The invention is an optical device and method of fabrication which mitigates the problem of zn migration in the cladding and waveguide regions. The contact region includes carbon, which acts as a p-type dopant in ternary semiconductor material. The contact layer is made of ingaas or InGaAsP, and the invention is most advantageously used in an electroabsorption modulated laser or capped mesa buried heterostructure laser.

Patent
   6317444
Priority
Jun 12 1998
Filed
Jun 12 1998
Issued
Nov 13 2001
Expiry
Jun 12 2018
Assg.orig
Entity
Large
41
9
all paid
1. An optical device comprising:
a semiconductor waveguide region including an active region
a cladding region including a dopant comprising zn formed adjacent to the waveguide region; and adapted to provide waveguiding of light in the active region; and
a semiconductor contact region selected from ingaas and InGaAsP formed over the waveguide region, the contact region including a p-type dopant comprising carbon to provide sufficient conductivity to make low resistance contact with the waveguide region.
6. A method for fabricating an optical device comprising the steps of:
epitaxially forming a semiconductor waveguide region over a substrate;
forming a cladding region adjacent to said waveguide region, the cladding region including a dopant comprising zn; and
epitaxially forming a contact region selected from ingaas and InGaAsP over the waveguide region, the contact region including a p-type dopant comprising carbon to provide a sufficient conductivity to make low resistance contact to the waveguide region.
2. The device according to claim 1 wherein the concentration of the p-type carbon dopant is within the range 1×1018 -5×1019 cm-3.
3. The device according to claim 1 wherein the device is an electroabsorpition modulated laser.
4. The device according to claim 1 wherein the device is a Capped Mesa buried heterostructure laser.
5. The device according to claim 1 wherein the waveguide region further comprises a modulator region and the cladding region is adapted to provide waveguiding of light between the active region and the modulator region.
7. The method according to claim 6 wherein the concentration of the p-type carbon dopant is within the range 1×1018 -5×1019 cm-3.
8. The method according to claim 6 wherein the contact region is formed by metallorganic chemical vapor deposition.

This invention relates to semiconductor optical devices, including lasers and electroabsorption modulators, and detectors.

Electroabsorption modulated laser (EML) devices have recently received a great deal of attention for use in high speed optical systems. Such devices typically include a semiconductor laser and modulator found in a single substrate. These devices usually include a semiconductor multi quantum well (MQW) active region, a contact layer formed thereover to facilitate electrical contact with the active layer, a current blocking layer for directing current to the active region, and a cladding layer to confine light to the active region. Zn is a commonly used p-type dopant for the blocking, contact and cladding layers, and the performance of the laser and modulator depends critically on the level of Zn in the various layers of the device.

It is desired to maintain a certain Zn dopant profile in the device structure for optimum performance. However, the Zn profile in the blocking and cladding layers may get modified during the growth of the contact layer due to the migration of the Zn dopant from the contact layer. One solution to the problem is to reduce the amount of Zn in the cladding, blocking, and contact layers. However, this approach also adversely affects other device properties, such as total device resistance.

It is desirable, therefore, to provide a process and resulting device which mitigate the problem of Zn migration in optical devices.

The invention in accordance with one aspect is an optical device comprising a semiconductor waveguide region (which may include an active region), a cladding region including a dopant comprising Zn, formed adjacent to the waveguide region, and a semiconductor contact region. The contact region is selected from the materials InGaAs and InGaAsP, and is formed over the waveguide region. The contact region includes a p-type dopant comprising carbon to provide sufficient conductivity to make low resistance contact to the waveguide region.

In accordance with another aspect, the invention is a method of fabricating an optical device including the steps of epitaxially forming a semiconductor waveguide region over the substrate, and forming a cladding region adjacent to the waveguide region, the cladding region including a dopant comprising Zn. A contact region selected from the materials InGaAs and InGaAsP is epitaxially formed over the waveguide region. The contact layer includes a p-type dopant comprising carbon to provide sufficient conductivity to make a low resistance contact to the waveguide region.

These and other features of the invention are delineated in detail in the following description. In the drawing:

FIG. 1 is perspective view of an optical device according to one embodiment of the invention.

FIGS. 2-4 are views of the device of FIG. 1 during various stages of fabrication; and

FIG. 5 is a front view of a device according to a further embodiment of the invention.

It will be appreciated that, for purposes of illustration, these figures are not necessarily drawn to scale.

FIG. 1 illustrates a typical electroabsorption modulated laser (EML) device, 10, which includes features of the invention. The device, 10, basically comprises two portions, a laser portion, 11, and a modulator portion, 12, formed on a single substrate, 13. The substrate, 13, typically comprises InP. Formed on the substrate, 13, is a waveguide region, 14, which comprises a combination of active layer and optical confinement layer and is typically InGaAsP. The region, 14, includes a p-n junction, 26. As known in the art, the properties of the constituents of the waveguide 14 are chosen so that in the laser portion, 11, the waveguide will function as an active region and in the modulator portion, 12, the waveguide will absorb a certain amount of the emitted light depending upon the electrical bias supplied thereto. (See, e.g., Johnson et al "High Speed Integrated Electroabsorption Modulators", Proceedings of SPIE, Vol. 3038, pp. 30-38 (February 1997).

