The invention relates to a radar distance measuring device. An especially linear frequency-modulated high frequency signal is emitted via an antenna and mixed with an echo signal reflected by a target object whose distance is to be determined. The distance of said target object can then be calculated by analyzing the frequency of the mix result. The aim of the invention is to improve the distance resolution or increase the accuracy of measurement. To this end, a first frequency analysis is first carried out to obtain a rough analysis result. Said rough analysis result is used to control a filtering device which then restricts the mix result in its time range to a segment around the frequency of the target object. A discrete fourier transformation is then carried out for this segment in order to produce an analysis result with a more refined scanning step than the first frequency analysis. The measuring result is further refined, preferably by taking into account not only the frequency of the mix result as determined by the target object but also the phase relation of the oscillation of this frequency and by supplementing the measuring result with a corresponding wavelength fractional part.
|
1. A radar range measuring device comprising: a transmitter for directing a frequency-modulated continuous radio frequency signal via an antenna onto a target object placed at the range to be determined; a mixing stage for combining with one another, signals tapped from the transmitter, and echo signals received from the target object via the antenna or another antenna; a frequency analysis device for frequency analysis of the mixing result; and a display device for displaying the range corresponding to a target-object-specific frequency of the mixing result, wherein the frequency analysis device contains a first frequency analyzer for performing a fast fourier transformation of the mixing result to generate a coarse analysis result; a filter device being controlled by the coarse analysis result to select a segment of the mixing result which is limited to a frequency band which contains a target-object-specific frequency and which is bounded around the target-object-specific frequency in the time domain; a second frequency analyzer for performing a band-selected discrete fourier transform on the segment of the mixing result including the frequency band selected by the filter device, the second frequency analyzer being coupled to the display device, the second frequency analyzer using a sampling step which is refined relative to the sampling step of the first frequency analyzer.
10. A radar range measuring device with a transmitter directing a frequency-modulated continuous radio frequency signal via an antenna onto a target object placed at the range to be determined; with a mixing stage which combines with one another, on the one hand, signals tapped from the transmitter, and, on the other hand, echo signals received from the target object via the antenna or another antenna; with a frequency analysis device for frequency analysis of the mixing result; and with a display device to display the range corresponding to a target-object-specific frequency of the mixing result, characterized in that the frequency analysis device contains a first frequency analyzer which is used to control a filter device which selects a section of the mixing result which contains a target-object-specific frequency and is bounded around that frequency in the time domain, over which a discrete fourier transformation is performed by means of another frequency analyzer which is coupled to the display device, using a sampling step which is refined relative to the sampling step of the first frequency analyzer, and characterized in that the frequency-modulated continuous radio frequency signal is generated by a voltage-controlled oscillator whose tuning voltage is supplied by a phase comparator via loop filter, specifically in the form of an I controller or a pi controller or a pid controller, one input signal to the phase comparator being supplied from the output of the voltage-controlled oscillator via a frequency divider, while the other input signal to the phase comparator is a frequency setpoint-value signal corresponding to a fraction of the frequency of the transmitter output oscillation corresponding to the divider ratio of the frequency divider.
2. The device according to
3. The device according to
4. The device according to
5. The device according to
6. The device according to
7. The device according to
8. The device according to
9. The device according to
11. The device according to
12. The device according to
|
The invention relates to a radar range measuring device with a transmitter directing a frequency-modulated continuous radio frequency signal via an antenna onto an object placed at the range to be determined; with a mixing stage which combines with one another, on the one hand, signals tapped from the transmitter, and, on the other hand, echo signals received from the target object via the antenna and/or another antenna; with a frequency analysis device for frequency analysis of the mixing result; and with a display device to display the range corresponding to a target-object-specific frequency of the mixing result.
In known radar range measuring devices with sawtooth frequency modulation, the frequency swing (difference between upper frequency limit and lowerfrequency limit) of the frequency modulation of the transmit signal is used to determine the range resolution, which is related to the frequency swing via the following equation:
For example, if a range resolution of 10 cm is required, then for known radar range measuring devices operating on the FMCW principle it is necessary to provide a frequency swing of 1.5 GHz. But if a smaller frequency swing has to be selected, e.g., because of bandwidth restrictions imposed by licensing regulations of the postal administration, then the range resolution is worsened correspondingly toward larger values.
In EP-A-0647957 a method is described which provides a large number of measuring cycles in order to improve the measuring accuracy and/or the range resolution.
The problem to be solved by the invention is to configure a radar range measuring device of the general type briefly described here in above so that a high range resolution is achieved when the frequency swing of the frequency modulation of the transmit signal is limited, without any need to perform a large number of measuring cycles.
