A cable forerunner for winding a high-voltage cable in an electric machine, wherein one end of the cable forerunner (11) is attached to the end (10) of the cable (1), the cable forerunner (11) is arranged to draw the cable (1) through a first slot (15) arranged in the machine body (8) and also to control the curvature of the cable (1) at its exit from the slot (15) unitl its entry into a second slot (16) arranged in the machine body (8), as well as a procedure and also an electric machine having at least one winding comprising a high-voltage cable wound in accordance with the procedure for winding a high-voltage cable (1) in an electric machine, wherein one end of the cable forerunner (11) is attached to the end of the cable (1), whereafter the cable forerunner (11) is caused to draw the cable (1) through a first slot (15) arranged in the machine body (8) and to control the curvature of the cable (1) at its exit from the slot until its entry into a second slot (16) arranged in the machine body (8).

Patent
   6279850
Priority
Nov 04 1996
Filed
Jun 08 1999
Issued
Aug 28 2001
Expiry
Nov 04 2017
Assg.orig
Entity
Large
3
761
EXPIRED
16. A cable forerunner attachable to the end of a cable for winding a high voltage machine and forming end windings between machine slots comprising: a plurality of interconnected links selectively articuable to a minimum radius of curvature r.
25. A cable forerunner attachable to the end of a cable for winding a high voltage machine and forming end windings between machine slots comprising: a plurality of interconnected links selectively articuable to a selected radius of curvature r.
6. A cable forerunner for winding a high-voltage cable between first and second slots in the body of an electric machine, wherein one end of the cable forerunner is attachable to the end of the cable for drawing the cable through the first slot, said forerunner having a minimum. radius of curvature to control the curvature of the cable at its exit from the slot until its entry into the second slot.
1. A procedure for winding a high-voltage cable in an electric machine, comprising the steps of attaching one end of a cable forerunner to the end of the cable;
drawing the cable forerunner and the attached cable through a first slot in the machine body; and
controlling the forerunner to a predefined radius of curvature so that the cable has a predefined curvature between its exit from the slot until its entry into a second slot in the machine body.
2. A procedure as claimed in claim 1, wherein controlling the radius of curvature of the cable comprises controlling the cable forerunner outside the machine body to establish a minimum radius or curvature of the forerunner.
3. A procedure as claimed in claim 2, wherein the forerunner is formed of interconnected articuable links having a selectable distance therebetween: and establishing the minimum radius of curvature of the cable forerunner comprises adjusting the selectable distance between the links.
4. A procedure as claimed in claim 3, wherein the interconnected links are rotatable relative to the joints: and establishing the minimum radius of curvature of the cable forerunner comprises rotating the links relative to the joints.
5. A procedure as claimed in claim 1, wherein the cable forerunner has a traction member, and drawing the forerunner comprises pulling the forerunner through the slots by the traction member.
7. A cable forerunner as claimed in claim 6, comprising a number of rigid links and articuable joints connecting the joints.
8. A cable forerunner as claimed in claim 7, wherein each link has at least at one end and includes an axially displaceable spacer connected to the joint.
9. A cable forerunner as claimed in claim 8, further including a screw joint for connecting the spacer to the link.
10. A cable forerunner as claimed in claim 9, wherein each link has opposite axially displaced ends and includes a corresponding axially displaceable spacer at each end, and a screw joint for connecting each spacer to the corresponding link one screw joint of the link having a left-hand thread and the other screw joint of the link having a right-hand thread.
11. A cable forerunner as claimed in claim 10, further including a locking element for preventing rot between each joint.
12. A cable forerunner as claimed in claim 11, wherein the locking element is detachably inserted between each link for establishing a selected gap between the link and joint.
13. A cable forerunner as claimed in claim 12, wherein the cable forerunner is arranged to cooperate with guide members to facilitate curving the cable to the selected radius of curvature.
14. A cable forerunner as claimed in claim 13, wherein the guide members are motor-driven for drawing the cable from the first slot to the second slot.
15. A cable forerunner as claimed in claim 6, including first guide members arranged at the exit from the first slot; and second guide members arranged at the entry into the second slot; and one of the guide members is arranged to be driven with a speed deviating from the speed of the other guide member.
17. A cable forerunner as claimed in claim 16, wherein the links include a traction link at a distal end; a cable connector link at a proximal end attachable to the end of the cable; and a plurality of intermediate links interconnected between the traction link and connection link, adjacent ones of said links having a spacing for establishing a minimum bending radius r of the forerunner.
18. A cable forerunner as claimed in claim 16, wherein the adjacent links include confronting spaced apart end portions said spacers for establishing the minimum radius of curvature.
19. A cable forerunner as claimed in claim 18 wherein the each confronting end portions include a joint articuable in at least one plane.
20. A cable forerunner as claimed in claim 16, wherein the links comprise cylindrical members.
21. A cable forerunner as claimed in claim 16 wherein adjacent links have confronting circular open end portions, and a joint having a free connector end and a threadable end sleeved in the open end of the cylindrical member for establishing a selected distance between the free end and the circular end.
22. A cable forerunner as claimed in claim 21, wherein the cylindrical members have an adjustable overall length l between free ends, a radius r, and a distance A between the free end and the circular end such that 1/2R=r/Δ.
23. A cable forerunner as claimed in claim 21, wherein the confronting ends of the cylindrical members have threads in opposite senses.
24. A cable forerunner as claimed in claim 16, wherein the l/2R=Δ/r when I is the length of each link; Δ is a space between links; and r is a radius of each link.

The present invention relates to electric machines such as transformers, synchronous machines, normal asynchronous machines as well as dual-fed machines, applications in asynchronous static current converter cascades, outerpole machines and synchronous flow machines as well as alternating current machines intended in the first place as generators in power stations for generating electric power. The invention relates particularly to the winding procedure in such machines.

Conventional machines have been designed for voltages in the range 15-30 kV, and 30 kV has normally been considered to be an upper limit. In the case of generators this normally means that a generator must be connected to the power network via a step-up transformer. The voltage level of the power network can be in the range of approximately 130-400 kV.

The present invention is intended to be used with high voltages. In this specification the term "High voltages" means electric voltages exceding 10 kV, Typically, an operating range for a machine wound in accordance with the invention and using a cable forerunner according to the invention may be voltages from 36 kV up to 800 kV.

