity
Large
7
18
EXPIRED
1. A method of thawing a cryosurgical apparatus, comprising the steps of:
(a) supplying a liquid cryogen to the apparatus through a first path of an internal circulation system thereof to a tip area to effect cooling thereof by vaporization of the liquid cryogen;
(b) interrupting the supply of cryogen to the apparatus when surgery is complete;
(c) after (b), injecting a heated inert gas of predetermined temperature through the first path of the internal circulation system, and purging the cryogen gas remaining in the apparatus through a second path of the internal circulation system;
(d) circulating the heated inert gas through the first and second paths of the circulation system to effect thawing of the apparatus; and
(e) exhausting the heated inert gas from the apparatus through the second path of the internal circulation system.
2. A method according to claim 1, wherein the step of injecting heated inert gas comprises the step of injecting nitrogen through the first path of the internal circulation system.
3. A method according to claim 1, wherein the step of injecting heated inert gas comprises the step of providing a heat exchanging arrangement for heating the inert gas prior to passage through the first path of the internal circulation system.
4. A method according to claim 1, and comprising the steps of providing a delivery tube located along a probe axis for supplying the inert gas to the tip area of the apparatus.

This application is a national stage application, according to Chapter II of the Patent Cooperation Treaty. This application claims the priority dates of Nov. 5, 1991, U.K. Patent No. 9123413.8.

The invention concerns cryosurgical apparatus, and relates in particular to a method of thawing a cryosurgical probe subsequent to carrying out a freezing process, in order that the probe may be withdrawn.

Following an operation involving the destruction of tumourous tissue by freezing with a cooled probe inserted into the body, it is necessary to thaw or allow to be thawed the tissue immediately surrounding the probe in order that the latter may be withdrawn. Such thawing is commonly carried out by one of two principal methods. The first involves the use of latent body heat. This has the serious disadvantage that the process is extremely slow, thereby significantly increasing operation times. The second method utilises electrical heating of the probe tip. Although this is a considerably faster method, there are inherent safety problems which necessitate the utmost care in producing and using equipment of this kind.

The invention seeks to mitigate or obviate the above mentioned difficulties by providing a relatively fast yet safe method of raising the temperature of the probe tip on completion of an operation.

According to the invention there is provided a method of thawing cryosurgical apparatus of a type wherein a liquid cryogen is supplied to the apparatus through a first path of an internal circulation system thereof to a tip area to effect cooling thereof by vaporisation of the cryogen and the resultant cryogen gas is removed from the apparatus through a second path of the internal circulation system, in which method the supply of cryogen to the apparatus is interrupted when surgery is complete, whereupon a supply of an inert gas is provided, the latter is heated to a required predetermined temperature, and the heated inert gas is circulated through the first and second paths of the circulation system to effect thawing of the apparatus.

The method is particularly suited to liquid nitrogen cooled probes, such as the kind in which the cryogen is delivered to the probe tip via a delivery tube located along the probe axis and returned via an annular gap within the probe housing surrounding the delivery tube.

Preferably the inert gas is nitrogen, The gas may be heated by feeding it to the apparatus via a heat exchanging arrangement,

The invention will be described in more detail by way of example only with reference to the accompanying drawing which is a schematic block diagram showing a cryosurgical probe arrangement for utilising the thawing method of the invention.

The figure shows an arrangement containing four cryosurgical probes 10, 12, 14 and 16. Each probe is connected by a delivery line 20, 22, 24 and 26 to a supply vessel 28 of a liquid cryogen, such as liquid nitrogen.

The lines 20, 22, 24 and 26 are also in communication with a further delivery line 30 as described in more detail hereinafter.

The system provides a supply 40 of an inert gas, in the present example, nitrogen. Gas may be supplied through a delivery line 42 to a heat exchanging arrangement 44, and thus to the cryogen circulation systems of the probes 10, 12, 14 and 16 via the line 30 and the lines 20, 22, 24 and 26.

Each of the probes 10, 12, 14 and 16 may be supplied with the cryogen from the supply vessel 28 in any convenient manner, such as via a delivery tube located along the respective probe longitudinal axis, as is well known in the art. Following the freezing of the probe tip, the cryogen is then removed, for example via an annular gap within a housing of the probe surrounding the delivery tube, to a suitable exhaust line on the probe.

When the operation is complete and it is required to withdraw the probe, the supply of cryogen from the vessel 28 is shut off by means of a suitable valve arrangement. Gas is passed from the supply 40 through the line 42 to the heat exchanger 44. On passing through the heat exchanger, the gas is warmed to the required predetermined temperature. From the heat exchanger 44 the gas supply is passed through the line 30 and then via suitable valve systems 48 to the supply line of the appropriate probe. The warmed nitrogen is thereby circulated through the probe body and tip whereby it provides localised heat within the probe tip. The gas may then be exhausted through the existing probe cryogen outlet lines.

Any cryogen remaining within the probe circulation system is automatically purged by the incoming gas supply.

It will be appreciated that control and monitoring of the apparatus can be achieved by the incorporation of any appropriate valves, gauges, regulators or other instrumentation as is well known to the person skilled in the art. Such systems are not therefore described in detail herein.

There is therefore described a particularly convenient way of raising the temperature of the probe body. The method naturally permits suitable control of the speed of the thawing process by appropriate adjustments to the gas supply. The use of nitrogen gas in the given example also obviates problems of the formation of ice deposits within the cryogen circulation system on re-cooling which could arise if, for example, a liquid was used as the purging and heat transfer medium.