That problem is solved according to the invention by the characterizing features of patent claim 1 hereinbelow.
Advantageous configurations and developments are the subject matter of the patent claims subordinated to claim 1, to whose content express reference is made here without repeating their wording at this point.
But it should be noted that for full exploitation of the advantages achieved by the invention it is important that the frequency modulation of the frequency of the oscillation radiated toward the target object be performed with utmost precision, preferably a linear or sawtooth frequency modulation being selected.
According to a very suitable embodiment of a radar range measuring device of the type indicated here, that modulation is performed by adjustment of an oscillator to specified frequencies in a highly precise manner within each period corresponding to the sampling clock of the signal processing, those frequencies having values which are located with corresponding accuracy on the desired frequency characteristic versus time, i.e., exactly on a straight line in the case of sawtooth modulation.
Another important improvement of a radar range measuring device of the type indicated here is that the phase position of the determined target-object-specific frequency is obtained and evaluated as the result of a direct Fourier transformation, i.e., in the sense that, to determine the range being measured, one not only counts out the full periods of the target-object-specific frequency of the mixing result but rather one supplements the corresponding multiple of the wavelength by the fraction of the wavelength corresponding to the phase angle.
Exemplary embodiments are described hereinbelow with reference to the drawing, in which:
The radar range measuring device according to
An echo signal of the transmitted signal reflected from the target object 4 is received by the antenna 1 and is out-coupled by a directional coupler in the separating filter 2 to a mixer 5, which receives as a second input signal a portion of the transmit signal out-coupled by a directional coupler 6. Thus, whereas the portion of the transmit signal out-coupled by the directional coupler 6 arrives essentially immediately at the mixer 5, the portion of the echo signal corresponding to the transmit signal which is reflected from the target object 4 and out-coupled to the mixer 5 has an electrical path length of 2x behind it. Therefore, the homodyne superposition occurring in the mixer 5 leads to the difference frequency at the mixers output, As is shown qualitatively in
The mixing result of the mixer 5, having the difference frequency between the transmit signal and the echo signal, is input into an analog signal processor 9 whose task is to eliminate certain inherent interference properties of the transmit and receive components, certain influences of the geometry of the target object and transmit/receive antenna and possible difficulties in interpreting the measurement result. That will be discussed further below with reference to FIG. 2.
The output signal of the analog signal processor 9 reaches an analog/digital converter 10, whose digital signals are fed to a digital frequency analysis device 11. That frequency analysis device generates essentially a frequency spectrum of the mixing result of the mixer 5 digitized by the analog/digital converter 10. That frequency spectrum can have the form indicated qualitatively in
After analogization of the output signal of the digital frequency analysis device 11, that signal can display the measured range x in the display device 12.
A voltage-controlled oscillator 3 receives a control signal, determining the frequency of its output signal, via the line 13 from a loop filter 14 in the form of an I or PI or PID controller, whose input is fed with the output signal of a comparator 15. That comparator receives as one input signal an oscillation or pulse sequence having a frequency corresponding to the output frequency of the voltage-controlled oscillator 3 divided by the divisor N. The second input signal to the comparator 15 is an oscillation or pulse sequence having a frequency variation corresponding to the desired frequency modulation of the output signal of the voltage-controlled oscillator 3, taking into consideration the divisor introduced by the frequency divider designated by 16. That second input signal to the comparator 15 is generated by direct digital synthesis in the DDS unit 17. For that purpose, the DDS unit 17 receives, from a processor 18, digital words corresponding to certain instantaneous frequencies of the frequency modulation, which lead to a highly precise presetting of a frequency setpoint value in the comparator 15. Thus, in the circuit of
For example, in the operating frequency range of approximately 24 GHz selected for the voltage-controlled oscillator 3, the divider 16 performs a frequency division in the MHz range and, accordingly, the output signal of the DDS unit also lies in the MHz range. The comparator 15 performs a phase comparison or frequency comparison of the output signals of the components 16 and 17 and, via the filter 14, brings about a readjustment of the output signal of the voltage-controlled oscillator 3 to an accuracy of within a few Hz. That adjustment is accomplished after a transient time of the PLL circuit 19 of a few microseconds after each new frequency setpoint value is preset by the DDS unit 17. For that reason, when there is a sequence of, e.g., 1024 samplings by the A/D converter 10, the control processes of the PPL circuit in conjunction with the DDS unit 17 relating to individual points on the characteristic of the frequency modulation are lined up [in time] to comprise a total duration on the order of milliseconds.
