A cable forerunner for winding a high-voltage cable in an electric machine, wherein one end of the cable forerunner (11) is attached to the end (10) of the cable (1), the cable forerunner (11) is arranged to draw the cable (1) through a first slot (15) arranged in the machine body (8) and also to control the curvature of the cable (1) at its exit from the slot (15) unitl its entry into a second slot (16) arranged in the machine body (8), as well as a procedure and also an electric machine having at least one winding comprising a high-voltage cable wound in accordance with the procedure for winding a high-voltage cable (1) in an electric machine, wherein one end of the cable forerunner (11) is attached to the end of the cable (1), whereafter the cable forerunner (11) is caused to draw the cable (1) through a first slot (15) arranged in the machine body (8) and to control the curvature of the cable (1) at its exit from the slot until its entry into a second slot (16) arranged in the machine body (8).
|
16. A cable forerunner attachable to the end of a cable for winding a high voltage machine and forming end windings between machine slots comprising: a plurality of interconnected links selectively articuable to a minimum radius of curvature r.
25. A cable forerunner attachable to the end of a cable for winding a high voltage machine and forming end windings between machine slots comprising: a plurality of interconnected links selectively articuable to a selected radius of curvature r.
6. A cable forerunner for winding a high-voltage cable between first and second slots in the body of an electric machine, wherein one end of the cable forerunner is attachable to the end of the cable for drawing the cable through the first slot, said forerunner having a minimum. radius of curvature to control the curvature of the cable at its exit from the slot until its entry into the second slot.
1. A procedure for winding a high-voltage cable in an electric machine, comprising the steps of attaching one end of a cable forerunner to the end of the cable;
drawing the cable forerunner and the attached cable through a first slot in the machine body; and controlling the forerunner to a predefined radius of curvature so that the cable has a predefined curvature between its exit from the slot until its entry into a second slot in the machine body.
2. A procedure as claimed in
3. A procedure as claimed in
4. A procedure as claimed in
5. A procedure as claimed in
7. A cable forerunner as claimed in
8. A cable forerunner as claimed in
9. A cable forerunner as claimed in
10. A cable forerunner as claimed in
11. A cable forerunner as claimed in
12. A cable forerunner as claimed in
13. A cable forerunner as claimed in
14. A cable forerunner as claimed in
15. A cable forerunner as claimed in
17. A cable forerunner as claimed in
18. A cable forerunner as claimed in
19. A cable forerunner as claimed in
21. A cable forerunner as claimed in
22. A cable forerunner as claimed in
23. A cable forerunner as claimed in
24. A cable forerunner as claimed in
|
The present invention relates to electric machines such as transformers, synchronous machines, normal asynchronous machines as well as dual-fed machines, applications in asynchronous static current converter cascades, outerpole machines and synchronous flow machines as well as alternating current machines intended in the first place as generators in power stations for generating electric power. The invention relates particularly to the winding procedure in such machines.
Conventional machines have been designed for voltages in the range 15-30 kV, and 30 kV has normally been considered to be an upper limit. In the case of generators this normally means that a generator must be connected to the power network via a step-up transformer. The voltage level of the power network can be in the range of approximately 130-400 kV.
The present invention is intended to be used with high voltages. In this specification the term "High voltages" means electric voltages exceding 10 kV, Typically, an operating range for a machine wound in accordance with the invention and using a cable forerunner according to the invention may be voltages from 36 kV up to 800 kV.
By using high-voltage insulated electric conductors in the following termed high-voltage cables, with solid insulation similar to that used in cables for transmitting electric power (e.g. XLPE cables) in a rotating electric machine, the voltage of the machine can be increased to such levels that it can be connected directly to the power network without intermediate transformers. The conventional transformer can thus be eliminated. The cable is provided with an outer semi-conducting layer with the help of which its outer potential is defined. The high voltage cables thus enclose the electrical field within the windings. Such an insulated conductor or cable is flexible and it is of a kind which is described more in detail in the PCT applications SE97/00874 and SE97/00875. Additional descriptions of the concerned insulated conductor or cable can be found in the PCT applications SE 97/009001, SE 97/00902 and SE97/00903.
This concept generally implies that the slots in which the cables are arranged in the stator to be deeper than conventional technology (thicker insulation due to higher voltage and more turns in the winding). This entails new problems in winding the high-voltage cable in such machines.
Many different methods are available for winding the stator in a rotating electric machine with conventional windings. However, all these methods presume that the windings are stiff and can be inserted without being wound. Further, conventional windings are normally divided into short parts to fit the slots of the stator. These methods cannot be used in the present invention, where the windings consist of high voltage cables of substantial lengths, which have large diameter, high weight per unit length and high flexural rigidity. Further, during the winding process, the outer semiconducting layer of the cable must not be damaged. The difficulties in winding such a cable are thus considerable.
The object of the invention is to provide a device and a procedure that enables the winding of a high-voltage cable in an electric machine where the space available for handling the cable is also limited.
Advantageous further developments of the invention are indicated in the following description.
The present invention relates to a procedure and a device for winding high-voltage cables in an electric machine, such as the stator winding in a high-voltage alternating current generator.
In order to achieve the desired shape, radius, in a flexurally rigid cable in a end winding region in a continuous process when winding the stator for an electric machine, a cable forerunner is used that pulls the cable behind it. This cable forerunner comprises a chain of suitably long rigid or flexible, pliable cylindrical links connected to a jointed coupling at their axial centre. A suitable gap (A) is provided between the links in a straight chain at the outer edge of the cylindrical link arms. When the chain is bent the radius is limited to a fixed desired value at which contact occurs between the links at their outer radius. The radius (R) of the cable forerunner (chain) is determined by the gap between the links of the chain. its outer radius and length in accordance with the formula 1/2R=Δ/r, which is to be further explained in the following description. As a result of said property the cable forerunner can guide the cable directly through straight slots in the stator and be formed into the desired arc between two slots at the coil end part of the stator. The radius of a bent chain can be varied by varying the gap between links designed in accordance with an embodiment as described below.
The invention thus comprises a special cable forerunner designed with a number of links connected by joints, and the distance between the links can be adjusted to define a minimum radius of curvature for the cable forerunner. The cable forerunner is thus rigid at its limit radius but otherwise behaves in substantially the same manner as a rope.
The invention will be described in more detail in the following with reference to the accompanying drawings in which
FIG. 1 shows a cross section through a high-voltage cable used in the present winding procedure,
FIG. 2 shows an axial section through a stator being wound in accordance with the invention.
FIG. 3 shows a section through a cable forerunner according to the invention.
FIG. 4 shows a detail from FIG. 3.
