A velocity control device controls a velocity of an object via a servo motor so that a damping phenomenon during acceleration or deceleration and a swelling phenomenon of a specified frequency arising at a specified velocity are relieved, while disturbance suppression ability is improved under a wide range of low accelerations. The device comprises an integral gain variable calculation section including an acceleration variable section for calculating an acceleration variable integral gain from an acceleration factor according to an acceleration command value and a reference integral gain and a weighting calculation section for calculating an integral gain from a weighting factor according to a velocity command value, a reference integral gain, and an acceleration variable integral gain. The device may therefore variably set an integral gain according to an acceleration command value and a velocity command value.

Patent
   5973467
Priority
Jun 30 1997
Filed
Jun 18 1998
Issued
Oct 26 1999
Expiry
Jun 18 2018
Assg.orig
Entity
Large
9
16
EXPIRED
1. A velocity control device which controls a velocity of
an object via a servo motor according to a variable velocity command value, said velocity control device comprising an integral gain variable calculation section comprising an acceleration variable section for calculating an acceleration variable integral gain from a velocity command value and a reference integral gain and a weighting calculation section for calculating an integral gain at the time of velocity control calculation from the velocity command value, the reference integral gain, and the acceleration variable integral gain.
2. The velocity control device according to claim 1, wherein said acceleration variable section is arranged so as to calculate said acceleration variable integral gain by a differentiator which obtains an acceleration command value from said velocity command value, an acceleration factor determining section which determines an acceleration factor according to the acceleration command value, and a multiplier which multiplies said reference integral gain and the acceleration factor together.
3. The velocity control device according to claim 1, wherein said weighting calculation section is arranged so as to calculate an integral gain at the time of said velocity control calculation by a weighting factor determining section which determines a weighting factor according to said velocity command value, a subtracter which detects a difference between said acceleration variable integral gain and said reference integral gain, a multiplier which multiplies the subtracter output and the weighting factor together, and an adder which adds the multiplier output and said reference integral gain together.

1. Field of the Invention

The present invention relates to a velocity control device applied to a velocity control system, for example, a numeral control machine.

2. Description of the Related Art

FIG. 6 is a block diagram of a conventional velocity control device which controls a velocity of an object mechanically connected to a motor, by controlling a velocity of a servo motor. To a velocity control device 1, a velocity command value V is supplied by a precedent command device (not shown in the figure). A subtracter 100 subtracts a motor velocity vm from the velocity command value V and calculates a velocity deviation V-vm. Here, the velocity deviation is amplified by an operation of PI (proportional integration) amplification described below, and becomes a torque command value τc. The velocity deviation V-vm is amplified by a factor of a proportional gain Kp in an amplifier 101 and produces a proportional component τp. Furthermore, the velocity deviation is amplified by a factor of an integral gain Ki in an amplifier 102 and becomes d τi/dt, is integrated in an integrator 103, and produces an integral component τi. The τp and the τi are added together in an adder 104 to become a torque command value τC.

A power amplifying section 105 is comprises an electric power amplifier (not shown in the figure) and a servo motor (also not shown), and is a section to amplify a torque command value τc to a motor output torque τ, and the amplification factor thereof is expressed by a torque conversion constant Ct. An object system 107 comprises a motor and a controlled object (not shown in the figure) mechanically connected to the motor. A disturbance torque τd is a disturbance torque acting on the object system from outside, and is added to the motor output torque τ in an adder 106 shown equivalently, and finally, a torque acted on the object system becomes τ+τd. A position detector (not shown in the figure) or a velocity detector (not shown in the figure) is connected to the motor and, on the basis of the detected information thereof, a motor velocity vm showing a velocity of a controlled object can be obtained.

Here, provided that the controlled object is a rigid body and the motor and the controlled object are rigidly connected, by using a total inertia moment J of the motor and the controlled object, a velocity response of a conventional velocity control device 1 shown in FIG. 6 can be expressed by the following expression.