By using high-voltage insulated electric conductors in the following termed high-voltage cables, with solid insulation similar to that used in cables for transmitting electric power (e.g. XLPE cables) in a rotating electric machine, the voltage of the machine can be increased to such levels that it can be connected directly to the power network without intermediate transformers. The conventional transformer can thus be eliminated. The cable is provided with an outer semi-conducting layer with the help of which its outer potential is defined. The high voltage cables thus enclose the electrical field within the windings. Such an insulated conductor or cable is flexible and it is of a kind which is described more in detail in the PCT applications SE97/00874 and SE97/00875. Additional descriptions of the concerned insulated conductor or cable can be found in the PCT applications SE 97/009001, SE 97/00902 and SE97/00903.

This concept generally implies that the slots in which the cables are arranged in the stator to be deeper than conventional technology (thicker insulation due to higher voltage and more turns in the winding). This entails new problems in winding the high-voltage cable in such machines.

Many different methods are available for winding the stator in a rotating electric machine with conventional windings. However, all these methods presume that the windings are stiff and can be inserted without being wound. Further, conventional windings are normally divided into short parts to fit the slots of the stator. These methods cannot be used in the present invention, where the windings consist of high voltage cables of substantial lengths, which have large diameter, high weight per unit length and high flexural rigidity. Further, during the winding process, the outer semiconducting layer of the cable must not be damaged. The difficulties in winding such a cable are thus considerable.

The object of the invention is to provide a device and a procedure that enables the winding of a high-voltage cable in an electric machine where the space available for handling the cable is also limited.

Advantageous further developments of the invention are indicated in the following description.

The present invention relates to a procedure and a device for winding high-voltage cables in an electric machine, such as the stator winding in a high-voltage alternating current generator.

In order to achieve the desired shape, radius, in a flexurally rigid cable in a end winding region in a continuous process when winding the stator for an electric machine, a cable forerunner is used that pulls the cable behind it. This cable forerunner comprises a chain of suitably long rigid or flexible, pliable cylindrical links connected to a jointed coupling at their axial centre. A suitable gap (A) is provided between the links in a straight chain at the outer edge of the cylindrical link arms. When the chain is bent the radius is limited to a fixed desired value at which contact occurs between the links at their outer radius. The radius (R) of the cable forerunner (chain) is determined by the gap between the links of the chain. its outer radius and length in accordance with the formula 1/2R=Δ/r, which is to be further explained in the following description. As a result of said property the cable forerunner can guide the cable directly through straight slots in the stator and be formed into the desired arc between two slots at the coil end part of the stator. The radius of a bent chain can be varied by varying the gap between links designed in accordance with an embodiment as described below.

The invention thus comprises a special cable forerunner designed with a number of links connected by joints, and the distance between the links can be adjusted to define a minimum radius of curvature for the cable forerunner. The cable forerunner is thus rigid at its limit radius but otherwise behaves in substantially the same manner as a rope.

The invention will be described in more detail in the following with reference to the accompanying drawings in which

FIG. 1 shows a cross section through a high-voltage cable used in the present winding procedure,

FIG. 2 shows an axial section through a stator being wound in accordance with the invention.

FIG. 3 shows a section through a cable forerunner according to the invention.

FIG. 4 shows a detail from FIG. 3.

FIG. 1 shows a cross-sectional view of a high-voltage cable 1 to be wound in accordance with the present invention. The high-voltage cable 1 comprises a number of strand parts 2 made of copper (Cu), for instance, and having circular cross section. These strand parts 2 are arranged in the middle of the high-voltage cable 1. The conductor area is between 30 and 3000 square mm. Around the strand parts 2 is a first semiconducting layer 3. Around the first semiconducting layer 3 is an insulating layer 4, e.g. XLPE insulation. Around the insulating layer 4 is a second semiconducting layer 5. The outer cable diameter is between 20 and 350 mm. Thus the concept "high-voltage cable" in the present application thus need not include the metal screen and the outer protective sheath that normally surround such a cable for power distribution.

FIG. 1 also shows a guide roller acting as first or second guide means 6a, 6b, which may be coated with rubber or a rubberlike material, journalled or fixed on a shaft 7 in contact with the outer semiconducting layer 5 of the high-voltage cable 1 in order to rotationally absorb flexural moment applied to the high-voltage cable as this is pulled or fed in its axial direction,

FIG. 2 shows an axial section through a machine body 8 which in the Figure consists of a stator in a rotating electric machine being wound with its stator winding 9 in the form of a high-voltage cable as described above. A cable forerunner 11 is connected to the end 10 of the cable with the help of a connector 12 in the form of a clamp connection, for instance. The other end of the cable forerunner is provided with a traction member 13 with a wire 14 attached. By means of the wire 14, therefore, the cable can thus be drawn in and out through a first slot 15 arranged in the machine body 8, and on into a second slot 16, out through this and so on. The cable forerunner 11 is formed from a number of rigid, sleevelike, cylindrical links 17 connected together by joints 18. The joint may be in the form of a ball and socket joint or a joint for moving around only one axis. The material in the cable forerunner is preferably plastic and/or aluminium. The diameter of the cable forerunner is slightly less than the diameter of the cable.

To facilitate shaping the unyielding cable to the desired curve, guide members 6a, 6b are placed at outgoing and ingoing slots as first guide members 6a and second guide members 6b, see FIG. 2. These rollers, preferably made of steel and coated with rubber, are arranged to absorb forces from the flexural moment MB which is required to bend the cable, enabling normal forces between cable and slot to be reduced. The guide members 6a, 6b may be passive or provided with a drive means feeding the cable at the desired speed and with the direction of rotation indicated by the arrows in FIG. 2. In this embodiment the radius can be adjusted by establishing different entry and exit speeds for the control members 6a. 6b.

The guide members are thus attached temporarily to the stator in order to absorb torque and to prevent the cable from being damaged against the slot. The rollers can be placed at several slots, about 15, in order to draw cable lengths of up to 100 m simultaneously. The rollers may be driven by a motor to feed the cable instead of or as well as the wire. The rollers may also be in the form of cylinders extending along the entire length of the stator.

