ceramic blade (1) of a cutting tool, in particular a knife, with a cutting edge (10) and a rounded off upper edge (12) running opposite to the cutting edge (10). The rounded off upper edge (12) makes possible, in comparison to the conventional sharp-edged transitions, a substantial increase in the break resistance in the case of bending forces.

Patent
   6151786
Priority
May 10 1996
Filed
Nov 10 1998
Issued
Nov 28 2000
Expiry
May 07 2017
Assg.orig
Entity
Small
18
6
EXPIRED
1. A ceramic blade having a cutting edge (1), two side surfaces, and an upper edge, the cutting edge (1) transitioning to the two side surfaces, the two side surfaces transitioning to the upper edge, and the upper edge running opposite to the cutting edge, wherein the upper edge (12) is rounded off with respect to the side surfaces (14, 16).
12. A method for enhancing the break strength of a ceramic blade having a cutting edge (1), two side surfaces, and an upper edge, the cutting edge (1) transitioning to the two side surfaces, the two side surfaces transitioning to the upper edge, and the upper edge running opposite to the cutting edge,
the method comprising rounding off the area of transition between the upper edge (12) and the side surfaces (14, 16).
2. The blade according to cliam 1, wherein said blade forms part of a cutting tool.
3. The blade as in claim 2, wherein said cutting tool is a knife.
4. The blade according to claim 1, wherein said upper edge (12) transitions to both side surfaces with a curve (18) forming a radius.
5. The blade according to claim 4, wherein said radius is larger than 0.3 mm.
6. The blade according to claim 4, wherein said radius is greater than 0.5 mm.
7. The blade according to claim 1, wherein said upper edge (12) in cross-section is in the form of a half ellipse (B; D).
8. The blade according to claim 1, wherein said upper edge (12) in cross-section is in the form of a semi-circle (C).
9. The blade according to claim 1, wherein said blade is produced by an injection molding process.
10. The blade according to claim 1, wherein said blade is made of ceramic and said ceramic is a ceramic oxide.
11. The blade according to claim 10, wherein said ceramic oxide is aluminum oxide, zirconium oxide or a mixture thereof.
13. A method according to claim 12, wherein said upper edge (12) transitions to both side surfaces with a curve (18) forming a radius.
14. A method according to claim 13, wherein said radius is larger than 0.3 mm.
15. A method according to claim 13, wherein said radius is greater than 0.5 mm.
16. A method according to claim 12, wherein said upper edge (12) in cross-section is in the form of a half ellipse (B; D).

1. Field of the Invention

The invention concerns a ceramic blade for a cutting tool, in particular a knife.

2. Description of the Invention

Until now the available blades of a cutting tool, in particular a knife, have been made almost exclusively of steel. They comprise a cutting edge, which transitions into two side surfaces, and an upper surface running opposite to the cutting edge. Further, securing means in the form of cover plates or link plates or the like are provided, via which it is possible to secure to the grip or handle. In the case of pocket knives a bore hole is provided, through which a mounting bolt anchored in the handle passes, so that the blade can be folded in.

The upper surface of the blade is formed as a planar surface and is relatively broad by design, so that by placement of the index finger or, as the case may be, by application of the palm of the hand, the user can exercise force from above and the cutting edge can be pressed into the material to be cut and/or drawn through it. The transition to the sides is designed to be sharp-angled.

Occasionally cutting tools in the form of knives have been available in commerce, of which the blades are made of a ceramic material. In comparison to the steel blades described in the introductory part above, these possess the advantage of a higher wear resistance, which translates into a substantially higher usable life. A re-sharpening or re-grinding is not necessary following conditions of normal use.

These ceramic blades do not differ from the conventional steel blades with respect to their geometric design, of which the shape has remained unchanged.

Although ceramic blades represent an excellent alternative to the hitherto employed steel blades, a series of disadvantages has come to light in daily conventional use, which until now have hindered their broad acceptance. So it has been found, that this type of blade is highly liable to breakage as soon as a certain bending strain is exceeded. In particular, with very hard ceramic materials, such as for example aluminum oxide, this results as a rule in the premature termination of the usable life, since bending forces can hardly be avoided in daily use. The end of the useful life is thus frequently reached early as a result of an unintentional bending force, although the cutting edge remains fully functional as necessary for the cutting function.