Expression 1

{(V-vm)Kp+∫Ki(V-vm)dt+τi(0)}Ct+τd=J(dvm/dt)

when τi(0)=vm(0)=0 are initial conditions, when Laplace transformation is carried out, the following expression can be obtained from Expression 1 (wherein S shows an operator of Laplace transformation indicating a derivative action, and 2 shows square).

Expression 2 ##EQU1## Here, a damping factor ζ of a generally used normal quadratic form and a natural frequency ωn of the system are defined as follows (wherein { } (1/2) shows the one-half power of { }).

Expression 3

ζ=(Kp/2){Ct/(Ki·J)} (1/2)

ωn={KiCt/J} (1/2)

If Expression 2 is expressed, being divided into a command response characteristic when letting τd=0, and a disturbance suppression characteristic when letting V=0, it becomes the following expressions.

Expression 4

vm(S)=[{2ζωnS+ωn 2}/{S 2+2ζωnS+ωn 2}]V(S)

Expression 5

vm(S)=[(S/J) {S 2+2ζωnS+ωn 2}]τd(S)

That is, as for a conventional velocity control device shown in FIG. 6, Expression 4 expresses the command response characteristic and Expression 5 expresses the disturbance suppression characteristic.

From the above description, it is clear that in a velocity control device, a command response characteristic and a disturbance suppression characteristic can be variable by operating a proportional gain Kp and an integral gain Ki, and it is further clear from Expression 5 that setting a large integral gain Ki is effective for improving disturbance suppression ability. However, if an integral gain Ki is simply set large, a damping factor ζ is simultaneously lowered and, therefore, damping characteristics of the command response characteristic shown by Expression 4 are worsened. Moreover, since a reduced damping factor arises under certain frequencies, swelling phenomena of a specified frequency at a specified velocity have an arisen under the influence of rotational errors or the like of a position detector having a frequency proportional to the velocity.

The present invention is made to address these problems, and an object of the present invention is to provide a velocity control device, by which a damping phenomenon at the time of acceleration or deceleration and a swelling phenomenon of a specified frequency arising at a specified velocity, produced as harmful effects because of setting an integral gain Ki to be large, are relieved, and disturbance suppression ability may be improved under the condition of low acceleration excluding said specified velocity and including a wide range of constant velocities.

The present invention relates to a velocity control device which controls a velocity of a controlled object via a servo motor, and the object of the present invention is achieved by having an integral gain variable calculation section comprise of an acceleration variable section which determines an acceleration factor according to an acceleration command value and which calculates an acceleration variable integral gain from a reference integral gain and the acceleration factor, and a weighting calculation section which determines a weighting factor according to a velocity command value and finally determines an integral gain at the time of velocity control calculation from the reference integral gain and said acceleration variable integral gain and weighting factor.

FIG. 1 is a block diagram showing one example of a velocity control device of the present invention.

FIG. 2 is a graph describing an example of the action of an acceleration factor determining section 6 of the present invention.

FIG. 3 is a graph describing an example of the action of a weighting factor determining section 8 of the present invention.

FIG. 4 is a graph showing real time response of velocity of a velocity control device according to the present invention and a conventional velocity control device.

FIG. 5 is a graph showing disturbance suppression characteristics of a velocity control device according to the present invention and a conventional velocity control device.

FIG. 6 is a block diagram showing one example of a conventional velocity control device.

FIG. 1 is one example of a block diagram of a velocity control device 1 in which the present invention is practiced. FIG. 1 corresponds to FIG. 6 of the conventional example and corresponding parts will be given the same names and reference numerals and their description will not be repeated. An integral gain variable calculation section 2 is composed of an acceleration variable section 3 and a weighting calculation section 4. First, the action of the acceleration variable section 3 will be described. A velocity command value V is differentiated in a differentiator 5, becomes an acceleration command value A, and is input into an acceleration factor determining section 6. The acceleration factor determining section 6 outputs an acceleration factor Ga after a calculation described later. A reference integral gain Kio is an integral gain which has initially been set into the velocity control device after being decreased with a margin so that a sufficiently stable action may be possible in all operational states of the velocity control device. The reference integral gain Kio is multiplied by the acceleration factor Ga in a multiplier 7 and becomes an acceleration variable integral gain Kia.