FIG. 3 shows a detail of an advantageous embodiment of the cable forerunner 11 revealing that each joint 18 comprises a left part 19 connected to one end of a link 17 and a right part 20 connected to the other end of an adjacent link. Thus these parts together form an intermediate joint 18. Each link is provided with a left part 19 at one end and a right part 20 at the other end. At least the left part 19 or the right part 20 of each link 17 is secured in a spacer 21 axially movable in the link 17. The embodiment according to FIG. 3 shows both a left part 19 and a right part 20, each secured in such a spacer. In the embodiment shown each spacer 21 is screwed into one end of the link so that the spacer of the left part 19 has a left-hand thread and the spacer of the right part 20 has a right-hand thread. This implies that turning the links 17 relative to the joints 18 will alter the distance between each link 17. The operating principle is thus the same as for a screw shackle on a yacht. In order to facilitate this relative movement between links and joints, each link is provided with a locking element 22 which connects the two joint parts 19, 20 of the link. This locking element may, as shown in this embodiment, be in the form of a cotter pressed into the spacer 21. Turning of the links relative to the joints may be performed by providing the whole cable forerunner with a rubber sheath which is shrunk on and fixes the movement of the links relative to each other and, by turning the joints relative to the rubber sheath and thus the links, with the aid of a turning device not shown. An alternative embodiment is for one or more of the joints to be fixed by means of a radial blocking device running through them, while the axial distance between the links is adjusted by turning respective links.

The geometry of the cable forerunner according to FIGS. 2 and 3 is:

1/2R=Δ/r

where:

1=the distance between the two joints of a link (sleeve).

R=the limit radius of the cable forerunner

Δ=the gap between link and joint,

r=the radius of a link (sleeve)

Example: 1=100 mm. r=30 mm. R=500. which gives Δ=3 mm.

Thus the left-hand and right-hand threads at the ends of a link thus cause rotation of the outer cylindrical sleeve relative to its joint attachment to effect an alteration of the distance "1" between the sleeve joints and the gap "Δ" between the link and the joint. Turning at a single point furthest out at the ends of the cable forerunner results in adjustment of all the sleeve lengths. The sleeves should in this case be coherent from the turning point of view. A turning can be achieved by a motor, e.g. via an elastic, rubberlike, plastic hose shrunk onto the cable forerunner along its entire length as indicated above.

FIG. 4 shows a detail of the contact between two adjacent links when the cable forerunner has been curved to its defined minimum radius of curvature i.e. when the links 17 establish contact at a point or along a surface at both their end peripheries 23. The cylindrical ends of the links 17 are shown rounded off in the Figure but may also be provided with a number of peripherally arranged surfaces to allow a higher surface pressure.