Thus, in the context of this application, a "waveguide" region refers to a region which will confine light to a designated portion of the device, and can include, alone or in combination, an active region, a modulator region, and a detector region (not shown).

A blocking layer, 25, is formed adjacent to the waveguide 14. This layer typically comprises alternate n-type, p-type and intrinsic layers of InP, and is used to block current in areas outside the waveguide 14.

A cladding layer, 15, is also formed adjacent to the waveguide, 14, and extending above it. The layer, 15, in combination with 14, provides the necessary structure for proper operation of an optical waveguide. The layer, 15, is typically a binary material, e.g., InP. The cladding layer typically includes Zn as a p-type dopant in a controlled profile. A contact layer, 16, is formed over the waveguide and cladding region. This layer is doped to provide sufficient conductivity to make low resistance contact to the section, 14. The layer, 16, typically comprises InGaAs and includes a p-type dopant to adjust the conductivity. In accordance with a preferred embodiment, the impurity is carbon, and the impurity concentration is within the range 1×1018 -5×1019 cm-3. Carbon behaves as a p-type dopant in ternary material, although it acts as n-type dopant in other material such as InP. The elimination of Zn dopant in the contact layer, 16, effectively eliminates the problems associated with Zn migration during growth and processing, such as an increase in internal loss in the waveguide, 14, in the laser portion. In addition, it aids in preserving the location of p-n junction, 26, within section 14.

The device, 10, also includes electrodes 17 and 18 formed on the contact layer, 16, in the laser and modulator portions, 11 and 12, respectively and an electrode, 19, formed on the bottom surface of the substrate, 13. These electrodes provide the bias to produce light emission in the laser portion, 11, and control the absorption of the emitted light in the modulator portion, 12.

A method for fabricating the device of FIG. 1 is illustrated in FIGS. 2-4. As illustrated in FIG. 2, the region, 14, is formed on the substrate, 13, by first forming mask segments, 20 and 21, which arc typically SiO2 and leaving a central portion of the substrate exposed. The region 14 is then grown on the exposed surface typically by metallorganic chemical vapor deposition (MOCVD) or gas source molecular beam epitaxy (GSMBE).

Typically, segments 20 and 21 are then removed, another SiO2 mask (not shown) is formed on the region, 14, and then the region is etched to form a mesa structure.

As illustrated in FIG. 3, the blocking layer 25 and cladding layer, 15, are then formed by epitaxially growing the semiconductor layers on the exposed surfaces of the substrate, 13. This is usually done by MOCVD. The layer, 15, typically includes a Zn dopant having a desired profile as a function of the layer thickness so as to form the p-n junction. For example, the concentration of Zn dopant usually varies from 5×1017 cm3 to 3×1018 cm3.

As illustrated in FIG. 4, the contact layer, 16, is formed on the cladding layer, 15, typically by MOCVD. The layer, 16, includes carbon as a p-type dopant to provide the desired conductivity. Preferably, the dopant concentration is in the range 1×1018 -5×1019 cm-3. The contact layer, 16, is typically InGaAs, but other materials such as InGaAsP might be employed if carbon will act as a p-type dopant therein. The layer 16, is typically 0.1 μm-0.5 μm micron thick.

The structure is completed by depositing electrodes 17, 18 and 19 on the top and bottom surfaces, respectively, of the device. These electrodes are typically Ti/Pt/Au or Be-Au and deposited by e-beam evaporation.

While the invention has been described with reference to an EML device, it should be apparent that it is useful for other optical devices requiring a p-type contact layer. For example, a capped Mesa Buried Heterostructure (CMBH) laser, illustrated in FIG. 5, includes a substrate, 30, typically InP on which is formed a n-type lower cladding layer 31, an active region and waveguide, 32, for light emission, and blocking regions, 33 and 34, adjacent to the active region, layer 35. The active region typically comprises MQW or bulk layers of InGaAsP, and the blocking regions, 33 and 34, typically comprise InP. A p-type cladding layer, 35, comprising typically InP was formed over the waveguide and active region. This was followed by the growth of layer 36 as a contact layer. The contact layer, 36, was InGaAs and includes carbon as the p-type dopant with a concentration in the range 1×1018 -5×1019 cm-3.

This device was tested, and it was discovered that such lasers have lower threshold currents and higher slope efficiency than similar devices made with Zn-doped contact layers. Further, the internal loss in the laser cavity was lower for devices made in accordance with the invention as a result of the absence of Zn diffusion into the active region.