The previously described, highly exact dynamic frequency adjustment, particularly the linearization of the transmit oscillator, makes especially conspicuous the actions taken within the frequency analysis device 11 as described hereinbelow.
First of all, however, the construction of the analog signal processor 9 shall be discussed in more detail.
With practical embodiments of the device indicated here, one also finds a pronounced maximum near the lower end of the frequency spectrum of the mixing result according to
The maxima 24 and 25 in the frequency spectrum and in the graph of the logarithm of the signal amplitude as a function of range in
Besides the maximum 24, the frequency spectrum in
To stop out such interference, the analog signal processor 9 contains a band-stop filter 26, e.g., a band-stop filter for eliminating the interference maxima 24 located in the lowermost frequency range of the frequency spectrum in FIG. 7.
The band-stop filter 26 of the analog signal processor 9 is followed by a differentiator 27 which has the effect that signal amplitudes caused by target objects at large range are amplified and signal amplitudes caused by target objects at decreasing ranges are attenuated to an increasing extent (
Finally, the differentiator 27 is followed by an antialiasing filter 28 whose upper cutoff frequency is placed so that frequency ambiguities can be avoided during sampling of the oscillation.
As shown in
The refined sampling step of the discrete Fourier transformation of the DFT frequency analyzer can provide, for example, a spectrally oversampling calculation of the discrete Fourier transform by a factor of 100 in the selected section. The spectral line having the maximum amplitude in the frequency spectrum can be determined with a range resolution increased correspondingly by the factor of 100.
In particular, the continuous frequency spectrum is sampled at intervals Δx or in frequency intervals Δf of the mixing result, where Δx=c/(2*B) and Δf=1/Tmod, where B in turn is the range from the lowermost to the uppermost frequency of the frequency modulation and Tmod signifies the duration of that modulation swing.
The fast Fourier transformation is performed according to the following equation:
in which
xn real output value in the time domain
N number of output values
xm complex result value in the frequency domain.
Given the values of B, N and Tmod that currently are technically feasible, and allowing for movements in the measurement surroundings, it is only possible to achieve resolutions of several centimeters when the range is determined with known radar range measuring devices of the general type considered here.
But, according to the idea indicated here, the fast Fourier transformation is performed downstream and/or controlled by its result; a discrete Fourier transformation [is performed] by the DFT frequency analyzer 30 in a frequency range selected bymeans of the filter device 31 around the target-object-specific frequency. The equation for that band-selected discrete Fourier transformation performed with a refined sampling step reads as follows:
in which
xn real output value in the time domain
N number of output values
xm complex result value in the frequency domain.
By means of the discrete Fourier transformation performed with the device indicated here, a range resolution down into the millimeter and submillimeter region is achieved with comparatively short computation times and without the use of multiple computation cycles. If the factor a is chosen large enough, the measuring accuracy is limited by the computational accuracy. The highly exact dynamic adjustment of the frequency of the voltage-controlled oscillator 3 in the manner described above, in conjunction with the very precise determination of the target-object-specific frequency in the mixing result of the mixer 5 by means of the discrete Fourier transformation in the DFT frequency analyzer 30, makes it possible to refine the range resolution once again, since the DFT frequency analyzer 30 supplies not only the target-object-specific frequency of the mixing result but also the phase position in the form of the complex phase angle.
If one considers the mixing result at the output of the mixer 5 at a fixed frequency of, for example, 24 GHz, then the phase is rotated by 360°C each time the target is displaced by a half wavelength of the transmit frequency in the direction of increasing range, i.e., each time the electrical path length for the wave running back and forth becomes larger by one wavelength. From the relationship between the transmit frequency, the phase which can be determined with an accuracy of at least 10°C and the frequency of the superposition signal or mixing result with the target range, one can achieve an accuracy increase by 360/10 of the half wavelength of the transmit frequency. The computation devices required for this process can be provided as part of the DFT frequency analyzer 30 in the illustration in FIG. 3.
An example will clarify this accuracy improvement by phase evaluation:
Suppose the range determination by the DFT frequency analysis yields a range value of, for example, 10 m with an accuracy of 1 mm. At the utilized transmit frequency of 24 GHz (wavelength λ=12.49 mm), the phase of the superposition signal or mixing result of the mixer 5 rotates by 360°C a total of n360 times as the target object is displaced from 0 m to 10 m. Thus,
The phase rotates by 360°C 1601 times during this displacement of the target object from 0 m to 10 m. To determine the range more accurately, one examines the phase of the superposition signal of the mixer, which was obtained by means of the preceding discrete Fourier transformation. If, for example, the latter amounts to 270°C, then that corresponds to an addition range component of
The total range from the target is therefore 1601·λ/2+4.68 mm=10.0029 m.
