A relaxor ferroelectric composition that has the components lead magnesium niobate, lead titanate, and lead magnesium tungstate. The components are preferably present in relative molar amounts of (1-x-y) lead magnesium niobate, (x) lead titanate, and (y) lead magnesium tungstate, where 0.11≦x≦0.13 and 0.01≦y≦0.03. Also disclosed is a tunable ultrasonic transducer made of a relaxor ferroelectric composition that has the components lead magnesium niobate, lead titanate, and lead magnesium tunstate. A method of making a relaxor ferroelectric material comprising the step of adding an effective amount of lead magnesium tungstate to a lead magnesium niobate-lead titanate composition is also disclosed.

Patent
   5759432
Priority
Jun 14 1996
Filed
Jun 14 1996
Issued
Jun 02 1998
Expiry
Jun 14 2016
Assg.orig
Entity
Large
5
9
EXPIRED
1. A tunable ultrasonic transducer comprising a relaxor ferroelectric composition of lead magnesium niobate, lead titanate, and lead magnesium tungstate as components, wherein the tunable ultrasonic transducer has following properties: (1) a dielectric constant greater than 10,000 measured at 20°C at a frequency of one kilohertz with no d.c. bias applied; (2) a thickness coupling coefficient greater than 0.47 measured at 20°C with eight kilovolts per centimenter of d.c. voltage applied; (3) a remnant thickness coupling coefficient less than 0.15; and (4) a tunable range encompassing room temperature.
5. A method of making a relaxor ferroelectric material of lead magnesium tungstate, lead magnesium niobate, and lead-titanate comprising the steps of:
a) mixing and calcining stoichiometric amounts of magnesium oxide and niobium oxide to form a magnesium niobate precursor;
b) mixing and calcining stoichiometric amounts of magnesium oxide and tungstic oxide to form a magnesium tungstate precursor;
c) forming a mixture of desired stoichiometric amounts of said magnesium niobate precursor, said magnesium tungstate precursor, litharge, and titanium dioxide;
d) calcining and binding said mixture;
e) sintering said mixture in a saturated atmosphere of litharge vapor; and
f) annealing said mixture to form said relaxor ferroelectric material.
2. A tunable ultrasonic transducer as claimed in claim 1 wherein said components are present in relative molar amounts of (1-x-y) lead magnesium niobate, (x) lead titanate, and (y) lead magnesium tungstate, where 0.11≦x≦0.13 and0.01≦y≦0.03.
3. A tunable ultrasonic transducer as claimed in claim 1 wherein said components are present in relative molar amounts of (0.86) lead magnesium niobate, (0.12) lead titanate, and (0.02) lead magnesium tungstate.
4. A tunable ultrasonic transducer as claimed in claim 1 wherein said components are present in relative molar amounts of (0.87) lead magnesium niobate, (0.11) lead titanate, and (0.02) lead magnesium tungstate.
6. A method of making a relaxor ferroelectric material as claimed in claim 5 wherein said step of forming a mixture of desired stoichiometric amounts comprises using amounts of said magnesium niobate precursor, said magnesium tungstate precursor, litharge, and titanium dioxide that produces a relaxor ferroelectric material having between one and three molar percent of lead magnesium tungstate.
7. A method of making a relaxor ferroelectric material as claimed in claim 5 wherein said step of forming a mixture of desired stoichiometric amounts comprises using amounts of said magnesium niobate precursor, said magnesium tungstate precursor, litharge, and titanium dioxide that produces a relaxor ferroelectric material having two molar percent of lead magnesium tungstate.

The present invention relates to relaxor ferroelectric compositions and, more particularly, to a new relaxor ferroelectric composition particularly useful in ultrasonic transducer applications.

Ultrasonic transducers are commonly used to analyze the interior of an object non-destructively. Imaging internal organs of the human body, such as the heart or the kidneys, for diagnostic purposes is a typical example.

Transducers are typically formed of piezoelectric materials capable of generating ultrasonic waves. The piezoelectric materials convert electrical energy into mechanical energy to generate acoustic waves. The waves are sent into the body being imaged and reflect off objects within the body. The piezoelectric material then receives the reflected acoustic signals and converts them into electrical signals which may be sent to an imaging device.