FIG. 1 shows a cross-sectional view of a high-voltage cable 1 to be wound in accordance with the present invention. The high-voltage cable 1 comprises a number of strand parts 2 made of copper (Cu), for instance, and having circular cross section. These strand parts 2 are arranged in the middle of the high-voltage cable 1. The conductor area is between 30 and 3000 square mm. Around the strand parts 2 is a first semiconducting layer 3. Around the first semiconducting layer 3 is an insulating layer 4, e.g. XLPE insulation. Around the insulating layer 4 is a second semiconducting layer 5. The outer cable diameter is between 20 and 350 mm. Thus the concept "high-voltage cable" in the present application thus need not include the metal screen and the outer protective sheath that normally surround such a cable for power distribution.
FIG. 1 also shows a guide roller acting as first or second guide means 6a, 6b, which may be coated with rubber or a rubberlike material, journalled or fixed on a shaft 7 in contact with the outer semiconducting layer 5 of the high-voltage cable 1 in order to rotationally absorb flexural moment applied to the high-voltage cable as this is pulled or fed in its axial direction,
FIG. 2 shows an axial section through a machine body 8 which in the Figure consists of a stator in a rotating electric machine being wound with its stator winding 9 in the form of a high-voltage cable as described above. A cable forerunner 11 is connected to the end 10 of the cable with the help of a connector 12 in the form of a clamp connection, for instance. The other end of the cable forerunner is provided with a traction member 13 with a wire 14 attached. By means of the wire 14, therefore, the cable can thus be drawn in and out through a first slot 15 arranged in the machine body 8, and on into a second slot 16, out through this and so on. The cable forerunner 11 is formed from a number of rigid, sleevelike, cylindrical links 17 connected together by joints 18. The joint may be in the form of a ball and socket joint or a joint for moving around only one axis. The material in the cable forerunner is preferably plastic and/or aluminium. The diameter of the cable forerunner is slightly less than the diameter of the cable.
To facilitate shaping the unyielding cable to the desired curve, guide members 6a, 6b are placed at outgoing and ingoing slots as first guide members 6a and second guide members 6b, see FIG. 2. These rollers, preferably made of steel and coated with rubber, are arranged to absorb forces from the flexural moment MB which is required to bend the cable, enabling normal forces between cable and slot to be reduced. The guide members 6a, 6b may be passive or provided with a drive means feeding the cable at the desired speed and with the direction of rotation indicated by the arrows in FIG. 2. In this embodiment the radius can be adjusted by establishing different entry and exit speeds for the control members 6a. 6b.
The guide members are thus attached temporarily to the stator in order to absorb torque and to prevent the cable from being damaged against the slot. The rollers can be placed at several slots, about 15, in order to draw cable lengths of up to 100 m simultaneously. The rollers may be driven by a motor to feed the cable instead of or as well as the wire. The rollers may also be in the form of cylinders extending along the entire length of the stator.
FIG. 3 shows a detail of an advantageous embodiment of the cable forerunner 11 revealing that each joint 18 comprises a left part 19 connected to one end of a link 17 and a right part 20 connected to the other end of an adjacent link. Thus these parts together form an intermediate joint 18. Each link is provided with a left part 19 at one end and a right part 20 at the other end. At least the left part 19 or the right part 20 of each link 17 is secured in a spacer 21 axially movable in the link 17. The embodiment according to FIG. 3 shows both a left part 19 and a right part 20, each secured in such a spacer. In the embodiment shown each spacer 21 is screwed into one end of the link so that the spacer of the left part 19 has a left-hand thread and the spacer of the right part 20 has a right-hand thread. This implies that turning the links 17 relative to the joints 18 will alter the distance between each link 17. The operating principle is thus the same as for a screw shackle on a yacht. In order to facilitate this relative movement between links and joints, each link is provided with a locking element 22 which connects the two joint parts 19, 20 of the link. This locking element may, as shown in this embodiment, be in the form of a cotter pressed into the spacer 21. Turning of the links relative to the joints may be performed by providing the whole cable forerunner with a rubber sheath which is shrunk on and fixes the movement of the links relative to each other and, by turning the joints relative to the rubber sheath and thus the links, with the aid of a turning device not shown. An alternative embodiment is for one or more of the joints to be fixed by means of a radial blocking device running through them, while the axial distance between the links is adjusted by turning respective links.
The geometry of the cable forerunner according to FIGS. 2 and 3 is:
1/2R=Δ/r
where:
1=the distance between the two joints of a link (sleeve).
R=the limit radius of the cable forerunner
Δ=the gap between link and joint,
r=the radius of a link (sleeve)
Example: 1=100 mm. r=30 mm. R=500. which gives Δ=3 mm.
Thus the left-hand and right-hand threads at the ends of a link thus cause rotation of the outer cylindrical sleeve relative to its joint attachment to effect an alteration of the distance "1" between the sleeve joints and the gap "Δ" between the link and the joint. Turning at a single point furthest out at the ends of the cable forerunner results in adjustment of all the sleeve lengths. The sleeves should in this case be coherent from the turning point of view. A turning can be achieved by a motor, e.g. via an elastic, rubberlike, plastic hose shrunk onto the cable forerunner along its entire length as indicated above.
FIG. 4 shows a detail of the contact between two adjacent links when the cable forerunner has been curved to its defined minimum radius of curvature i.e. when the links 17 establish contact at a point or along a surface at both their end peripheries 23. The cylindrical ends of the links 17 are shown rounded off in the Figure but may also be provided with a number of peripherally arranged surfaces to allow a higher surface pressure.