The invention is thus concerned with the task, of further developing a ceramic blade of the type described above, so that it no longer exhibits the above described disadvantages. In particular it should be ensured, that it is substantially not sensitive to bending forces, thus avoiding a premature failure or breakage as a consequence of breaking due to bending.

The invention is based upon the idea, of rounding off the upper surface as it transitions to the side surfaces of the blade. In comparison to the normal conventional shoulder or step, in which the danger of breakage is minimized by increasing the thickness of the blade, it is shown in surprising manner, that even a comparatively small radius is sufficient to substantially reduce the damage of breakage from bending even though the thickness of the blade remains the same. The effect is believed to essentially be based upon the principle, that the blade tensions inevitably are formed during sintering in the hitherto conventional sharp-edged embodiments can substantially be reduced. These tensions are responsible for the formations of cracks which have been found to occur upon bending.

At the same time the resistance to breakage of the edge of the blade is substantially increased. So there have occurred very rapidly in the conventionally employed ceramic blades fractures in the area of transition from the side surface to the upper surface, in particular, upon impacting of the blade with a hardened object. This problem substantially does not occur in blades with rounded off upper surfaces, so that they can be employed in daily use with substantially less danger of damage.

As a further advantage of the rounded off upper surface, it has been observed, that also the danger of damage of utensils, with which the ceramic blade comes into contact, is substantially reduced. This situation is relevant in particular when cutting tools with ceramic blades are cleansed together with conventional utensils in a dishwashing machine. The revolving cleaning and rinsing stream causes movement of the utensils located in the utensil basket, so that these continuously come into contact with each other. Because of the substantially higher hardness in comparison to other materials which are conventionally employed for utensils, the danger of damage from the sharp edges is particularly high. Here also the ceramic blade formed with rounded off edges according to the invention exhibit further advantages.

A noticeable improvement of the resistance to bending breakage occurs then, when the transition from the upper surface to the side surface is provided with a relatively small radius. Therewith the hitherto conventional appearance of the blade can substantially be maintained, since its upper surface can continue to be so designed. The small radius is provided substantially immediately adjacent to the transition area to the side surfaces. Therewith there continues to remain a larger surface available for tactile engagement in order--as discussed above--to exercise force from above via the index finger or the hand.

Substantial improvements in the resistance to breakage can already be measured with radiuses of larger than 0.3 to 0.5 mm. With conventional blade breadths of 0.5 to 4.5 mm, there remains therewith a large planar section extending along the area of the upper surface.

As optimal in the sense of the presently discussed mechanical characteristics there have however also been found embodiments or designs of the upper surface which are in the shape of half ellipses or semi-circles. This means that the upper surface is continuously curved between the two side surfaces of the blade. The outstanding mechanical characteristics are believed to be attributable to the almost ideally evenly distributed tension during the sintering process.

A further improvement of the mechanical characteristics results in the case that the blade is produced in the injection molding process. This process makes possible in an ideal manner a homogeneous construction of the structure, which can also be maintained even in the case of complex shapes and with variations of the cross sections, for example, in the area of the tip. Also the shaping or formation of the article can be achieved with that level of precision, such that subsequent to sintering a follow-up processing is no longer required. This concerns in particular also the cutting edge, which does not require any further handling or treatment. This aspect in particular is of great importance, since in the known manner in ceramic articles the breaking off of individual micro-structures or grains during processing can occur. Further, fractures can be induced in the grain during the final processing, which substantially increases the susceptibility to bending-breakage.

As ceramics, particularly preferably ceramic oxides, aluminum oxide (Al2 O3) or zirconium oxide (ZrO2) are employed for example. Aluminum oxide, in particular with high purity (for example higher than 95%) produces a particularly high wear resistance. Zirconium oxide in comparison is less wear resistant, however, imparts to the blade a very high elasticity. It has thus been found optimal to employ a mixture of aluminum oxide and zirconium oxide, which combines both characteristics .

The invention is now further discussed on the basis of the embodiments represented in the FIGURE. The single FIGURE shows the inventive ceramic blade in cross-section with various design contours of the upper surface.