A known exemplary piezoelectric transducer material is lead zirconate titanate (PZT) ceramic. This material is formed from a PZT-based starting composition that is sintered, along with various dopants, into a dense polycrystalline ceramic.

To induce piezoelectric properties in a PZT ceramic, and materials similar to it, the ceramic is polarized by applying d.c. voltage. In its polarized state, the ceramic exhibits the piezoelectric properties. The acoustic waves that are generated by the ceramic transducer are within a frequency range that is dependent upon the properties of the specific material used for the transducer.

A material that exhibits piezoelectric properties is in what is known as the ferroelectric phase. When a material does not exhibit those properties, it is in the paraelectric phase.

Upon removal of an applied d.c. voltage, "normal" piezoelectric materials, such as the PZT ceramic mentioned above, exhibit a remnant polarization at temperatures below Td, the temperature at which polarization (and hence piezoelectric effect) disappears. This means that the material remains polarized at these temperatures even after the d.c. bias voltage is removed. The material thus cannot be "tuned" on and off by applying and removing a d.c. bias voltage. The piezoelectric activity, and consequently the sensitivity, of these materials is relatively constant.

Another class of materials, known as "relaxor" ferroelectric materials, are actively pursued for transducer applications. In these materials, above temperature Td, the piezoelectric phenomenon is present only when a d.c. bias is being applied. That is, there is little or no remnant polarization above Td, so that when the d.c. bias is removed, piezoelectric behavior stops instantly. Most importantly, only a modest voltage need be applied to induce the piezoelectric behavior.

Thus, it is possible to construct transducers of relaxor ferroelectric materials that have variable sensitivity in piezoelectric properties responsive to the applied d.c. bias. Such transducers are referred to as "tunable" because they can be turned on and off by applying and removing a modest d.c. bias voltage.

An important property of a transducer material is its dielectric constant K. In general, the highest possible dielectric constant K is desirable. Dielectric constant K is temperature dependent. Maximum dielectric constant Kmax occurs at a temperature Tmax. For relaxor ferroelectric materials, Tmax is considerably above Td. In the temperature range (Tmax -Td), relaxor ferroelectric materials not only are tunable using only a modest electric field, but also show a high dielectric constant K in that range.

Another important property of a transducer material is thickness electromechanical coupling coefficient kt. Thickness electro-mechanical coupling coefficient kt is calculated from the electro-mechanical resonance and anti-resonance frequencies of the transducer, which may be measured by resonance techniques. The coupling coefficient kt represents the conversion efficiency of electrical energy to mechanical energy. Thus, for materials having a kt of 0.45-0.47, only 45% to 47% of the energy is effective for useful work, and the rest is dissipated as heat. To avoid excessive heating and property degradation, kt should be as high as possible.

Another property of a transducer material is the remnant thickness electromechanical coupling coefficient kt rem, which is the electro-mechanical coupling coefficient remaining after a d.c. bias is removed from a material. For practical applications, kt rem should be less than 0.15 for effective tunability.

In some ultrasound transducer applications, particularly in the medical field, the transducer material is designed to operate at room temperature. For relaxor ferroelectric materials, this means that the tunable range (Tmax -Td) of the material should encompass room temperature. Because room temperature may vary depending on the geographical location, air conditioning, or localized heating of a transducer itself, (Tmax -Td) should be as broad as possible, preferably covering the range from 10°C to 40°C The properties of a transducer material should be optimized for this temperature range. In particular, a high dielectric constant and a high electro-mechanical coupling coefficient induced by moderate d.c. fields are most desirable, along with low dielectric loss (tanδ<5%), high density, and small grain size.

Specific relaxor ferroelectric materials considered for medical ultrasound transducers are lead magnesium niobate-lead titanate compositions (PMN-PT); lead zinc niobate-lead titanate-barium titanate compositions; and lead lanthanum zirconate titanate compositions. U.S. Pat. No. 5,345,139, issued to Gururaja et al., discloses a PMN-PT composition doped with lanthanum, which produces a wider operating range (Tmax -Td).