Patent | Priority | Assignee | Title |
7152306, | Feb 09 2001 | ABB Schweiz AG | Method for installing a stator winding |
8901790, | Jan 03 2012 | General Electric Company | Cooling of stator core flange |
9953747, | Aug 07 2014 | Henkel AG & Co. KGaA | Electroceramic coating of a wire for use in a bundled power transmission cable |
Patent | Priority | Assignee | Title |
1304451, | |||
1418856, | |||
1481585, | |||
1508456, | |||
1728915, | |||
1742985, | |||
1747507, | |||
1756672, | |||
1762775, | |||
1781308, | |||
1861182, | |||
1904885, | |||
1974406, | |||
2006170, | |||
2206856, | |||
2217430, | |||
2241832, | |||
2251291, | |||
2256897, | |||
2295415, | |||
2409893, | |||
2415652, | |||
2424443, | |||
2436306, | |||
2446999, | |||
2459322, | |||
2462651, | |||
2498238, | |||
2650350, | |||
2721905, | |||
2749456, | |||
2780771, | |||
2846599, | |||
2885581, | |||
2936961, | |||
2943242, | |||
2947957, | |||
2959699, | |||
2962679, | |||
2975309, | |||
3014139, | |||
3098893, | |||
3130335, | |||
3143269, | |||
3157806, | |||
3158770, | |||
3197723, | |||
3268766, | |||
3304599, | |||
3354331, | |||
3365657, | |||
3372283, | |||
3392779, | |||
3411027, | |||
3418530, | |||
3435262, | |||
3437858, | |||
3444407, | |||
3447002, | |||
3484690, | |||
3541221, | |||
3560777, | |||
3571690, | |||
3593123, | |||
3631519, | |||
3644662, | |||
3651244, | |||
3651402, | |||
3660721, | |||
3666876, | |||
3670192, | |||
3675056, | |||
3684821, | |||
3684906, | |||
3699238, | |||
3716652, | |||
3716719, | |||
3727085, | |||
3740600, | |||
3743867, | |||
3746954, | |||
3758699, | |||
3778891, | |||
3781739, | |||
3787000, | |||
3787607, | |||
3792399, | |||
3801843, | |||
3809933, | |||
3813764, | |||
3828115, | |||
3881647, | |||
3884154, | |||
3891880, | |||
3902000, | |||
3912957, | |||
3932779, | Mar 22 1973 | Allmanna Svenska Elektriska Aktiebolaget | Turbo-generator rotor with a rotor winding and a method of securing the rotor winding |
3932791, | Jan 22 1973 | Multi-range, high-speed A.C. over-current protection means including a static switch | |
3943392, | Nov 27 1974 | Allis-Chalmers Corporation | Combination slot liner and retainer for dynamoelectric machine conductor bars |
3947278, | Dec 19 1973 | Universal Oil Products Company | Duplex resistor inks |
3965408, | Dec 16 1974 | International Business Machines Corporation | Controlled ferroresonant transformer regulated power supply |
3968388, | Jun 14 1972 | Kraftwerk Union Aktiengesellschaft | Electric machines, particularly turbogenerators, having liquid cooled rotors |
3971543, | Apr 17 1975 | Tool and kit for electrical fishing | |
3974314, | Mar 29 1973 | Micafil A.G. | Electrical insulation particularly for use in winding slots of dynamo-electric machines and method for its manufacture |
3993860, | Aug 18 1975 | FLUROCARBON COMPANY, THE | Electrical cable adapted for use on a tractor trailer |
3995785, | Feb 12 1973 | Essex International, Inc. | Apparatus and method for forming dynamoelectric machine field windings by pushing |
4001616, | Feb 18 1974 | Canadian General Electric Company Limited | Grounding of outer winding insulation to cores in dynamoelectric machines |
4008367, | Jun 24 1974 | Siemens Aktiengesellschaft | Power cable with plastic insulation and an outer conducting layer |
4008409, | Apr 09 1975 | General Electric Company | Dynamoelectric machine core and coil assembly |
4031310, | Jun 13 1975 | General Cable Corporation | Shrinkable electrical cable core for cryogenic cable |
4039740, | Jun 19 1974 | The Furukawa Electric Co., Ltd. | Cryogenic power cable |
4041431, | Nov 22 1976 | Ralph Ogden | Input line voltage compensating transformer power regulator |
4047138, | May 19 1976 | General Electric Company | Power inductor and transformer with low acoustic noise air gap |
4064419, | Oct 08 1976 | AEG Westinghouse Industrial Automation Corporation | Synchronous motor KVAR regulation system |
4084307, | Jul 11 1973 | Allmanna Svenska Elektriska Aktiebolaget | Method of joining two cables with an insulation of cross-linked polyethylene or another cross linked linear polymer |
4085347, | Jan 16 1976 | White-Westinghouse Corporation | Laminated stator core |
4088953, | Jan 06 1975 | The Reluxtrol Company | Eddy-current test probe utilizing a combination of high and low reluctance materials to optimize probe sensitivity |
4091138, | Feb 12 1975 | Sumitomo Bakelite Company Limited; Toshinori, Takagi | Insulating film, sheet, or plate material with metallic coating and method for manufacturing same |
4091139, | Sep 17 1975 | Westinghouse Electric Corp. | Semiconductor binding tape and an electrical member wrapped therewith |
4099227, | Dec 01 1976 | Square D Company | Sensor circuit |
4103075, | Oct 28 1976 | Airco, Inc. | Composite monolithic low-loss superconductor for power transmission line |
4106069, | May 19 1976 | Siemens Aktiengesellschaft | Protection arrangement for a brushless synchronous machine |
4107092, | Feb 26 1973 | UOP Inc. | Novel compositions of matter |
4109098, | Jan 14 1975 | Telefonaktiebolaget L M Ericsson | High voltage cable |
4121148, | Apr 27 1976 | Dipl.-Ing. Hitzinger & Co. | Brushless synchronous generator system |
4132914, | Apr 22 1975 | Six-phase winding of electric machine stator | |
4134036, | Jun 03 1977 | R T ACQUIRING CORP , A CORP OF; ROTOR TOOL CORPORATION | Motor mounting device |
4134055, | Mar 28 1975 | Mitsubushi Denki Kabushiki Kaisha | Inductor type synchronous motor driving system |
4134146, | Feb 09 1978 | Hubbell Incorporated | Surge arrester gap assembly |
4149101, | May 12 1977 | Arrangement for locking slot wedges retaining electric windings | |
4152615, | Jun 14 1977 | Westinghouse Electric Corp. | End iron axial flux damper system |
4160193, | Nov 17 1977 | RIPLEY CORPORATION, THE | Metal vapor electric discharge lamp system |
4164672, | Aug 18 1977 | Electric Power Research Institute, Inc. | Cooling and insulating system for extra high voltage electrical machine with a spiral winding |
4164772, | Apr 17 1978 | Electric Power Research Institute, Inc. | AC fault current limiting circuit |
4177397, | Mar 17 1978 | AMP Incorporated | Electrical connections for windings of motor stators |