FIG. 2 is a graph explaining an example of the action of the above mentioned acceleration factor determining section 6. The horizontal axis shows an absolute value |A| of an acceleration command value A, while the vertical axis shows an acceleration factor Ga as an output of the acceleration factor determining section 6. A variable limit acceleration Aa on the high velocity when letting acceleration factor Ga=1, a variable limit acceleration Ab on the low velocity (wherein Aa>Ab holds), and a maximum acceleration factor Gamax employed at an acceleration of not more than Ab, are initially set in the acceleration factor determining section 6. The acceleration factor determining section 6 determines an acceleration factor Ga as an output by using these parameters, employing an absolute value |A| of an acceleration command value A as an input, from the following relational expression.

Expressions 6

(in a case of |A|≦Ab)

Ga=Gamax

(in a case of Ab<|A|≦Aa)

Ga=1+(Gamax-1)(Aa-|A|)/(Aa-Ab)

(in a case of |A|>Aa)

Ga=1

Thus, in the acceleration factor determining section 6, an acceleration factor Ga having a tendency to increase with the decrease of |A|, is determined according to an absolute value |A| of an acceleration command value A.

Next, the action of the weighting calculation section 4 will be described. The weighting factor determining section 8 outputs a weighting factor Gb by a calculation described later. A subtracter 9 is a subtracter which subtracts a reference integral gain Kio from an acceleration variable integral gain Kia, and this subtracter output is multiplied by the weighting factor Gb in a multiplier 10. The multiplier output is added to the reference integral gain Kio in an adder 11, and becomes an integral gain Ki finally employed at the time of velocity control calculation. The integral gain Ki is set in an amplifier 102 as an amplification factor of the amplifier 102. A series of above mentioned calculations to calculate an integral gain Ki are expressed by the following expression.

Expression 7

Ki=Kio+Gb(Kia-Kio)

Here, provided Gb is determined in the range of 0≦Gb≦1, Ki=Kio holds when letting Gb=0, and Ki=Kia holds when letting Gb=1, and Ki approaches Kia from Kio as Gb approaches 1 from 0. That is, Gb is a weighting factor showing the degree of effects given by an acceleration variable integral gain Kia to an integral gain Ki.

FIG. 3 is a graph explaining an example of the action of the above mentioned weighting factor determining section 8. The horizontal axis shows an absolute value |V| of a velocity command value V, while the vertical axis shows a weighting factor Gb as an output of the weighting factor determining section 8. In the weighting factor determining section 8, 3 pieces of velocities Va, Vb, Vc (wherein Va>Vb>Vc holds) and weighting factors Gba, Gbb, Gbc respectively corresponding thereto are initially set. The weighting factor determining section 8 determines a weighting factor Gb as an output by using these parameters, by employing an absolute value |V| of a velocity command value V as an input, from the following relational expression.

Expression 8

(in a case of |V|≦Vc)

Gb=Gbc

(in a case of Vc<|V|≦Vb)

Gb=Gbb+(Gbc-Gbb)(Vb-|V|)/(Vb-Vc)

(in a case of Vb<|V|≦Va)

Gb=Gba+(Gbb-Gba)(Va-|V|)/(Va-Vb)

(in a case of |V|>Va)

Gb=Gba

For example, in a case when Pattern a [Vb=(Va+Vc)/2, Gba=1, Gbb=0.5, Gbc=0] is initially set, a weighting factor Gb approaches 1 and an integral gain Ki approaches an acceleration variable integral gain Kia, as an absolute value |V| of a velocity command value V becomes larger. This becomes a setting for preventing induction of a swelling phenomenon, especially in a case where to set an integral gain Ki to be large, induces a swelling phenomenon in the area of low velocity. Next, in a case when Pattern b [Vb=(Va+Vc)/2, Gba 1, Gbb=0, Gbc=1] is initially set, a weighting factor Gb approaches 0 and an integral gain Ki approaches a reference integral gain Kio, at a position near the position [absolute value |V| of a velocity command value V≈Vb]. This is effective for the countermeasures in a case when a swelling phenomenon of a specified frequency arises at a specified velocity.