It is desirable to improve the properties of transducers operating in a wide temperature range around room temperature beyond those shown by the known materials, however. In particular, raising the electro-mechanical coupling coefficient kt at given applied d.c. biases is desirable. Raising kt improves the efficiency of the transducer and avoids excess heating. These properties are also desirable in other applications in which relaxor ferroelectric materials are used.

The present invention is a relaxor ferroelectric composition that has the components lead magnesium niobate, lead titanate, and lead magnesium tungstate. The components are preferably present in relative molar amounts of (1-x-y) lead magnesium niobate, (x) lead titanate, and (y) lead magnesium tungstate, where 0.11<x<0.13 and 0.01<y<0.03.

The invention also provides a tunable ultrasonic transducer made of a relaxor ferroelectric composition that has the components lead magnesium niobate, lead titanate, and lead magnesium tungstate.

In another aspect, the invention involves a method of making a relaxor ferroelectric material comprising the step of adding an effective amount of lead magnesium tungstate to a lead magnesium niobate-lead titanate composition.

The present invention is a new relaxor ferroelectric composition useful as, for example, an ultrasonic transducer. The composition includes lead magnesium niobate, lead titanate, and lead magnesium tungstate (PMW). Such a composition yields desirable properties over a wide temperature range around room temperature.

Various exemplary compositions according to the present invention were prepared using a coulumbite precursor method as follows.

First, magnesium niobate (MgNb2 O6) and magnesium tungstate (MgWO4) precursors were prepared. To form the magnesium niobate precursor appropriate stoichiometric amounts of magnesium oxide (MgO) and niobium oxide (Nb2 O5) were mixed in a ball mill for 24 hours with ethyl alcohol and 1/2" ZrO2 milling media. After drying, the mixture was calcined in a covered alumina crucible at 1000°C for 10 hours. The calcined product was homogenized and recalcined at 1100°C for 10 hours to improve the phase purity. After the second calcination, the powder was ball milled and dried.

The magnesium tungstate precursor was prepared by calcining an appropriate stoichiometric mixture of MgO and tungstic oxide (WO3) at 1000°C for 10 hours, and the product was ball milled and dried before further use.

Appropriate stoichiometric amounts of litharge (PbO), MgNb2 O6, MgWO4, and titanium dioxide (TiO2) were then mixed in a ball mill for 24 hours. After drying, the mixture was calcined at 950°-960°C for 2-5 hours in a closed alumina crucible. The calcined powder was ground in a ball mill for 24 hours. After drying, it was mixed with 5 weight % of DuPont®5200 organic binder and was passed through a 100 mesh sieve. Several 1/2" pellets were prepared in a steel die by applying a uniaxial pressure of 24,000-26,000 psi. The binder was evaporated from the pellets by heating them to 300°C for 2 hours and 500°C for 5 hours. After the binder removal, the green pellets were sintered at 1,175°-1,250°C for 1-4 hours over a platinum sheet in a closed alumina crucible. A mixture of PbO-ZrO2 powder was used as a source to saturate the crucible atmosphere with PbO vapor. After sintering, the pellets were annealed at 900°-950°C for 1-5 hours. The sintered pellets were polished to appropriate thicknesses and given electrical characterization using electrodes.

Twelve different compositions were prepared using this method. These compositions are labeled as compositions a-l in Table 1, which gives the composition in mole percent of the components. In general, the compositions have a formula (1-x-y)PMN-(x)PT-(y)PMW, where x=0.07-0.13 and y=0.00-0.03.

For each composition, Tmax and K were measured at a frequency of one kilohertz with no d.c. bias applied. K and kt were specifically measured at 20°C, an approximation of room temperature, with eight kilovolts per centimeter of d.c. voltage applied during the measuring of kt. The results are presented in Table 1.

Table 2 presents various kt measurements for two of the compositions taken at 10°C, 20°C, and 50°C, with different applied d.c. voltages of three, five, and eight kilovolts per centimeter. The remnant electro-mechanical coupling coefficient kt rem was also measured and is presented in Table 2.

The data presented in Table 1 show that compositions b-j, those with PMW included, had many desirable properties. For these compositions, the tunable operating range (Tmax -Td) is expanded to as much as 41°C, as shown for composition j. Compositions f-i show an operating range between 34°C and 38°C This means that temperature variations of 34°C will not adversely affect the performance of transducers, low frequency actuators, or other devices made from these compounds.