4177418, | Aug 04 1977 | International Business Machines Corporation | Flux controlled shunt regulated transformer |
4184186, | Sep 06 1977 | General Electric Company | Current limiting device for an electric power system |
4200817, | Jan 20 1977 | BBC Brown Boveri & Company Limited | Δ-Connected, two-layer, three-phase winding for an electrical machine |
4200818, | Aug 01 1978 | Westinghouse Electric Corp. | Resin impregnated aromatic polyamide covered glass based slot wedge for large dynamoelectric machines |
4206434, | Aug 29 1978 | Regulating transformer with magnetic shunt | |
4207427, | Mar 16 1977 | SOCIETA PIRELLI S P A , A COMPANY OF ITALY | Electrical power cable with stranded insulated wires |
4207482, | Nov 14 1978 | Siemens Westinghouse Power Corporation | Multilayered high voltage grading system for electrical conductors |
4208597, | Jun 22 1978 | Siemens Westinghouse Power Corporation | Stator core cooling for dynamoelectric machines |
4229721, | Nov 30 1977 | Instytut Spawalnictwa | Welding transformer with drooping voltage-current characteristics |
4238339, | Nov 27 1978 | Arrangement for supporting stator end windings of an electric machine | |
4239999, | Nov 30 1976 | Super-conductive electrical machine having an improved system for maintaining vacuum in the stator/rotor space | |
4245182, | Mar 30 1977 | Hitachi, Ltd.; Hitachi Engineering Co., Ltd. | Excitation control apparatus for a generator |
4246694, | May 14 1977 | Kabel-und Metallwerke Gutehoffnungshutte Aktiengesellschaft; Thyssen Industrie Aktiengesellschaft | Method of making linear motor stator |
4255684, | Aug 03 1979 | Laminated motor stator structure with molded composite pole pieces | |
4258280, | Nov 07 1975 | BBC Brown Boveri & Company Limited | Supporting structure for slow speed large diameter electrical machines |
4262209, | Feb 26 1979 | Supplemental electrical power generating system | |
4274027, | Sep 20 1978 | Hitachi, Ltd. | Salient pole rotor with shielding rods between adjacent poles |
4281264, | Feb 26 1979 | General Electric Company | Mounting of armature conductors in air-gap armatures |
4292558, | Aug 15 1979 | Siemens Westinghouse Power Corporation | Support structure for dynamoelectric machine stators spiral pancake winding |
4307311, | May 25 1979 | Robert Bosch GmbH | Winding method for an electrical generator and generator manufactured by the method |
4308476, | Dec 04 1974 | BBC Brown Boveri & Company Limited | Bar windings for electrical machines |
4308575, | Dec 13 1978 | Tokyo Shibaura Denki Kabushiki Kaisha | Power source system |
4310966, | Jun 07 1978 | Kabel-und Metallwerke Gutehoffnungshutte AG | Method of making a stator for linear motor |
4314168, | May 21 1979 | Kabel-Und Metallwerke Gutehoffnungshuette A.G. | Prefabricated stator windings |
4317001, | Feb 23 1979 | Pirelli Cable Corp. | Irradiation cross-linked polymeric insulated electric cable |
4320645, | Oct 11 1979 | Card-O-Matic Pty. Limited | Apparatus for fabricating electrical equipment |
4321426, | Jun 09 1978 | General Electric Company | Bonded transposed transformer winding cable strands having improved short circuit withstand |
4321518, | Mar 28 1975 | Mitsubishi Denki Kabushiki Kaisha | Inductor type synchronous motor driving system for minute control of the position and the rotation angle of the motor |
4330726, | Dec 04 1980 | General Electric Company | Air-gap winding stator construction for dynamoelectric machine |
4337922, | Mar 27 1979 | Mathias Streiff AG | Apparatus for laying and securing heavy electrical cables |
4341989, | Mar 08 1979 | Elmekano i Lulea AB | Device for phase compensation and excitation of an asynchronous machine operating as a generator |
4347449, | Mar 20 1979 | Societe Nationale Industrielle Aerospatiale | Process for making a magnetic armature of divided structure and armature thus obtained |
4347454, | Aug 17 1978 | Siemens Aktiengesellschaft | Stator winding for an electric machine |
4357542, | Jul 12 1979 | Westinghouse Electric Corp. | Wind turbine generator system |
4360748, | Feb 21 1980 | Kabel-und Metallwerke Gutehoffnungshutte AG; Thyssen Industrie Aktiengesellschaft | Polyphase stator system for a linear motor |
4361723, | Mar 16 1981 | Hubbell Incorporated | Insulated high voltage cables |
4363612, | Mar 29 1979 | Flywheel and screw press for producing ceramic articles | |
4365178, | Jun 08 1981 | General Electric Co. | Laminated rotor for a dynamoelectric machine with coolant passageways therein |
4367425, | Jun 01 1981 | Westinghouse Electric Corp. | Impregnated high voltage spacers for use with resin filled hose bracing systems |
4367890, | Feb 11 1980 | Siemens Aktiengesellschaft | Turbine set with a generator feeding a network of constant frequency |
4368418, | Apr 21 1981 | PWER TECHNOLOGIES, INC | Apparatus for controlling high voltage by absorption of capacitive vars |
4369389, | May 02 1980 | KRAFTWERK UNION AKTIENGESELLSCHAFT A CORP OF GERMANY | Device for securing winding bars in slots of electric machines, especially turbo-generators |
4371745, | Nov 15 1979 | Kabushiki Kaisha Kawai Gakki Seisakusho | Shielded wire |
4384944, | Feb 23 1979 | Pirelli Cable Corporation | Carbon filled irradiation cross-linked polymeric insulation for electric cable |
4387316, | Sep 30 1981 | General Electric Company | Dynamoelectric machine stator wedges and method |
4401920, | May 11 1981 | National Research Council of Canada | Laser triggered high voltage rail gap switch |
4403163, | Aug 23 1980 | Brown, Boveri & Cie AG | Conductor bar for electric machines and method of manufacture thereof |
4404486, | Dec 24 1980 | General Electric Company | Star connected air gap polyphase armature having limited voltage gradients at phase boundaries |
4411710, | Apr 03 1980 | The Fujikawa Cable Works, Limited | Method for manufacturing a stranded conductor constituted of insulated strands |
4421284, | Aug 19 1981 | Northern Telecom Limited | Reeling of cable |
4425521, | Jun 03 1982 | General Electric Company | Magnetic slot wedge with low average permeability and high mechanical strength |
4426771, | Oct 27 1981 | Emerson Electric Co. | Method of fabricating a stator for a multiple-pole dynamoelectric machine |