FIG. 4 is a graph in which a comparison of real time response at the time of input of a velocity command value expressed by the following expression, is made between a velocity control device according to the present invention and a conventional velocity device.

Expression 9

V(t)=50Vt(0≦t≦20 ms)

V(t)=V(t>20 ms)

(wherein vm(0)=τi(0)=0 holds as initial conditions) [0] in FIG. 4 is a graph showing this velocity command value.

[2] and [3] in FIG. 4 are graphs showing real time response of a motor velocity vm to a velocity command of Expression 9 of a conventional velocity control device, and such an integral gain Ki and such a proportional gain Kp that a damping factor stand a natural frequency ωn of the system in Expression 3 may fulfill the following conditions, are set, respectively.

Condition of [2]: ζ=0.8, ωn=31.25

Condition of [3]: ζ=0.2, ωn=125

That is, [3] is the same as [2] in Kp, and is 16 times as much only in Ki. It is clear from this that if an integral gain Ki is set to be large so as to improve the disturbance suppression ability, as mentioned above, damping characteristics are worsened in command response characteristics.

[1] in FIG. 4 is a graph showing real time response of a motor velocity to a velocity command of Expression 9 of a velocity control device according to the present invention. In the present example, a reference integral gain Kio and a proportional gain Kp are set so that a damping factor ζ and a natural frequency ωn of the system in Expression 3 may fulfill the condition of said [2]. Furthermore, control parameters are arranged such that a maximum acceleration factor Gamax=16, a variable limit acceleration on the high side Aa<50 V, a variable limit acceleration on the low side Ab>0, and a weighting factor Gba=Gbb=Gbc=1. When a velocity command shown by Expression 9 is input into a velocity control device according to the present invention designed like this, a damping factor ζ and a natural frequency ωn of the system corresponding to the real time become as follows.

Condition of [1]: ζ=0.8, ωn=31.25 (0≦t≦20 ms) ζ=0.2, ωn=125 (t>20 ms)

In [1], an integral gain Ki is 16 times as much as that in [2] similar to that in [3], but it is clear that the amount of damping is improved, compared with that in [3].

FIG. 5 is a graph expressing disturbance suppression characteristics shown by Expression 5 under the condition of a constant velocity command value, for a velocity control device according to the present invention and a conventional velocity control device, and the horizontal axis is an angular frequency ω[rad/s], and the vertical axis is a gain G=vm (ω)/τd (ω), and both axes adopt logarithmic coordinates. [1], [2] agree with conditions of the same numerals in FIG. 4. It is clear from this that in a velocity control device according to the present invention, a disturbance suppression ability especially for a disturbance input of up to more than 10 Hz is approximately 16 times that of a conventional velocity control device.

As described above, a velocity control device according to the present invention includes an integral gain variable calculation section composed of an acceleration variable section which determines an acceleration factor according to an acceleration command value and calculates an acceleration variable integral gain from a reference integral gain and the acceleration factor, and a weighting calculation section which determines a weighting factor according to a velocity command value and determines a final integral gain from the reference integral gain, and said acceleration variable integral gain and weighting factor. Therefore, since a high integral gain can be set at a time excluding the time of acceleration or deceleration and the time of a specified constant velocity, the disturbance suppression ability can be improved under the conditions of low acceleration excluding a specified velocity and including a wide range of constant velocities, while relieving a damping phenomenon arising at the time of acceleration or deceleration and a swelling phenomenon of a specified frequency arising at a specified velocity.

While there has been described what is at present considered to be a preferred embodiment of the invention, it will be understood that various modifications may be made thereto, and it is intended that the appended claims cover all such modifications as fall within the true spirit and scope of the invention.