The dielectric constant K for all of the compositions including PMW, compositions b-j, are above 12,000 at 20°C Desirable K values at 20°C are above 10,000. The K value for the exemplary compositions is as high as 18,950, as shown for composition j.

Most significantly, kt for the compositions b-j that include PMW appears to be generally elevated in comparison to the compositions a, k, and l that do not include PMW. For the compositions without PMW, kt is 0.46-0.48. For the exemplary compositions with PMW, kt ranges from 0.48-0.52.

Any elevation in kt is a direct benefit in the use of relaxor ferroelectric compositions. Because kt represents the conversion efficiency for converting electrical energy to mechanical energy, compositions with higher kt values are more efficient and hence less costly to operate. In applications for relaxor ferroelectric materials such as ultrasound transducers, this also results in reduced heating of the device and reduced property degradation.

Considering all of desirable factors and properties for relaxor ferroelectric materials, the data presented in Table 1 indicates that compositions f and i show the best overall performance. The kt values, along with the kt rem values, for these two compositions at three different temperatures and various applied voltages are shown in Table 2. At 20°C, kt rem for both of these compositions is zero, and kt is 0.51 at eight kilovolts per centimeter. The kt values for these compositions vary only 10% from the maximum value over the entire temperature span at the various voltages.

The tabulated properties for the exemplary compositions incorporating PMW illustrate that all of the compositions, and particularly compositions f and i, are quite suitable for use in applications, such as ultrasonic transducers and actuators, where such properties are desired. The compositions incorporating PMW provide a desired dielectric constant K over a broad temperature range with an elevated electro-mechanical coupling coefficient kt and low remnant coupling coefficient kt rem.

Although described in connection with specific examples, the present invention is not intended to be limited thereto. Rather, the appended claims should be construed to encompass the present invention in its true spirit and full scope, including all such variants as may be made by those skilled in the art without departing therefrom.

Huebner, Wayne, Kumar, Umesh, Wang, Sea Fue

Patent Priority Assignee Title
10553779, Dec 23 2014 MEGGITT A S Method of fabricating an acoustic transducer
6517737, Mar 02 2001 WSOU Investments, LLC Ceramic piezoelectric and devices using the piezoelectric
6703765, Mar 02 2001 WSOU Investments, LLC Devices using a ceramic piezoelectric
7557055, Sep 20 2004 NXP USA, INC Tunable low loss material composition
7846382, Jun 04 2002 Protasis Corporation Method and device for ultrasonically manipulating particles within a fluid
Patent Priority Assignee Title
5345139, Aug 27 1993 Koninklijke Philips Electronics N V Electrostrictive ultrasonic probe having expanded operating temperature range
5378382, Dec 09 1993 Mitsubishi Chemical Corporation Piezoelectric ceramic composition for actuator
5438554, Jun 15 1993 Hewlett-Packard Company Tunable acoustic resonator for clinical ultrasonic transducers
JP426005,
JP5290625,
JP55111011,
JP55116662,
JP55144611,
JP55144612,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 07 1996KUMAR, UMESHPENN STATE RESEARCH FOUNDATION, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0080540442 pdf
May 06 1996HUEBNER, WAYNEPENN STATE RESEARCH FOUNDATION, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0080540442 pdf
May 13 1996WANG, SEA FUEPENN STATE RESEARCH FOUNDATION, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0080540442 pdf
Jun 14 1996Penn State Research Foundation(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 26 2001REM: Maintenance Fee Reminder Mailed.
Jun 03 2002EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 02 20014 years fee payment window open
Dec 02 20016 months grace period start (w surcharge)
Jun 02 2002patent expiry (for year 4)
Jun 02 20042 years to revive unintentionally abandoned end. (for year 4)
Jun 02 20058 years fee payment window open
Dec 02 20056 months grace period start (w surcharge)
Jun 02 2006patent expiry (for year 8)
Jun 02 20082 years to revive unintentionally abandoned end. (for year 8)
Jun 02 200912 years fee payment window open
Dec 02 20096 months grace period start (w surcharge)
Jun 02 2010patent expiry (for year 12)
Jun 02 20122 years to revive unintentionally abandoned end. (for year 12)