Berggren, Soren

Patent Priority Assignee Title
7152306, Feb 09 2001 ABB Schweiz AG Method for installing a stator winding
8901790, Jan 03 2012 General Electric Company Cooling of stator core flange
9953747, Aug 07 2014 Henkel AG & Co. KGaA Electroceramic coating of a wire for use in a bundled power transmission cable
Patent Priority Assignee Title
1304451,
1418856,
1481585,
1508456,
1728915,
1742985,
1747507,
1756672,
1762775,
1781308,
1861182,
1904885,
1974406,
2006170,
2206856,
2217430,
2241832,
2251291,
2256897,
2295415,
2409893,
2415652,
2424443,
2436306,
2446999,
2459322,
2462651,
2498238,
2650350,
2721905,
2749456,
2780771,
2846599,
2885581,
2936961,
2943242,
2947957,
2959699,
2962679,
2975309,
3014139,
3098893,
3130335,
3143269,
3157806,
3158770,
3197723,
3268766,
3304599,
3354331,
3365657,
3372283,
3392779,
3411027,
3418530,
3435262,
3437858,
3444407,
3447002,
3484690,
3541221,
3560777,
3571690,
3593123,
3631519,
3644662,
3651244,
3651402,
3660721,
3666876,
3670192,
3675056,
3684821,
3684906,
3699238,
3716652,
3716719,
3727085,
3740600,
3743867,
3746954,
3758699,
3778891,
3781739,
3787000,
3787607,
3792399,
3801843,
3809933,
3813764,
3828115,
3881647,
3884154,
3891880,
3902000,
3912957,
3932779, Mar 22 1973 Allmanna Svenska Elektriska Aktiebolaget Turbo-generator rotor with a rotor winding and a method of securing the rotor winding
3932791, Jan 22 1973 Multi-range, high-speed A.C. over-current protection means including a static switch
3943392, Nov 27 1974 Allis-Chalmers Corporation Combination slot liner and retainer for dynamoelectric machine conductor bars
3947278, Dec 19 1973 Universal Oil Products Company Duplex resistor inks
3965408, Dec 16 1974 International Business Machines Corporation Controlled ferroresonant transformer regulated power supply
3968388, Jun 14 1972 Kraftwerk Union Aktiengesellschaft Electric machines, particularly turbogenerators, having liquid cooled rotors
3971543, Apr 17 1975 Tool and kit for electrical fishing
3974314, Mar 29 1973 Micafil A.G. Electrical insulation particularly for use in winding slots of dynamo-electric machines and method for its manufacture
3993860, Aug 18 1975 FLUROCARBON COMPANY, THE Electrical cable adapted for use on a tractor trailer
3995785, Feb 12 1973 Essex International, Inc. Apparatus and method for forming dynamoelectric machine field windings by pushing
4001616, Feb 18 1974 Canadian General Electric Company Limited Grounding of outer winding insulation to cores in dynamoelectric machines
4008367, Jun 24 1974 Siemens Aktiengesellschaft Power cable with plastic insulation and an outer conducting layer
4008409, Apr 09 1975 General Electric Company Dynamoelectric machine core and coil assembly
4031310, Jun 13 1975 General Cable Corporation Shrinkable electrical cable core for cryogenic cable
4039740, Jun 19 1974 The Furukawa Electric Co., Ltd. Cryogenic power cable
4041431, Nov 22 1976 Ralph Ogden Input line voltage compensating transformer power regulator
4047138, May 19 1976 General Electric Company Power inductor and transformer with low acoustic noise air gap
4064419, Oct 08 1976 AEG Westinghouse Industrial Automation Corporation Synchronous motor KVAR regulation system
4084307, Jul 11 1973 Allmanna Svenska Elektriska Aktiebolaget Method of joining two cables with an insulation of cross-linked polyethylene or another cross linked linear polymer
4085347, Jan 16 1976 White-Westinghouse Corporation Laminated stator core
4088953, Jan 06 1975 The Reluxtrol Company Eddy-current test probe utilizing a combination of high and low reluctance materials to optimize probe sensitivity
4091138, Feb 12 1975 Sumitomo Bakelite Company Limited; Toshinori, Takagi Insulating film, sheet, or plate material with metallic coating and method for manufacturing same
4091139, Sep 17 1975 Westinghouse Electric Corp. Semiconductor binding tape and an electrical member wrapped therewith
4099227, Dec 01 1976 Square D Company Sensor circuit
4103075, Oct 28 1976 Airco, Inc. Composite monolithic low-loss superconductor for power transmission line
4106069, May 19 1976 Siemens Aktiengesellschaft Protection arrangement for a brushless synchronous machine
4107092, Feb 26 1973 UOP Inc. Novel compositions of matter
4109098, Jan 14 1975 Telefonaktiebolaget L M Ericsson High voltage cable
4121148, Apr 27 1976 Dipl.-Ing. Hitzinger & Co. Brushless synchronous generator system
4132914, Apr 22 1975 Six-phase winding of electric machine stator
4134036, Jun 03 1977 R T ACQUIRING CORP , A CORP OF; ROTOR TOOL CORPORATION Motor mounting device
4134055, Mar 28 1975 Mitsubushi Denki Kabushiki Kaisha Inductor type synchronous motor driving system
4134146, Feb 09 1978 Hubbell Incorporated Surge arrester gap assembly
4149101, May 12 1977 Arrangement for locking slot wedges retaining electric windings
4152615, Jun 14 1977 Westinghouse Electric Corp. End iron axial flux damper system
4160193, Nov 17 1977 RIPLEY CORPORATION, THE Metal vapor electric discharge lamp system
4164672, Aug 18 1977 Electric Power Research Institute, Inc. Cooling and insulating system for extra high voltage electrical machine with a spiral winding
4164772, Apr 17 1978 Electric Power Research Institute, Inc. AC fault current limiting circuit
4177397, Mar 17 1978 AMP Incorporated Electrical connections for windings of motor stators
4177418, Aug 04 1977 International Business Machines Corporation Flux controlled shunt regulated transformer
4184186, Sep 06 1977 General Electric Company Current limiting device for an electric power system
4200817, Jan 20 1977 BBC Brown Boveri & Company Limited Δ-Connected, two-layer, three-phase winding for an electrical machine
4200818, Aug 01 1978 Westinghouse Electric Corp. Resin impregnated aromatic polyamide covered glass based slot wedge for large dynamoelectric machines
4206434, Aug 29 1978 Regulating transformer with magnetic shunt
4207427, Mar 16 1977 SOCIETA PIRELLI S P A , A COMPANY OF ITALY Electrical power cable with stranded insulated wires
4207482, Nov 14 1978 Siemens Westinghouse Power Corporation Multilayered high voltage grading system for electrical conductors
4208597, Jun 22 1978 Siemens Westinghouse Power Corporation Stator core cooling for dynamoelectric machines
4229721, Nov 30 1977 Instytut Spawalnictwa Welding transformer with drooping voltage-current characteristics
4238339, Nov 27 1978 Arrangement for supporting stator end windings of an electric machine