The blade 1 exhibits a cutting edge 10 which corresponds to the lower cutting point of two opposite lying cutting surfaces 14, 16. In the shown embodiments the side surfaces 14, 16 run upwards essentially in parallel and transition respectively into the upper surface 12 which connects the two side surfaces 14, 16.

In the FIGURE four alternative embodiments (contour shapes A, B, C, D) are shown.

The contour A corresponds substantially with known embodiments of this type blade with the difference, that at the transition from the upper surface 12 to the respective side surfaces 14, 16 a radius 18 is formed. The radius is herein selected to be very small, so that the upper surface 12 now as before is designed to be substantially planar (and, in the shown embodiment, running horizontally).

The contour B possesses the form of a half ellipse, wherein the large half axis cuts the two side surfaces 14, 16' at right angles.

The contour D is likewise a half ellipse, wherein however different from the contour B the smaller half axis cuts the two side surfaces 14, 16 at right angles.

The contour C is a half circle or semi-circle or hemisphere and imparts optimal compromise with respect to, on the one hand, the mechanical characteristics and, on the other hand, the manipulatability by the user. The contour of the semi-circle C represents the maximal possible radius which can be realized. Beginning with the one side surface the transition to the apex of the upper surface 12 and the subsequent return curve to the oppositely lying side surface occurs with constant curvature so that during the sinter process tensions which occur are distributed evenly as is ideal.

Hellstern, Peter

Patent Priority Assignee Title
10549438, Jul 14 2011 The Gillette Company LLC Razor blades having a wide facet angle
10814508, Jul 26 2017 BREDAN, INC Razor
10889013, Jan 03 2019 Slice, Inc Cutting device
11104013, Jan 03 2019 Slice, Inc Cutting device
11135731, Dec 23 2017 Slice, Inc Cutting device having a locking member
11230025, Nov 13 2015 The Gillette Company LLC Razor blade
11654588, Aug 15 2016 The Gillette Company LLC Razor blades
11766797, Jul 14 2011 The Gillette Company LLC Razor blades having a wide facet angle
6739991, Jun 18 2002 Method and apparatus for making a ceramic arrowhead blade
7105103, Mar 11 2002 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT System and method for the manufacture of surgical blades
7140113, Apr 17 2001 LAZORBLADES, INC Ceramic blade and production method therefor
7204180, Sep 13 2001 Technoplast Kunststofftechnik GmbH Apparatus for cutting plastic profiles
7387742, Mar 11 2002 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Silicon blades for surgical and non-surgical use
7396484, Apr 30 2004 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries
7587829, Apr 17 2001 LazorBlades, Inc. Ceramic blade and production method therefor
7730808, Sep 23 2004 Industrial Technology Research Institute Ceramic blades and fabrication methods thereof
7785485, Sep 17 2003 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT System and method for creating linear and non-linear trenches in silicon and other crystalline materials with a router
8409462, Mar 11 2002 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT System and method for the manufacture of surgical blades
Patent Priority Assignee Title
2279833,
2566112,
3035344,
3252219,
3543402,
5077901, May 18 1990 COORSTEK, INC Ceramic blades and production methodology therefor
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 30 1998HELLSTERN, PETERSTERNPLASTIC HELLSTERN GMBH & CO KGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0106530919 pdf
Nov 10 1998Sternplastic Hellstern GmbH & Co. KG(assignment on the face of the patent)
Date Maintenance Fee Events
May 10 2004M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
May 13 2004ASPN: Payor Number Assigned.
Jun 09 2008REM: Maintenance Fee Reminder Mailed.
Nov 28 2008EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 28 20034 years fee payment window open
May 28 20046 months grace period start (w surcharge)
Nov 28 2004patent expiry (for year 4)
Nov 28 20062 years to revive unintentionally abandoned end. (for year 4)
Nov 28 20078 years fee payment window open
May 28 20086 months grace period start (w surcharge)
Nov 28 2008patent expiry (for year 8)
Nov 28 20102 years to revive unintentionally abandoned end. (for year 8)
Nov 28 201112 years fee payment window open
May 28 20126 months grace period start (w surcharge)
Nov 28 2012patent expiry (for year 12)
Nov 28 20142 years to revive unintentionally abandoned end. (for year 12)