Clarke, Brian K. R.

Patent Priority Assignee Title
10080647, Oct 08 2010 Conmed Corporation System and method for securing tissue to bone
11633224, Feb 10 2020 ICECURE MEDICAL LTD. Cryogen pump
6306129, Sep 22 1997 Ethicon, Inc Cryosurgical system and method
7195625, Dec 11 2002 Cryocor, Inc. Catheter system for performing a single step cryoablation
7846154, Dec 06 2004 Galil Medical Ltd. Gas-heated gas-cooled cryoprobe utilizing electrical heating and a single gas source
8080005, Jun 10 2010 ICECURE MEDICAL LTD.; ICECURE MEDICAL LTD Closed loop cryosurgical pressure and flow regulated system
8480664, Jan 15 2009 Boston Scientific Scimed, Inc. Controlling depth of cryoablation
Patent Priority Assignee Title
3613689,
4018227, Oct 09 1975 Cabot Medical Corporation Cryosurgical instrument
4063560, Apr 22 1975 SPEMBLY MEDICAL, LTD Cryosurgical instrument
4206760, Jun 30 1978 Cabot Medical Corporation Bearing coupling for enabling the tip of a cryosurgical instrument to be rotated independently of inlet and exhaust tubes
4275734, Aug 12 1977 Valleylab, Inc. Cryosurgical apparatus and method
4278090, Jul 15 1978 Erbe Elektromedizin KG Cryosurgical device
4280499, Jun 23 1978 A S M O T , S R L Oryotherapy apparatus
4348873, Sep 25 1977 Kabushiki Kaisha Kurio-Medikaru Apparatus for refrigeration treatment
4377168, Feb 27 1981 Wallach Surgical Instruments, Inc. Cryosurgical instrument
4519389, Mar 23 1981 Thermoelectric cryoprobe
4946460, Apr 26 1989 CRYO INSTRUMENTS INC , BERKELEY, CA A CORP OF CA; CRYO INSTRUMENTS, INC , BERKELEY, CA A CORP OF CA Apparatus for cryosurgery
5108390, Nov 14 1988 Medtronic Cryocath LP Flexible cryoprobe
5224943, Dec 17 1988 SPEMBLY MEDICAL LTD Cryosurgical apparatus
28657,
SU1217377,
SU8608686314,
SU8629689645,
WO8303961,
/////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 31 1994Spembly Cryosurgery Limited(assignment on the face of the patent)
Sep 25 1995CRYOGENIC TECHNOLOGY LIMITEDSTRONGMITE LIMITEDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0078130731 pdf
Nov 17 1995STRONGMITE LIMITEDSpembly Cryosurgery LimitedCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0078170163 pdf
Jul 08 1998NMT NEUROSCIENCES IP INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Jul 08 1998NITINOL MEDICAL TECHNOLOGIES, INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Jul 08 1998NMT NEUROSCIENCES US INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Jul 08 1998NMT HEART, INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Jul 08 1998CORDIS INNOVASIVE SYSTEMS, INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Jul 08 1998NMT INVESTMENTS INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Jul 08 1998NMT NEUROSCIENCES INTERNATIONAL INC J H WHITNEY & CO SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0093750116 pdf
Oct 20 1999J H WHITNEY & CO NMT NEUROSCIENCES INNOVASIVE SYSTEMS, INC F K A CORDIS INNOVASIVE SYSTEMS, INC SECURITY INTEREST TERMINATION0106680425 pdf
Oct 20 1999J H WHITNEY & CO NMT NEUROSCIENCES IP , INC SECURITY INTEREST TERMINATION0106680425 pdf
Oct 20 1999J H WHITNEY & CO NMT NEUROSCIENCES U S , INC SECURITY INTEREST TERMINATION0106680425 pdf
Oct 20 1999J H WHITNEY & CO NMT INVESTMENTS CORP SECURITY INTEREST TERMINATION0106680425 pdf
Oct 20 1999J H WHITNEY & CO NMT NEUROSCIENCES INTERNATIONAL , INC SECURITY INTEREST TERMINATION0106680425 pdf
Oct 20 1999J H WHITNEY & CO NMT MEDICAL, INC F K A NITINOL MEDICAL TECHNOLOGIES, INC SECURITY INTEREST TERMINATION0106680425 pdf
Oct 20 1999J H WHITNEY & CO NMT HEART, INC SECURITY INTEREST TERMINATION0106680425 pdf
Date Maintenance Fee Events
Oct 17 2000M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 15 2004REM: Maintenance Fee Reminder Mailed.
May 27 2005EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 27 20004 years fee payment window open
Nov 27 20006 months grace period start (w surcharge)
May 27 2001patent expiry (for year 4)
May 27 20032 years to revive unintentionally abandoned end. (for year 4)
May 27 20048 years fee payment window open
Nov 27 20046 months grace period start (w surcharge)
May 27 2005patent expiry (for year 8)
May 27 20072 years to revive unintentionally abandoned end. (for year 8)
May 27 200812 years fee payment window open
Nov 27 20086 months grace period start (w surcharge)
May 27 2009patent expiry (for year 12)
May 27 20112 years to revive unintentionally abandoned end. (for year 12)