4239999, Nov 30 1976 Super-conductive electrical machine having an improved system for maintaining vacuum in the stator/rotor space
4245182, Mar 30 1977 Hitachi, Ltd.; Hitachi Engineering Co., Ltd. Excitation control apparatus for a generator
4246694, May 14 1977 Kabel-und Metallwerke Gutehoffnungshutte Aktiengesellschaft; Thyssen Industrie Aktiengesellschaft Method of making linear motor stator
4255684, Aug 03 1979 Laminated motor stator structure with molded composite pole pieces
4258280, Nov 07 1975 BBC Brown Boveri & Company Limited Supporting structure for slow speed large diameter electrical machines
4262209, Feb 26 1979 Supplemental electrical power generating system
4274027, Sep 20 1978 Hitachi, Ltd. Salient pole rotor with shielding rods between adjacent poles
4281264, Feb 26 1979 General Electric Company Mounting of armature conductors in air-gap armatures
4292558, Aug 15 1979 Siemens Westinghouse Power Corporation Support structure for dynamoelectric machine stators spiral pancake winding
4307311, May 25 1979 Robert Bosch GmbH Winding method for an electrical generator and generator manufactured by the method
4308476, Dec 04 1974 BBC Brown Boveri & Company Limited Bar windings for electrical machines
4308575, Dec 13 1978 Tokyo Shibaura Denki Kabushiki Kaisha Power source system
4310966, Jun 07 1978 Kabel-und Metallwerke Gutehoffnungshutte AG Method of making a stator for linear motor
4314168, May 21 1979 Kabel-Und Metallwerke Gutehoffnungshuette A.G. Prefabricated stator windings
4317001, Feb 23 1979 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
4320645, Oct 11 1979 Card-O-Matic Pty. Limited Apparatus for fabricating electrical equipment
4321426, Jun 09 1978 General Electric Company Bonded transposed transformer winding cable strands having improved short circuit withstand
4321518, Mar 28 1975 Mitsubishi Denki Kabushiki Kaisha Inductor type synchronous motor driving system for minute control of the position and the rotation angle of the motor
4330726, Dec 04 1980 General Electric Company Air-gap winding stator construction for dynamoelectric machine
4337922, Mar 27 1979 Mathias Streiff AG Apparatus for laying and securing heavy electrical cables
4341989, Mar 08 1979 Elmekano i Lulea AB Device for phase compensation and excitation of an asynchronous machine operating as a generator
4347449, Mar 20 1979 Societe Nationale Industrielle Aerospatiale Process for making a magnetic armature of divided structure and armature thus obtained
4347454, Aug 17 1978 Siemens Aktiengesellschaft Stator winding for an electric machine
4357542, Jul 12 1979 Westinghouse Electric Corp. Wind turbine generator system
4360748, Feb 21 1980 Kabel-und Metallwerke Gutehoffnungshutte AG; Thyssen Industrie Aktiengesellschaft Polyphase stator system for a linear motor
4361723, Mar 16 1981 Hubbell Incorporated Insulated high voltage cables
4363612, Mar 29 1979 Flywheel and screw press for producing ceramic articles
4365178, Jun 08 1981 General Electric Co. Laminated rotor for a dynamoelectric machine with coolant passageways therein
4367425, Jun 01 1981 Westinghouse Electric Corp. Impregnated high voltage spacers for use with resin filled hose bracing systems
4367890, Feb 11 1980 Siemens Aktiengesellschaft Turbine set with a generator feeding a network of constant frequency
4368418, Apr 21 1981 PWER TECHNOLOGIES, INC Apparatus for controlling high voltage by absorption of capacitive vars
4369389, May 02 1980 KRAFTWERK UNION AKTIENGESELLSCHAFT A CORP OF GERMANY Device for securing winding bars in slots of electric machines, especially turbo-generators
4371745, Nov 15 1979 Kabushiki Kaisha Kawai Gakki Seisakusho Shielded wire
4384944, Feb 23 1979 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
4387316, Sep 30 1981 General Electric Company Dynamoelectric machine stator wedges and method
4401920, May 11 1981 National Research Council of Canada Laser triggered high voltage rail gap switch
4403163, Aug 23 1980 Brown, Boveri & Cie AG Conductor bar for electric machines and method of manufacture thereof
4404486, Dec 24 1980 General Electric Company Star connected air gap polyphase armature having limited voltage gradients at phase boundaries
4411710, Apr 03 1980 The Fujikawa Cable Works, Limited Method for manufacturing a stranded conductor constituted of insulated strands
4421284, Aug 19 1981 Northern Telecom Limited Reeling of cable
4425521, Jun 03 1982 General Electric Company Magnetic slot wedge with low average permeability and high mechanical strength
4426771, Oct 27 1981 Emerson Electric Co. Method of fabricating a stator for a multiple-pole dynamoelectric machine
4429244, Dec 06 1979 VSESOJUZY PROEKTNO- IZYSKATELSKY I NAUCHNO- ISSLEDOVATELSKY INSTITUT GIDROPROEKT USSR, MOSCOW, VOLOKLAMSKOE SHOSSE , 2, A CORP OF UUSR Stator of generator
4431960, Nov 06 1981 ENERGY COMPRESSION RESEARCH CORP , 1110 CAMINO DEL MAR, DEL MAR, CA 92014, A CORP OF CA Current amplifying apparatus
4432029, Jul 06 1981 ASEA Aktiebolag Protective means for series capacitors
4437464, Nov 09 1981 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Electrosurgical generator safety apparatus
4443725, Jun 14 1982 General Electric Company Dynamoelectric machine stator wedge
4470884, Aug 07 1981 NATIONAL ANO-WIRE, INC MUSKEGON, MI A CORP OF High speed aluminum wire anodizing machine and process
4473765, Sep 30 1982 General Electric Company Electrostatic grading layer for the surface of an electrical insulation exposed to high electrical stress
4475075, Oct 14 1981 Electric power generator and system
4477690, Dec 18 1980 Coupling unit of two multilayer cables of high-voltage generator stator winding
4481438, Sep 13 1982 Electric Power Research Institute, Inc High voltage electrical generator and windings for use therein
4484106, May 14 1982 CANADIAN PATENTS AND DEVELOPMENT LIMITED-SOCIETE CANADIENNE DES BREVETS ET D EXPLOITATION LIMITEE UV Radiation triggered rail-gap switch
4488079,
4490651, May 23 1980 National Research Council of Canada Laser triggered high voltage rail gap switch
4503284, Nov 09 1983 ESSEX GROUP, INC RF Suppressing magnet wire
4508251, Oct 26 1982 Nippon Telegraph & Telephone Corporation Cable pulling/feeding apparatus
4510077, Nov 03 1983 General Electric Company Semiconductive glass fibers and method
4517471, Jul 29 1981 Anton Piller GmbH & Co. KG Rotary converter machine for direct transfer of electric energy by flux linkage between windings on a stator pack