Chakrabarti, Utpal Kumar, Hamm, Robert Alan, Seiler, Joseph Brian, Shtengel, Gleb E., Smith, Lawrence Edwin

Patent Priority Assignee Title
10121897, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
10236356, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
6553170, Aug 31 2001 NeoPhotonics Corporation Method and system for a combination of high boron and low boron BPSG top clad fabrication process for a planar lightwave circuit
7142342, Jun 02 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Electroabsorption modulator
7160746, Jul 27 2001 NeoPhotonics Corporation GeBPSG top clad for a planar lightwave circuit
7372121, Jul 27 2001 NeoPhotonics Corporation GeBPSG top clad for a planar lightwave circuit
7736956, Aug 17 2005 TAHOE RESEARCH, LTD Lateral undercut of metal gate in SOI device
7915167, Sep 29 2005 TAHOE RESEARCH, LTD Fabrication of channel wraparound gate structure for field-effect transistor
7960794, Aug 10 2004 TAHOE RESEARCH, LTD Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
8067818, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
8071983, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
8084818, Jun 30 2004 Intel Corporation High mobility tri-gate devices and methods of fabrication
8183646, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8193567, Sep 28 2005 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
8268709, Sep 29 2004 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
8273626, Jun 27 2003 TAHOE RESEARCH, LTD Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
8294180, Sep 28 2005 TAHOE RESEARCH, LTD CMOS devices with a single work function gate electrode and method of fabrication
8362566, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
8368135, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8399922, Sep 29 2004 Intel Corporation Independently accessed double-gate and tri-gate transistors
8405164, Jun 27 2003 Intel Corporation Tri-gate transistor device with stress incorporation layer and method of fabrication
8502351, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
8581258, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
8664694, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8741733, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
8749026, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
8816394, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8933458, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
9048314, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
9190518, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
9224754, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
9337307, Jun 15 2005 TAHOE RESEARCH, LTD Method for fabricating transistor with thinned channel
9368583, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
9385180, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
9450092, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
9614083, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
9741809, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
9748391, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
9761724, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
9806193, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
9806195, Jun 15 2005 TAHOE RESEARCH, LTD Method for fabricating transistor with thinned channel
Patent Priority Assignee Title
5212703, Feb 18 1992 Eastman Kodak Company Surface emitting lasers with low resistance bragg reflectors
5706306, Mar 15 1996 Google Technology Holdings LLC VCSEL with distributed Bragg reflectors for visible light
5719893, Jul 17 1996 II-VI DELAWARE, INC Passivated vertical cavity surface emitting laser
5818861, Jul 19 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Vertical cavity surface emitting laser with low band gap highly doped contact layer
EP726483A,
JP10135567A,
JP1214190A,
JP5198895,
JP61258487A,
///////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 29 1998CHAKRABARTI, UTPAL KUMARLucent Technologies IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092480990 pdf
May 29 1998SHTENGEL, GLEB E Lucent Technologies IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092480990 pdf
Jun 01 1998SEILER, JOSEPH BRIANLucent Technologies IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092480990 pdf
Jun 08 1998SMITH, LAWRENCE EDWINLucent Technologies IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092480990 pdf
Jun 09 1998HAMM, ROBERT ALANLucent Technologies IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092480990 pdf
Jun 12 1998Agere System Optoelectronics Guardian Corp.(assignment on the face of the patent)
May 06 2014Agere Systems LLCDEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0328560031 pdf
May 06 2014LSI CorporationDEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0328560031 pdf
Aug 04 2014Agere Systems LLCAVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0353650634 pdf
Feb 01 2016DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTAgere Systems LLCTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 0376840039 pdf
Feb 01 2016DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENTLSI CorporationTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 0376840039 pdf
Feb 01 2016AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD BANK OF AMERICA, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0378080001 pdf
Jan 19 2017BANK OF AMERICA, N A , AS COLLATERAL AGENTAVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS0417100001 pdf
May 09 2018AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITEDMERGER SEE DOCUMENT FOR DETAILS 0471950026 pdf
Sep 05 2018AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITEDCORRECTIVE ASSIGNMENT TO CORRECT THE EFFECTIVE DATE OF MERGER PREVIOUSLY RECORDED ON REEL 047195 FRAME 0026 ASSIGNOR S HEREBY CONFIRMS THE MERGER 0474770423 pdf
Date Maintenance Fee Events
May 09 2005M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
May 07 2009M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 07 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 13 20044 years fee payment window open
May 13 20056 months grace period start (w surcharge)
Nov 13 2005patent expiry (for year 4)
Nov 13 20072 years to revive unintentionally abandoned end. (for year 4)
Nov 13 20088 years fee payment window open
May 13 20096 months grace period start (w surcharge)
Nov 13 2009patent expiry (for year 8)
Nov 13 20112 years to revive unintentionally abandoned end. (for year 8)
Nov 13 201212 years fee payment window open
May 13 20136 months grace period start (w surcharge)
Nov 13 2013patent expiry (for year 12)
Nov 13 20152 years to revive unintentionally abandoned end. (for year 12)