4429244, | Dec 06 1979 | VSESOJUZY PROEKTNO- IZYSKATELSKY I NAUCHNO- ISSLEDOVATELSKY INSTITUT GIDROPROEKT USSR, MOSCOW, VOLOKLAMSKOE SHOSSE , 2, A CORP OF UUSR | Stator of generator |
4431960, | Nov 06 1981 | ENERGY COMPRESSION RESEARCH CORP , 1110 CAMINO DEL MAR, DEL MAR, CA 92014, A CORP OF CA | Current amplifying apparatus |
4432029, | Jul 06 1981 | ASEA Aktiebolag | Protective means for series capacitors |
4437464, | Nov 09 1981 | WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO | Electrosurgical generator safety apparatus |
4443725, | Jun 14 1982 | General Electric Company | Dynamoelectric machine stator wedge |
4470884, | Aug 07 1981 | NATIONAL ANO-WIRE, INC MUSKEGON, MI A CORP OF | High speed aluminum wire anodizing machine and process |
4473765, | Sep 30 1982 | General Electric Company | Electrostatic grading layer for the surface of an electrical insulation exposed to high electrical stress |
4475075, | Oct 14 1981 | Electric power generator and system | |
4477690, | Dec 18 1980 | Coupling unit of two multilayer cables of high-voltage generator stator winding | |
4481438, | Sep 13 1982 | Electric Power Research Institute, Inc | High voltage electrical generator and windings for use therein |
4484106, | May 14 1982 | CANADIAN PATENTS AND DEVELOPMENT LIMITED-SOCIETE CANADIENNE DES BREVETS ET D EXPLOITATION LIMITEE | UV Radiation triggered rail-gap switch |
4488079, | |||
4490651, | May 23 1980 | National Research Council of Canada | Laser triggered high voltage rail gap switch |
4503284, | Nov 09 1983 | ESSEX GROUP, INC | RF Suppressing magnet wire |
4508251, | Oct 26 1982 | Nippon Telegraph & Telephone Corporation | Cable pulling/feeding apparatus |
4510077, | Nov 03 1983 | General Electric Company | Semiconductive glass fibers and method |
4517471, | Jul 29 1981 | Anton Piller GmbH & Co. KG | Rotary converter machine for direct transfer of electric energy by flux linkage between windings on a stator pack |
4520287, | Oct 27 1981 | Emerson Electric Co. | Stator for a multiple-pole dynamoelectric machine and method of fabricating same |
4523249, | Sep 21 1982 | Mitsubishi Denki Kabushiki Kaisha | Alternating current limiting apparatus |
4538131, | Jan 27 1983 | BBC Brown, Boveri & Company, Ltd. | Air-core choke coil |
4546210, | Jun 07 1982 | Hitachi, Ltd. | Litz wire |
4551780, | Jan 10 1979 | Alstom | Apparatus for reducing subsynchronous frequencies in a power supply |
4557038, | Jul 01 1983 | kabelmetal electro GmbH; Thyssen Industrie AG | Installing a prefabricated winding of a linear motor |
4560896, | Oct 01 1984 | General Electric Company | Composite slot insulation for dynamoelectric machine |
4565929, | Sep 29 1983 | The Boeing Company; Boeing Company, the | Wind powered system for generating electricity |
4571453, | Nov 09 1978 | The Fujikura Cable Works, Limited | Conductor for an electrical power cable |
4588916, | Jan 28 1985 | General Motors Corporation | End turn insulation for a dynamoelectric machine |
4590416, | Aug 08 1983 | INTERGRATED POWER SYSTEMS CORPORATION, A CORP OF TEXAS | Closed loop power factor control for power supply systems |
4594630, | Jun 02 1980 | Electric Power Research Institute, Inc. | Emission controlled current limiter for use in electric power transmission and distribution |
4607183, | Nov 14 1984 | General Electric Company | Dynamoelectric machine slot wedges with abrasion resistant layer |
4615109, | Jul 01 1983 | Kabelmetal Electro GmbH; Thyssen Industrie | Apparatus for installing a prefabricated winding of a linear motor |
4615778, | Nov 25 1983 | General Electric Company; GENERAL ELECTRIC COMPANY, A CORP OF NY | Process for electrodepositing mica on coil or bar connections and resulting products |
4618795, | Apr 10 1985 | Siemens Westinghouse Power Corporation | Turbine generator stator end winding support assembly with decoupling from the core |
4619040, | Oct 27 1981 | Emerson Electric Co. | Method of fabricating stator for a multiple pole dynamoelectric machine |
4622116, | Feb 19 1985 | General Electric Company; GENERAL ELECTRIC COMPANY, A CORP OF NEW YORK | Process for electrodepositing mica on coil or bar connections and resulting products |
4633109, | Oct 23 1984 | STANDARD ELEKTRIK LORENZ AKTIENGESELLSCHAFT, A CORP OF GERMANY | Electronically commutated, collectorless direct-current motor |
4650924, | Jul 24 1984 | Phelps Dodge Industries, Inc. | Ribbon cable, method and apparatus, and electromagnetic device |
4652963, | Mar 07 1984 | ASEA Aktiebolag | Series capacitor equipment |
4656316, | Nov 12 1984 | Siemens Aktiengesellschaft | Splice protective insert for cable sleeves |
4656379, | Dec 18 1985 | The Garrett Corporation; GARRETT CORPORATION, THE | Hybrid excited generator with flux control of consequent-pole rotor |
4677328, | Nov 08 1984 | Rikichi, Kumakura | Generator for use on bicycle |
4687882, | Apr 28 1986 | ONTARIO POWER GENERATION INC | Surge attenuating cable |
4692731, | Apr 04 1985 | U S PHILIPS CORPORATION | Composite wire, coil and deflection unit for HF applications |
4723083, | Nov 25 1983 | General Electric Company | Electrodeposited mica on coil bar connections and resulting products |
4723104, | Oct 02 1985 | Energy saving system for larger three phase induction motors | |
4724345, | Nov 25 1983 | General Electric Company | Electrodepositing mica on coil connections |
4732412, | Oct 27 1981 | NV Raychem S.A. | Coated recoverable articles |
4737704, | Nov 06 1986 | MALOE PREDPRIYATIE TACET | Transformer for arc and plasma setups having broad current adjustment range |
4745314, | Nov 14 1984 | Fanuc Ltd. | Liquid-cooled motor |
4761602, | Jan 22 1985 | Compound short-circuit induction machine and method of its control | |
4766365, | Apr 15 1987 | Hydro Quebec | Self-regulated transformer-inductor with air gaps |
4771168, | May 04 1987 | UNIVERSITY OF SOUTHERN CALIFORNIA, THE | Light initiated high power electronic switch |
4785138, | Dec 06 1985 | Kabel Electro Gesellschaft mit beschrankter Haftung | Electric cable for use as phase winding for linear motors |
4795933, | Aug 06 1982 | Hitachi, Ltd. | Salient-pole rotary electric machine |