4520287, Oct 27 1981 Emerson Electric Co. Stator for a multiple-pole dynamoelectric machine and method of fabricating same
4523249, Sep 21 1982 Mitsubishi Denki Kabushiki Kaisha Alternating current limiting apparatus
4538131, Jan 27 1983 BBC Brown, Boveri & Company, Ltd. Air-core choke coil
4546210, Jun 07 1982 Hitachi, Ltd. Litz wire
4551780, Jan 10 1979 Alstom Apparatus for reducing subsynchronous frequencies in a power supply
4557038, Jul 01 1983 kabelmetal electro GmbH; Thyssen Industrie AG Installing a prefabricated winding of a linear motor
4560896, Oct 01 1984 General Electric Company Composite slot insulation for dynamoelectric machine
4565929, Sep 29 1983 The Boeing Company; Boeing Company, the Wind powered system for generating electricity
4571453, Nov 09 1978 The Fujikura Cable Works, Limited Conductor for an electrical power cable
4588916, Jan 28 1985 General Motors Corporation End turn insulation for a dynamoelectric machine
4590416, Aug 08 1983 INTERGRATED POWER SYSTEMS CORPORATION, A CORP OF TEXAS Closed loop power factor control for power supply systems
4594630, Jun 02 1980 Electric Power Research Institute, Inc. Emission controlled current limiter for use in electric power transmission and distribution
4607183, Nov 14 1984 General Electric Company Dynamoelectric machine slot wedges with abrasion resistant layer
4615109, Jul 01 1983 Kabelmetal Electro GmbH; Thyssen Industrie Apparatus for installing a prefabricated winding of a linear motor
4615778, Nov 25 1983 General Electric Company; GENERAL ELECTRIC COMPANY, A CORP OF NY Process for electrodepositing mica on coil or bar connections and resulting products
4618795, Apr 10 1985 Siemens Westinghouse Power Corporation Turbine generator stator end winding support assembly with decoupling from the core
4619040, Oct 27 1981 Emerson Electric Co. Method of fabricating stator for a multiple pole dynamoelectric machine
4622116, Feb 19 1985 General Electric Company; GENERAL ELECTRIC COMPANY, A CORP OF NEW YORK Process for electrodepositing mica on coil or bar connections and resulting products
4633109, Oct 23 1984 STANDARD ELEKTRIK LORENZ AKTIENGESELLSCHAFT, A CORP OF GERMANY Electronically commutated, collectorless direct-current motor
4650924, Jul 24 1984 Phelps Dodge Industries, Inc. Ribbon cable, method and apparatus, and electromagnetic device
4652963, Mar 07 1984 ASEA Aktiebolag Series capacitor equipment
4656316, Nov 12 1984 Siemens Aktiengesellschaft Splice protective insert for cable sleeves
4656379, Dec 18 1985 The Garrett Corporation; GARRETT CORPORATION, THE Hybrid excited generator with flux control of consequent-pole rotor
4677328, Nov 08 1984 Rikichi, Kumakura Generator for use on bicycle
4687882, Apr 28 1986 ONTARIO POWER GENERATION INC Surge attenuating cable
4692731, Apr 04 1985 U S PHILIPS CORPORATION Composite wire, coil and deflection unit for HF applications
4723083, Nov 25 1983 General Electric Company Electrodeposited mica on coil bar connections and resulting products
4723104, Oct 02 1985 Energy saving system for larger three phase induction motors
4724345, Nov 25 1983 General Electric Company Electrodepositing mica on coil connections
4732412, Oct 27 1981 NV Raychem S.A. Coated recoverable articles
4737704, Nov 06 1986 MALOE PREDPRIYATIE TACET Transformer for arc and plasma setups having broad current adjustment range
4745314, Nov 14 1984 Fanuc Ltd. Liquid-cooled motor
4761602, Jan 22 1985 Compound short-circuit induction machine and method of its control
4766365, Apr 15 1987 Hydro Quebec Self-regulated transformer-inductor with air gaps
4771168, May 04 1987 UNIVERSITY OF SOUTHERN CALIFORNIA, THE Light initiated high power electronic switch
4785138, Dec 06 1985 Kabel Electro Gesellschaft mit beschrankter Haftung Electric cable for use as phase winding for linear motors
4795933, Aug 06 1982 Hitachi, Ltd. Salient-pole rotary electric machine
4827172, Mar 10 1987 Mitsuba Corporation Dc motor with rotor slots closely spaced
4845308, Jul 20 1987 The Babcock & Wilcox Company Superconducting electrical conductor
4847747, Sep 26 1988 Westinghouse Electric Corp. Commutation circuit for load-commutated inverter induction motor drives
4853565, Aug 23 1984 General Electric Company; GENERAL ELECTRIC COMPANY A CORP OF NEW YORK Semi-conducting layer for insulated electrical conductors
4859810, Jul 11 1986 BP Chemicals Limited Water-tree stable electrical insulating polymeric compositions
4859989, Dec 01 1987 W L GORE & ASSOCIATES, INC Security system and signal carrying member thereof
4860430, Nov 06 1987 kabelmetal electro GmbH; Thyssen Industrie AG Completing a linear motor stator
4864266, Apr 29 1988 Electric Power Research Institute, Inc High-voltage winding for core-form power transformers
4883230, Jun 12 1987 Kabmatik AB Cable switching device
4890040, Jun 01 1987 Optically triggered back-lighted thyratron network
4894284, Nov 09 1982 SUMITOMO ELECTRIC INDUSTRIES, LTD Cross-linked polyethylene-insulated cable
4914386, Apr 28 1988 ABB POWER DISTRIBUTION INC , 2975 WESTCHESTER AVENUE, PURCHASE, NEW YORK 10577 A CORP OF DE Method and apparatus for providing thermal protection for large motors based on accurate calculations of slip dependent rotor resistance
4918347, Jul 21 1988 Tamagawa Seiki Kabushiki Kaisha Coil winding construction for an electric motor
4918835, Nov 06 1987 kabelmetal electro GmbH; Thyssen Industrie AG Apparatus for completing a linear motor stator
4924342, Jan 27 1987 POWER PARAGON, INC Low voltage transient current limiting circuit
4926079, Oct 17 1988 One World Technologies Limited Motor field winding with intermediate tap
4942326, Apr 19 1989 SIEMENS POWER GENERATION, INC Biased securement system for end winding conductor
4949001, Jul 21 1989 KINECTRICS INC Partial discharge detection method and apparatus
4982147, Jan 30 1989 State of Oregon acting by and through the State Board of Higher; STATE OF OREGON ACTING BY AND THROUGH THE STATE BOARD OF HIGHER EDUCATION ON BEHALF OF OREGON STATE UNIVERSITY, P O BOX 3175, EUGENE, OR 97403 Power factor motor control system
4994952, Feb 10 1988 ELECTRONICS RESEARCH GROUP, INC Low-noise switching power supply having variable reluctance transformer
4997995, Oct 17 1988 Pirelli General plc Extra-high-voltage power cable