Eguchi, Satoshi

Patent Priority Assignee Title
6127793, Aug 07 1997 DR JOHANNES HEIDENHAIN GMBH Method and circuit arrangement for detecting optimal controller parameters for speed control
6236182, Nov 27 1998 DR JOHANNES HEIDENHAIN GMBH Method and circuit arrangement for determining an optimum gain for the integrator of a speed controller
6259223, Aug 13 1997 Saab AB Method and apparatus for phase compensation in a vehicle control system
7030581, Dec 03 2004 Mitsubishi Denki Kabushiki Kaisha Motor controller
7034492, Oct 28 2003 GE Medical Systems Global Technology Company, LLC Methods and systems for reducing unintentional collisions
7035706, Sep 04 2002 The Procter & Gamble Company; Procter & Gamble Company, The Method of adjusting a process output value
7109679, Mar 09 2004 HR Textron, Inc. Damping for electromechanical actuators
7368888, Oct 28 2003 GE Medical Systems Global Technology Company, LLC Methods and systems for reducing unintentional collisions
8510069, Mar 31 2010 Sick AG Feedback apparatus and feedback method for controlling a servomotor
Patent Priority Assignee Title
4679136, Apr 13 1984 Kabushiki Kaisha Toshiba Dynamic error compensating process controller
4992715, Aug 04 1987 Hitachi, Ltd. Torque control apparatus for rotating motor machine
5111124, Sep 14 1989 Kabushiki Kaisha Toshiba Continuous deadbeat control system with feedback control
5157597, Dec 23 1988 Fanuc Ltd. Method of detecting oscillation of a servo system and automatically adjusting speed loop gain thereof
5311110, Nov 08 1990 Fanuc Ltd. Feedforward control method for servomotors
5384525, May 17 1991 Fanuc Ltd. Method of controlling a servomotor
5397973, Sep 16 1993 Allen-Bradley Company, Inc.; ALLEN-BRADLEY COMPANY, INC Gain control for fuzzy logic controller
5475291, Dec 10 1992 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Adjustment device for adjusting control parameters of a servo motor and an adjustment method therefor
5517100, Apr 28 1993 Fanuc Ltd. Method of controlling a servo motor
5581167, May 19 1993 Fanuc Ltd. Flexible servo control method
5598077, Aug 19 1993 Fanuc Ltd. Control apparatus and a control method for a servomotor
5691615, Jul 17 1992 Fanuc Ltd. Adaptive PI control method
5737483, Oct 25 1995 Matsushita Electric Industrial Co., Ltd. Motor speed control apparatus for motors
5742138, Feb 21 1995 Fanuc Ltd. Control method for servo system with adjustable softness in rectangular coordinate system
5812428, Sep 22 1995 Rosemount Inc. Process controller having non-integrating control function and adaptive bias
5880415, Dec 22 1997 Otis Elevator Company Automatic calibration of current regulator control compensation for an elevator motor drive with locked rotor
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 08 1998EGUCHI, SATOSHIOkuma CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092660884 pdf
Jun 18 1998Okuma Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 24 2001ASPN: Payor Number Assigned.
Mar 31 2003M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
May 16 2007REM: Maintenance Fee Reminder Mailed.
Oct 26 2007EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 26 20024 years fee payment window open
Apr 26 20036 months grace period start (w surcharge)
Oct 26 2003patent expiry (for year 4)
Oct 26 20052 years to revive unintentionally abandoned end. (for year 4)
Oct 26 20068 years fee payment window open
Apr 26 20076 months grace period start (w surcharge)
Oct 26 2007patent expiry (for year 8)
Oct 26 20092 years to revive unintentionally abandoned end. (for year 8)
Oct 26 201012 years fee payment window open
Apr 26 20116 months grace period start (w surcharge)
Oct 26 2011patent expiry (for year 12)
Oct 26 20132 years to revive unintentionally abandoned end. (for year 12)