4827172, | Mar 10 1987 | Mitsuba Corporation | Dc motor with rotor slots closely spaced |
4845308, | Jul 20 1987 | The Babcock & Wilcox Company | Superconducting electrical conductor |
4847747, | Sep 26 1988 | Westinghouse Electric Corp. | Commutation circuit for load-commutated inverter induction motor drives |
4853565, | Aug 23 1984 | General Electric Company; GENERAL ELECTRIC COMPANY A CORP OF NEW YORK | Semi-conducting layer for insulated electrical conductors |
4859810, | Jul 11 1986 | BP Chemicals Limited | Water-tree stable electrical insulating polymeric compositions |
4859989, | Dec 01 1987 | W L GORE & ASSOCIATES, INC | Security system and signal carrying member thereof |
4860430, | Nov 06 1987 | kabelmetal electro GmbH; Thyssen Industrie AG | Completing a linear motor stator |
4864266, | Apr 29 1988 | Electric Power Research Institute, Inc | High-voltage winding for core-form power transformers |
4883230, | Jun 12 1987 | Kabmatik AB | Cable switching device |
4890040, | Jun 01 1987 | Optically triggered back-lighted thyratron network | |
4894284, | Nov 09 1982 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Cross-linked polyethylene-insulated cable |
4914386, | Apr 28 1988 | ABB POWER DISTRIBUTION INC , 2975 WESTCHESTER AVENUE, PURCHASE, NEW YORK 10577 A CORP OF DE | Method and apparatus for providing thermal protection for large motors based on accurate calculations of slip dependent rotor resistance |
4918347, | Jul 21 1988 | Tamagawa Seiki Kabushiki Kaisha | Coil winding construction for an electric motor |
4918835, | Nov 06 1987 | kabelmetal electro GmbH; Thyssen Industrie AG | Apparatus for completing a linear motor stator |
4924342, | Jan 27 1987 | POWER PARAGON, INC | Low voltage transient current limiting circuit |
4926079, | Oct 17 1988 | One World Technologies Limited | Motor field winding with intermediate tap |
4942326, | Apr 19 1989 | SIEMENS POWER GENERATION, INC | Biased securement system for end winding conductor |
4949001, | Jul 21 1989 | KINECTRICS INC | Partial discharge detection method and apparatus |
4982147, | Jan 30 1989 | State of Oregon acting by and through the State Board of Higher; STATE OF OREGON ACTING BY AND THROUGH THE STATE BOARD OF HIGHER EDUCATION ON BEHALF OF OREGON STATE UNIVERSITY, P O BOX 3175, EUGENE, OR 97403 | Power factor motor control system |
4994952, | Feb 10 1988 | ELECTRONICS RESEARCH GROUP, INC | Low-noise switching power supply having variable reluctance transformer |
4997995, | Oct 17 1988 | Pirelli General plc | Extra-high-voltage power cable |
5012125, | Jun 03 1987 | NORAND CORPORATION, A CORP OF DE | Shielded electrical wire construction, and transformer utilizing the same for reduction of capacitive coupling |
5030813, | Feb 06 1990 | Pulsair Anstalt Corporation | Welding apparatus and transformer therefor |
5036165, | May 15 1989 | General Electric Co. | Semi-conducting layer for insulated electrical conductors |
5036238, | Jul 19 1989 | Mitsubishi Denki Kabushiki Kaisha | Rotor of salient-pole type rotary machine |
5066881, | May 15 1989 | BABCOCK & WILCOX POWER GENERATION GROUP, INC | Semi-conducting layer for insulated electrical conductors |
5067046, | Aug 23 1984 | General Electric Company | Electric charge bleed-off structure using pyrolyzed glass fiber |
5067843, | Sep 25 1989 | Pulling attachment for flexible conduit | |
5083360, | Sep 28 1988 | ABB Power T&D Company Inc | Method of making a repairable amorphous metal transformer joint |
5086246, | Feb 22 1990 | General Electric Canada Inc. | Salient pole rotor for a dynamoelectric machine |
5091609, | Feb 14 1989 | Sumitomo Electric Industries, Ltd. | Insulated wire |
5094703, | Nov 09 1978 | The Fujikura Cable Works Limited | Conductor for an electrical power cable and a method for manufacturing the same |
5095175, | Apr 24 1990 | Hitachi Cable, Ltd. | Water-tight rubber or plastic insulated cable |
5097241, | Dec 29 1989 | Sundstrand Corporation | Cooling apparatus for windings |
5097591, | Sep 25 1990 | Thyssen Industrie AG | Device for removing the winding of a linear motor |
5111095, | Nov 28 1990 | Baldor Electric Company | Polyphase switched reluctance motor |
5124607, | May 19 1989 | GENERAL ELECTRIC COMPANY, A CORPORATION OF | Dynamoelectric machines including metal filled glass cloth slot closure wedges, and methods of making the same |
5136459, | Mar 13 1989 | Electric Power Research Institute, Inc. | High speed current limiting system responsive to symmetrical & asymmetrical currents |
5140290, | Aug 02 1988 | ABB Schweiz AG | Device for inductive current limiting of an alternating current employing the superconductivity of a ceramic high-temperature superconductor |
5153460, | Mar 25 1991 | The United States of America as represented by the Secretary of the Army | Triggering technique for multi-electrode spark gap switch |
5168662, | Dec 28 1988 | Fanuc Ltd. | Process of structuring stator of built-in motor |
5171941, | Mar 30 1990 | The Furukawa Electric Co., Ltd.; Central Research Institute of Electric Power Industry | Superconducting strand for alternating current |
5182537, | Sep 12 1990 | U.S. Philips Corporation | Transformer with twisted conductors |
5187428, | Feb 26 1991 | Illinois Tool Works Inc | Shunt coil controlled transformer |
5201269, | Apr 03 1991 | Koenig & Bauer Aktiengesellschaft | Roller chain for paper infeed device |
5231249, | Feb 23 1990 | The Furukawa Electric Co., Ltd. | Insulated power cable |
5235488, | Feb 05 1992 | Brett Products, Inc. | Wire wound core |
5246783, | Aug 15 1991 | EXXON CHEMICAL PATENTS INC , A CORPORATION OF DELAWARE | Electrical devices comprising polymeric insulating or semiconducting members |
5263414, | Jan 31 1992 | Koenig & Bauer Aktiengesellschaft | Material web guide assembly |
5264778, | Dec 31 1991 | Westinghouse Electric Corp. | Apparatus protecting a synchronous machine from under excitation |
5287262, | Apr 13 1991 | Laserscope | High voltage resonant inverter for capacitive load |
5304883, | Sep 03 1992 | AlliedSignal Inc | Ring wound stator having variable cross section conductors |
5305961, | Jun 14 1991 | Alstom Holdings | Method of winding an electrical coil as successive oblique layers of coil turns |