5012125, Jun 03 1987 NORAND CORPORATION, A CORP OF DE Shielded electrical wire construction, and transformer utilizing the same for reduction of capacitive coupling
5030813, Feb 06 1990 Pulsair Anstalt Corporation Welding apparatus and transformer therefor
5036165, May 15 1989 General Electric Co. Semi-conducting layer for insulated electrical conductors
5036238, Jul 19 1989 Mitsubishi Denki Kabushiki Kaisha Rotor of salient-pole type rotary machine
5066881, May 15 1989 BABCOCK & WILCOX POWER GENERATION GROUP, INC Semi-conducting layer for insulated electrical conductors
5067046, Aug 23 1984 General Electric Company Electric charge bleed-off structure using pyrolyzed glass fiber
5067843, Sep 25 1989 Pulling attachment for flexible conduit
5083360, Sep 28 1988 ABB Power T&D Company Inc Method of making a repairable amorphous metal transformer joint
5086246, Feb 22 1990 General Electric Canada Inc. Salient pole rotor for a dynamoelectric machine
5091609, Feb 14 1989 Sumitomo Electric Industries, Ltd. Insulated wire
5094703, Nov 09 1978 The Fujikura Cable Works Limited Conductor for an electrical power cable and a method for manufacturing the same
5095175, Apr 24 1990 Hitachi Cable, Ltd. Water-tight rubber or plastic insulated cable
5097241, Dec 29 1989 Sundstrand Corporation Cooling apparatus for windings
5097591, Sep 25 1990 Thyssen Industrie AG Device for removing the winding of a linear motor
5111095, Nov 28 1990 Baldor Electric Company Polyphase switched reluctance motor
5124607, May 19 1989 GENERAL ELECTRIC COMPANY, A CORPORATION OF Dynamoelectric machines including metal filled glass cloth slot closure wedges, and methods of making the same
5136459, Mar 13 1989 Electric Power Research Institute, Inc. High speed current limiting system responsive to symmetrical & asymmetrical currents
5140290, Aug 02 1988 ABB Schweiz AG Device for inductive current limiting of an alternating current employing the superconductivity of a ceramic high-temperature superconductor
5153460, Mar 25 1991 The United States of America as represented by the Secretary of the Army Triggering technique for multi-electrode spark gap switch
5168662, Dec 28 1988 Fanuc Ltd. Process of structuring stator of built-in motor
5171941, Mar 30 1990 The Furukawa Electric Co., Ltd.; Central Research Institute of Electric Power Industry Superconducting strand for alternating current
5182537, Sep 12 1990 U.S. Philips Corporation Transformer with twisted conductors
5187428, Feb 26 1991 Illinois Tool Works Inc Shunt coil controlled transformer
5201269, Apr 03 1991 Koenig & Bauer Aktiengesellschaft Roller chain for paper infeed device
5231249, Feb 23 1990 The Furukawa Electric Co., Ltd. Insulated power cable
5235488, Feb 05 1992 Brett Products, Inc. Wire wound core
5246783, Aug 15 1991 EXXON CHEMICAL PATENTS INC , A CORPORATION OF DELAWARE Electrical devices comprising polymeric insulating or semiconducting members
5263414, Jan 31 1992 Koenig & Bauer Aktiengesellschaft Material web guide assembly
5264778, Dec 31 1991 Westinghouse Electric Corp. Apparatus protecting a synchronous machine from under excitation
5287262, Apr 13 1991 Laserscope High voltage resonant inverter for capacitive load
5304883, Sep 03 1992 AlliedSignal Inc Ring wound stator having variable cross section conductors
5305961, Jun 14 1991 Alstom Holdings Method of winding an electrical coil as successive oblique layers of coil turns
5321308, Jul 14 1993 Tri-Sen Systems Inc.; TRI-SEN SYSTEMS INC Control method and apparatus for a turbine generator
5323330, Nov 04 1991 Asea Brown Boveri AB Reduction of disturbances in a power network
5325008, Dec 09 1992 General Electric Company Constrained ripple spring assembly with debondable adhesive and methods of installation
5325259, Dec 22 1989 Asea Brown Boveri AB Overvoltage protection for series capacitor equipment
5327637, Feb 07 1992 kabelmetal electro GmbH Process for repairing the winding of an electrical linear drive
5341281, May 14 1993 Allen-Bradley Company, Inc. Harmonic compensator using low leakage reactance transformer
5343139, Jan 31 1992 SIEMENS POWER GENERATION, INC ; SIEMENS ENERGY, INC Generalized fast, power flow controller
5355046, Dec 15 1989 Stator end-winding system and a retrofitting set for same
5365132, May 27 1993 Regal Beloit America, Inc Lamination for a dynamoelectric machine with improved cooling capacity
5387890, Nov 05 1992 GEC Alsthom T & D SA; GEC Alsthom Electromecanique SA Superconductive coil assembly particularly for a current limiter, and a current limiter including such a coil assembly
5397513, Mar 31 1986 NuPipe, Inc. Method for installing a length of substantially rigid thermoplastic pipe in an existing conduit
5399941, May 03 1993 The United States of America as represented by the Secretary of the Navy Optical pseudospark switch
5400005, Jan 13 1992 Albar, Incorporated Toroidal transformer with magnetic shunt
5408169, Jun 23 1992 SMH Management Services AG Device for controlling an asynchronous motor
5449861, Feb 24 1993 YAZAKI ENERGY SYSTEM CORPORATION Wire for press-connecting terminal and method of producing the conductive wire
5452170, Feb 21 1992 Hitachi, Ltd. Commutation type DC breaker
5468916, Jun 10 1992 Alstom Means for fixing winding overhangs in electrical machines
5499178, Dec 16 1991 Regents of the University of Minnesota System for reducing harmonics by harmonic current injection
5500632, May 11 1994 Wide band audio transformer with multifilar winding
5510942, Dec 19 1994 General Electric Company Series-capacitor compensation equipment
5530307, Mar 28 1994 Emerson Electric Co. Flux controlled permanent magnet dynamo-electric machine
5533658, Nov 10 1994 PRODUCTION TUBE CUTTING, INC Apparatus having replaceable shoes for positioning and gripping tubing
5534754, Jul 06 1993 GENERAL EXPORT INDUSTRIES Apparatus for supplying electrical power to an arc lamp including resonant circuit
5545853, Jul 19 1993 THE PROVIDENT BANK Surge-protected cable
5550410, Aug 02 1994 Gas turbine electrical power generation scheme utilizing remotely located fuel sites
5583387, Jun 14 1993 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Stator of dynamo-electric machine
5587126, Mar 31 1986 NuPipe, Inc. Method of manufacturing a pipe liner for installation in an existing conduit
5598137, Mar 05 1992 Siemens Aktiengesellschaft Coil for high-voltage transformer
5607320, Sep 28 1995 Osram Sylvania Inc. Cable clamp apparatus