5321308, | Jul 14 1993 | Tri-Sen Systems Inc.; TRI-SEN SYSTEMS INC | Control method and apparatus for a turbine generator |
5323330, | Nov 04 1991 | Asea Brown Boveri AB | Reduction of disturbances in a power network |
5325008, | Dec 09 1992 | General Electric Company | Constrained ripple spring assembly with debondable adhesive and methods of installation |
5325259, | Dec 22 1989 | Asea Brown Boveri AB | Overvoltage protection for series capacitor equipment |
5327637, | Feb 07 1992 | kabelmetal electro GmbH | Process for repairing the winding of an electrical linear drive |
5341281, | May 14 1993 | Allen-Bradley Company, Inc. | Harmonic compensator using low leakage reactance transformer |
5343139, | Jan 31 1992 | SIEMENS POWER GENERATION, INC ; SIEMENS ENERGY, INC | Generalized fast, power flow controller |
5355046, | Dec 15 1989 | Stator end-winding system and a retrofitting set for same | |
5365132, | May 27 1993 | Regal Beloit America, Inc | Lamination for a dynamoelectric machine with improved cooling capacity |
5387890, | Nov 05 1992 | GEC Alsthom T & D SA; GEC Alsthom Electromecanique SA | Superconductive coil assembly particularly for a current limiter, and a current limiter including such a coil assembly |
5397513, | Mar 31 1986 | NuPipe, Inc. | Method for installing a length of substantially rigid thermoplastic pipe in an existing conduit |
5399941, | May 03 1993 | The United States of America as represented by the Secretary of the Navy | Optical pseudospark switch |
5400005, | Jan 13 1992 | Albar, Incorporated | Toroidal transformer with magnetic shunt |
5408169, | Jun 23 1992 | SMH Management Services AG | Device for controlling an asynchronous motor |
5449861, | Feb 24 1993 | YAZAKI ENERGY SYSTEM CORPORATION | Wire for press-connecting terminal and method of producing the conductive wire |
5452170, | Feb 21 1992 | Hitachi, Ltd. | Commutation type DC breaker |
5468916, | Jun 10 1992 | Alstom | Means for fixing winding overhangs in electrical machines |
5499178, | Dec 16 1991 | Regents of the University of Minnesota | System for reducing harmonics by harmonic current injection |
5500632, | May 11 1994 | Wide band audio transformer with multifilar winding | |
5510942, | Dec 19 1994 | General Electric Company | Series-capacitor compensation equipment |
5530307, | Mar 28 1994 | Emerson Electric Co. | Flux controlled permanent magnet dynamo-electric machine |
5533658, | Nov 10 1994 | PRODUCTION TUBE CUTTING, INC | Apparatus having replaceable shoes for positioning and gripping tubing |
5534754, | Jul 06 1993 | GENERAL EXPORT INDUSTRIES | Apparatus for supplying electrical power to an arc lamp including resonant circuit |
5545853, | Jul 19 1993 | THE PROVIDENT BANK | Surge-protected cable |
5550410, | Aug 02 1994 | Gas turbine electrical power generation scheme utilizing remotely located fuel sites | |
5583387, | Jun 14 1993 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Stator of dynamo-electric machine |
5587126, | Mar 31 1986 | NuPipe, Inc. | Method of manufacturing a pipe liner for installation in an existing conduit |
5598137, | Mar 05 1992 | Siemens Aktiengesellschaft | Coil for high-voltage transformer |
5607320, | Sep 28 1995 | Osram Sylvania Inc. | Cable clamp apparatus |
5612510, | Oct 11 1994 | THE PROVIDENT BANK | High-voltage automobile and appliance cable |
5663605, | May 03 1995 | COMSTAR AUTOMOTIVE TECHNOLOGIES PRIVATE LIMITED | Rotating electrical machine with electromagnetic and permanent magnet excitation |
5672926, | Feb 21 1995 | Siemens Aktiengesellschaft | Hybrid-energized electric machine |
5689223, | Apr 24 1995 | ABB Schweiz AG | Superconducting coil |
5807447, | Oct 16 1996 | Marmon Utility LLC | Neutral conductor grounding system |
5834699, | Oct 31 1995 | The Whitaker Corporation | Cable with spaced helices |
5996873, | May 11 1998 | Heidelberger Druckmaschinen AG | Device for threading a web of material through a rotary printing press |
681800, | |||
847008, | |||
AT399790, | |||
BE565063, | |||
CH1189322, | |||
CH266037, | |||
CH391071, | |||
CH534448, | |||
CH539328, | |||
CH646403, | |||
CH657482, | |||
DD137164, | |||
DD138840, | |||
DE134022, | |||
DE1465719, | |||
DE1638176, | |||
DE1807391, | |||
DE19020222, | |||
DE19547229, | |||
DE19620906, | |||
DE2050674, | |||
DE209313, | |||
DE2155371, | |||
DE2400698, | |||
DE2520511, | |||
DE2656389, | |||
DE2721905, | |||
DE277012, | |||
DE2824951, | |||
DE2835386, | |||
DE2839517, | |||
DE2854520, | |||
DE2913697, | |||
DE2917717, | |||
DE2920478, | |||
DE2939004, | |||
DE3006382, | |||
DE3008818, | |||
DE3009102, | |||
DE3028777, | |||
DE3305225, | |||
DE3309051, | |||
DE336418, | |||
DE3441311, | |||
DE3543106, | |||
DE3612112, | |||
DE372390, | |||
DE3726346, | |||
DE386561, | |||
DE387973, | |||
DE3925337, | |||
DE4022476, | |||
DE4023903, | |||
DE40414, | |||
DE406371, | |||
DE4233558, | |||
DE425551, | |||
DE426793, | |||
DE432169, | |||
DE433749, | |||
DE435608, | |||
DE435609, | |||
DE4402184, | |||
DE4409794, | |||
DE4412761, | |||
DE441717, | |||
DE4420322, | |||
DE443011, | |||
DE4438186, | |||
DE460124, | |||
DE468827, | |||
DE482506, | |||
DE501181, | |||
DE523047, | |||
DE568508, | |||
DE572030, | |||
DE584639, | |||
DE586121, | |||
DE604972, | |||
DE629301, | |||
DE673545, | |||
DE719009, | |||
DE846583, | |||
DE875227, | |||
DE975999, | |||
EP56580A1, | |||
EP102513, | |||
EP120154, | |||
EP130124, | |||
EP142813, | |||
EP155405, | |||
EP174783, | |||
EP185788, | |||
EP221404, | |||
EP234521, | |||
EP244069, | |||
EP246377, | |||
EP265868, | |||
EP274691, | |||
EP277358, | |||
EP280759, | |||
EP282876, | |||
EP309096, | |||
EP314860, | |||
EP316911, | |||
EP317248, | |||
EP335430, | |||
EP342554, | |||
EP375101, | |||
EP406437, | |||
EP439410, | |||
EP440865, | |||
EP469155A1, | |||
EP490705, | |||
EP49104, | |||
EP493704, | |||
EP503817, | |||
EP571155, | |||
EP620570, | |||
EP620630, | |||
EP642027, | |||
EP671632, | |||
EP676777, | |||
EP677915, | |||
EP684679, | |||
EP684682, | |||
EP695019, | |||
EP732787, | |||
EP738034, | |||
EP739087A2, | |||
EP739087A3, | |||
EP740315, | |||
EP749190A2, | |||
EP749193A3, | |||
EP751605, | |||