5612510, Oct 11 1994 THE PROVIDENT BANK High-voltage automobile and appliance cable
5663605, May 03 1995 COMSTAR AUTOMOTIVE TECHNOLOGIES PRIVATE LIMITED Rotating electrical machine with electromagnetic and permanent magnet excitation
5672926, Feb 21 1995 Siemens Aktiengesellschaft Hybrid-energized electric machine
5689223, Apr 24 1995 ABB Schweiz AG Superconducting coil
5807447, Oct 16 1996 Marmon Utility LLC Neutral conductor grounding system
5834699, Oct 31 1995 The Whitaker Corporation Cable with spaced helices
5996873, May 11 1998 Heidelberger Druckmaschinen AG Device for threading a web of material through a rotary printing press
681800,
847008,
AT399790,
BE565063,
CH1189322,
CH266037,
CH391071,
CH534448,
CH539328,
CH646403,
CH657482,
DD137164,
DD138840,
DE134022,
DE1465719,
DE1638176,
DE1807391,
DE19020222,
DE19547229,
DE19620906,
DE2050674,
DE209313,
DE2155371,
DE2400698,
DE2520511,
DE2656389,
DE2721905,
DE277012,
DE2824951,
DE2835386,
DE2839517,
DE2854520,
DE2913697,
DE2917717,
DE2920478,
DE2939004,
DE3006382,
DE3008818,
DE3009102,
DE3028777,
DE3305225,
DE3309051,
DE336418,
DE3441311,
DE3543106,
DE3612112,
DE372390,
DE3726346,
DE386561,
DE387973,
DE3925337,
DE4022476,
DE4023903,
DE40414,
DE406371,
DE4233558,
DE425551,
DE426793,
DE432169,
DE433749,
DE435608,
DE435609,
DE4402184,
DE4409794,
DE4412761,
DE441717,
DE4420322,
DE443011,
DE4438186,
DE460124,
DE468827,
DE482506,
DE501181,
DE523047,
DE568508,
DE572030,
DE584639,
DE586121,
DE604972,
DE629301,
DE673545,
DE719009,
DE846583,
DE875227,
DE975999,
EP56580A1,
EP102513,
EP120154,
EP130124,
EP142813,
EP155405,
EP174783,
EP185788,
EP221404,
EP234521,
EP244069,
EP246377,
EP265868,
EP274691,
EP277358,
EP280759,
EP282876,
EP309096,
EP314860,
EP316911,
EP317248,
EP335430,
EP342554,
EP375101,
EP406437,
EP439410,
EP440865,
EP469155A1,
EP490705,
EP49104,
EP493704,
EP503817,
EP571155,
EP620570,
EP620630,
EP642027,
EP671632,
EP676777,
EP677915,
EP684679,
EP684682,
EP695019,
EP732787,
EP738034,
EP739087A2,
EP739087A3,
EP740315,
EP749190A2,
EP749193A3,
EP751605,
EP780926,
EP78908,
EP802542,
EP913912A1,
FR1011924,
FR1126975,
FR1238795,
FR2108171,
FR2251938,
FR2305879,
FR2376542,
FR2467502,
FR2481531,
FR2556146,
FR2594271,
FR2708157,
FR805544,
FR841351,
FR847899,
FR916959,
GB1024583,
GB1053337,
GB1059123,
GB1103098,
GB1103099,
GB1117401,
GB1135242,
GB1147049,
GB1157885,
GB1174659,
GB1236082,
GB123906,
GB1268770,
GB1319257,
GB1322433,
GB1340983,
GB1341050,
GB1365191,
GB1395152,
GB1424982,
GB1426594,
GB1438610,
GB1445284,
GB1479904,
GB1493163,
GB1502938,
GB1525745,
GB1548633,
GB1574796,
GB2000625,
GB2022327,
GB2025150,
GB2034101,
GB2046142,
GB2070341,
GB2070470,
GB2071433,
GB2081523,
GB2099635,
GB2105925,
GB2106306,
GB2106721,
GB2136214,
GB2140195,
GB2150153,
GB2268337,
GB2273819,
GB2283133,
GB2289992,
GB2308490,
GB2332557,
GB268271,
GB292999,
GB293861,
GB319313,
GB518993,
GB537609,
GB540456,
GB589071,
GB666883,
GB685416,
GB702892,
GB715226,
GB723457,
GB739962,
GB763761,
GB805721,
GB827600,
GB854728,
GB870583,
GB913386,
GB965741,
GB992249,
HU175494,
JP1129737,
JP2017474,
JP318253,
JP3245748,
JP4179107,
JP424909,
JP5290947,
JP57043529,
JP57126117,
JP59076156,
JP59159642,
JP60206121,
JP6196343,
JP62320631,
JP6233442,
JP6264964,
JP6325629,
JP7057951,
JP7161270,
JP7264789,
JP8036952,
JP8167332,
JP8167360,
JP8264039,
JP9200989,
LU67199,
SE255156,
SE305899,
SE341428,
SE453236,
SE457792,
SE502417,
SE90308,
SU1019553,
SU1511810,
SU425268,
SU694939,
SU792302,
SU955369,
WO8115862,
WO8202617,
WO8502302,
WO9000279,
WO9011389,
WO9012409,
WO9100077,
WO9101059,
WO9101585,
WO9107807,
WO9109442,
WO9111841,
WO9115755,
WO9201328,
WO9203870,
WO9321681,
WO9406194,
WO9518058,
WO9522153,
WO9524049,
WO9600010,
WO9622606,
WO9622607,
WO9630144,
WO9710640,
WO9711831,
WO9716881,
WO9729494,
WO9745288,
WO9745847,
WO9745848,
WO9745906,
WO9745907,
WO9745912,
WO9745914,
WO9745915,
WO9745916,
WO9745918,
WO9745919,
WO9745920,
WO9745921,
WO9745922,
WO9745923,
WO9745924,
WO9745925,
WO9745926,
WO9745927,
WO9745928,
WO9745929,
WO9745930,
WO9745931,
WO9745932,
WO9745933,
WO9745934,
WO9745935,
WO9745936,
WO9745937,
WO9745938,
WO9745939,
WO9747067,
WO9800468,
WO9802148,
WO9820595,
WO9820596,
WO9820597,
WO9820598,
WO9820600,
WO9820602,
WO9821385,
WO9827634,
WO9827635,
WO9827636,
WO9829927,
WO9829928,
WO9829929,
WO9829930,
WO9829931,
WO9829932,
WO9833731,
WO9833736,
WO9833737,
WO9834239,
WO9834240,
WO9834241,
WO9834242,
WO9834243,
WO9834244,
WO9834245,
WO9834246,
WO9834247,
WO9834248,
WO9834249,
WO9834250,
WO9834309,
WO9834312,
WO9834315,
WO9834321,
WO9834322,
WO9834323,
WO9834325,
WO9834326,
WO9834327,
WO9834328,
WO9834329,
WO9834330,
WO9834331,
WO9840627,
WO9843336,
WO9917309,
WO9917311,
WO9917312,
WO9917313,
WO9917314,
WO9917315,
WO9917316,
WO9917422,
WO9917424,
WO9917425,
WO9917426,
WO9917427,
WO9917428,
WO9917429,
WO9917432,
WO9917433,
WO9919963,
WO9919969,
WO9919970,
WO9927546,
WO9928919,
WO9928921,
WO9928922,
WO9928923,
WO9928924,
WO9928925,
WO9928926,
WO9928927,
WO9928928,
WO9928929,
WO9928930,
WO9928931,
WO9928934,
WO9928994,
WO9929005,
WO9929008,
WO9929011,
WO9929012,
WO9929013,
WO9929014,
WO9929015,
WO9929016,
WO9929017,
WO9929018,
WO9929019,
WO9929020,
WO9929021,
WO9929022,
WO9929023,
WO9929024,
WO9929025,
WO9929026,
WO9929029,
WO9929034,
WO9834238,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 21 1999BERGGREN, SORENAsea Brown Boveri ABASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0100010889 pdf
Jun 08 1999ABB AB(assignment on the face of the patent)
Sep 09 1999ASEA BROWN BOVERI AKTIEBOLAGABB ABCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0107620551 pdf
Date Maintenance Fee Events
Feb 01 2005M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 09 2009REM: Maintenance Fee Reminder Mailed.
Aug 28 2009EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Aug 28 20044 years fee payment window open
Feb 28 20056 months grace period start (w surcharge)
Aug 28 2005patent expiry (for year 4)
Aug 28 20072 years to revive unintentionally abandoned end. (for year 4)
Aug 28 20088 years fee payment window open
Feb 28 20096 months grace period start (w surcharge)
Aug 28 2009patent expiry (for year 8)
Aug 28 20112 years to revive unintentionally abandoned end. (for year 8)
Aug 28 201212 years fee payment window open
Feb 28 20136 months grace period start (w surcharge)
Aug 28 2013patent expiry (for year 12)
Aug 28 20152 years to revive unintentionally abandoned end. (for year 12)