EP780926, | |||
EP78908, | |||
EP802542, | |||
EP913912A1, | |||
FR1011924, | |||
FR1126975, | |||
FR1238795, | |||
FR2108171, | |||
FR2251938, | |||
FR2305879, | |||
FR2376542, | |||
FR2467502, | |||
FR2481531, | |||
FR2556146, | |||
FR2594271, | |||
FR2708157, | |||
FR805544, | |||
FR841351, | |||
FR847899, | |||
FR916959, | |||
GB1024583, | |||
GB1053337, | |||
GB1059123, | |||
GB1103098, | |||
GB1103099, | |||
GB1117401, | |||
GB1135242, | |||
GB1147049, | |||
GB1157885, | |||
GB1174659, | |||
GB1236082, | |||
GB123906, | |||
GB1268770, | |||
GB1319257, | |||
GB1322433, | |||
GB1340983, | |||
GB1341050, | |||
GB1365191, | |||
GB1395152, | |||
GB1424982, | |||
GB1426594, | |||
GB1438610, | |||
GB1445284, | |||
GB1479904, | |||
GB1493163, | |||
GB1502938, | |||
GB1525745, | |||
GB1548633, | |||
GB1574796, | |||
GB2000625, | |||
GB2022327, | |||
GB2025150, | |||
GB2034101, | |||
GB2046142, | |||
GB2070341, | |||
GB2070470, | |||
GB2071433, | |||
GB2081523, | |||
GB2099635, | |||
GB2105925, | |||
GB2106306, | |||
GB2106721, | |||
GB2136214, | |||
GB2140195, | |||
GB2150153, | |||
GB2268337, | |||
GB2273819, | |||
GB2283133, | |||
GB2289992, | |||
GB2308490, | |||
GB2332557, | |||
GB268271, | |||
GB292999, | |||
GB293861, | |||
GB319313, | |||
GB518993, | |||
GB537609, | |||
GB540456, | |||
GB589071, | |||
GB666883, | |||
GB685416, | |||
GB702892, | |||
GB715226, | |||
GB723457, | |||
GB739962, | |||
GB763761, | |||
GB805721, | |||
GB827600, | |||
GB854728, | |||
GB870583, | |||
GB913386, | |||
GB965741, | |||
GB992249, | |||
HU175494, | |||
JP1129737, | |||
JP2017474, | |||
JP318253, | |||
JP3245748, | |||
JP4179107, | |||
JP424909, | |||
JP5290947, | |||
JP57043529, | |||
JP57126117, | |||
JP59076156, | |||
JP59159642, | |||
JP60206121, | |||
JP6196343, | |||
JP62320631, | |||
JP6233442, | |||
JP6264964, | |||
JP6325629, | |||
JP7057951, | |||
JP7161270, | |||
JP7264789, | |||
JP8036952, | |||
JP8167332, | |||
JP8167360, | |||
JP8264039, | |||
JP9200989, | |||
LU67199, | |||
SE255156, | |||
SE305899, | |||
SE341428, | |||
SE453236, | |||
SE457792, | |||
SE502417, | |||
SE90308, | |||
SU1019553, | |||
SU1511810, | |||
SU425268, | |||
SU694939, | |||
SU792302, | |||
SU955369, | |||
WO8115862, | |||
WO8202617, | |||
WO8502302, | |||
WO9000279, | |||
WO9011389, | |||
WO9012409, | |||
WO9100077, | |||
WO9101059, | |||
WO9101585, | |||
WO9107807, | |||
WO9109442, | |||
WO9111841, | |||
WO9115755, | |||
WO9201328, | |||
WO9203870, | |||
WO9321681, | |||
WO9406194, | |||
WO9518058, | |||
WO9522153, | |||
WO9524049, | |||
WO9600010, | |||
WO9622606, | |||
WO9622607, | |||
WO9630144, | |||
WO9710640, | |||
WO9711831, | |||
WO9716881, | |||
WO9729494, | |||
WO9745288, | |||
WO9745847, | |||
WO9745848, | |||
WO9745906, | |||
WO9745907, | |||
WO9745912, | |||
WO9745914, | |||
WO9745915, | |||
WO9745916, | |||
WO9745918, | |||
WO9745919, | |||
WO9745920, | |||
WO9745921, | |||
WO9745922, | |||
WO9745923, | |||
WO9745924, | |||
WO9745925, | |||
WO9745926, | |||
WO9745927, | |||
WO9745928, | |||
WO9745929, | |||
WO9745930, | |||
WO9745931, | |||
WO9745932, | |||
WO9745933, | |||
WO9745934, | |||
WO9745935, | |||
WO9745936, | |||
WO9745937, | |||
WO9745938, | |||
WO9745939, | |||
WO9747067, | |||
WO9800468, | |||
WO9802148, | |||
WO9820595, | |||
WO9820596, | |||
WO9820597, | |||
WO9820598, | |||
WO9820600, | |||
WO9820602, | |||
WO9821385, | |||
WO9827634, | |||
WO9827635, | |||
WO9827636, | |||
WO9829927, | |||
WO9829928, | |||
WO9829929, | |||
WO9829930, | |||
WO9829931, | |||
WO9829932, | |||
WO9833731, | |||
WO9833736, | |||
WO9833737, | |||
WO9834239, | |||
WO9834240, | |||
WO9834241, | |||
WO9834242, | |||
WO9834243, | |||
WO9834244, | |||
WO9834245, | |||
WO9834246, | |||
WO9834247, | |||
WO9834248, | |||
WO9834249, | |||
WO9834250, | |||
WO9834309, | |||
WO9834312, | |||
WO9834315, | |||
WO9834321, | |||
WO9834322, | |||
WO9834323, | |||
WO9834325, | |||
WO9834326, | |||
WO9834327, | |||
WO9834328, | |||
WO9834329, | |||
WO9834330, | |||
WO9834331, | |||
WO9840627, | |||
WO9843336, | |||
WO9917309, | |||
WO9917311, | |||
WO9917312, | |||
WO9917313, | |||
WO9917314, | |||
WO9917315, | |||
WO9917316, | |||
WO9917422, | |||
WO9917424, | |||
WO9917425, | |||
WO9917426, | |||
WO9917427, | |||
WO9917428, | |||
WO9917429, | |||
WO9917432, | |||
WO9917433, | |||
WO9919963, | |||
WO9919969, | |||
WO9919970, | |||
WO9927546, | |||
WO9928919, | |||
WO9928921, | |||
WO9928922, | |||
WO9928923, | |||
WO9928924, | |||
WO9928925, | |||
WO9928926, | |||
WO9928927, | |||
WO9928928, | |||
WO9928929, | |||
WO9928930, | |||
WO9928931, | |||
WO9928934, | |||
WO9928994, | |||
WO9929005, | |||
WO9929008, | |||
WO9929011, | |||
WO9929012, | |||
WO9929013, | |||
WO9929014, | |||
WO9929015, | |||
WO9929016, | |||
WO9929017, | |||
WO9929018, | |||
WO9929019, | |||
WO9929020, | |||
WO9929021, | |||
WO9929022, | |||
WO9929023, | |||
WO9929024, | |||
WO9929025, | |||
WO9929026, | |||
WO9929029, | |||
WO9929034, | |||
WO9834238, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 21 1999 | BERGGREN, SOREN | Asea Brown Boveri AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010001 | /0889 | |
Jun 08 1999 | ABB AB | (assignment on the face of the patent) | / | |||
Sep 09 1999 | ASEA BROWN BOVERI AKTIEBOLAG | ABB AB | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 010762 | /0551 |
Date | Maintenance Fee Events |
Feb 01 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 09 2009 | REM: Maintenance Fee Reminder Mailed. |
Aug 28 2009 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 28 2004 | 4 years fee payment window open |
Feb 28 2005 | 6 months grace period start (w surcharge) |
Aug 28 2005 | patent expiry (for year 4) |
Aug 28 2007 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 28 2008 | 8 years fee payment window open |
Feb 28 2009 | 6 months grace period start (w surcharge) |
Aug 28 2009 | patent expiry (for year 8) |
Aug 28 2011 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 28 2012 | 12 years fee payment window open |
Feb 28 2013 | 6 months grace period start (w surcharge) |
Aug 28 2013 | patent expiry (for year 12) |
Aug 28 2015 | 2 years to revive unintentionally abandoned end. (for year 12) |