In order to avoid jumps of λ/2 at the limits of the sampling steps owing to assignment of a particular target-object-specific frequency line to a preceding sampling step because of an inaccuracy in the discrete Fourier transform, one can calculate several frequency-limited discrete Fourier transforms of different lengths. For example, instead of 1024 sampling values, by omitting the first sampling values one can use 1010, 1000 (etc.) sampling values, whereby the start of the transmit frequency is shifted to higher values. One then obtains the spectral line of interest in the most central possible position between the beginning and end of a sampling step of the discrete Fourier transformation and thereby obtains an unambiguous phase determination.
At a measuring range of 50 m, for example, radar range measuring devices of the type indicated here achieve a range resolution in the submillimeter region. One application is, for example, the measurement of liquid level in closed tanks. In addition to the range measurement, evaluation of the amplitude of the superposition signal permits an interpretation of the target's nature, i.e., perhaps its reflection properties, size, radiation absorption, etc., which may be of importance in the exemplary application of a liquid-level measurement or indication and provides information about the nature of the tank's filling, the surface condition of the filling level, etc.
Finally, it should be pointed out that, although in the present description and in the claims we speak of a frequency-modulated continuous radiofrequency signal as the transmit signal, such a continuous signal should also be understood to encompass the fine-step modulation with controlled step plateau such as that generated by the voltage-controlled oscillator 3 in conjunction with the PLL circuit 19 and the DDS unit 17 and the processor 18.
Patent | Priority | Assignee | Title |
10018716, | Jun 26 2014 | Honeywell International Inc. | Systems and methods for calibration and optimization of frequency modulated continuous wave radar altimeters using adjustable self-interference cancellation |
10049569, | Oct 31 2005 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Detecting roadway targets within a multiple beam radar system |
10145948, | Jul 13 2016 | Texas Instruments Incorporated | Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation |
10276041, | Oct 31 2005 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Detecting roadway targets across beams |
10422683, | Aug 14 2014 | ENDRESS+HAUSER SE+CO KG | Apparatus for determining fill level of a fill substance |
10859691, | Aug 22 2018 | Infineon Technologies AG | Radar range accuracy improvement method |
11204410, | Feb 11 2019 | NXP B.V. | Radar-based communication |
11231493, | Jul 13 2016 | Texas Instruments Incorporated | Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation |
11550027, | May 04 2020 | NXP B.V. | Predistortion technique for joint radar/communication systems |
6833807, | Oct 26 2000 | Automotive Distance Control Systems GmbH | Method for adaptive target processing in a motor vehicle radar system |
7239266, | Aug 26 2004 | Honeywell International Inc. | Radar altimeter |
7426450, | Jan 10 2003 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Systems and methods for monitoring speed |
7427930, | Sep 27 2001 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Vehicular traffic sensor |
7728763, | Jul 19 2005 | Electronics and Telecommunications Research Institute | High resolution ranging apparatus and method using UWB |
8098193, | Nov 05 2009 | Honeywell International Inc. | Digitally controlled UWB millimeter wave radar |
8248272, | Oct 31 2005 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Detecting targets in roadway intersections |
8624776, | Aug 31 2007 | FLIR BELGIUM BVBA | Digital radar or sonar apparatus |
8665113, | Oct 31 2005 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Detecting roadway targets across beams including filtering computed positions |
8800363, | Dec 02 2010 | Rosemount Tank Radar AB | Radar level gauge with dielectric rod connection |
8866667, | Feb 22 2012 | Honeywell International Inc. | High sensitivity single antenna FMCW radar |
9024816, | Aug 31 2007 | FLIR BELGIUM BVBA | Digital radar or sonar apparatus |
9046606, | Mar 07 2011 | Furuno Electric Co., Ltd. | Radar signal processing device and program, and radar apparatus |
9240125, | Oct 31 2005 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Detecting roadway targets across beams |
9372257, | Aug 31 2007 | FLIR BELGIUM BVBA | Method of operating a digital radar or sonar apparatus |
9412271, | Jan 30 2013 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Traffic flow through an intersection by reducing platoon interference |
9601014, | Oct 31 2005 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Detecting roadway targets across radar beams by creating a filtered comprehensive image |
9645229, | Aug 31 2007 | FLIR BELGIUM BVBA | Digital ranging systems and methods |
9660605, | Jun 12 2014 | Honeywell International Inc.; Honeywell International Inc | Variable delay line using variable capacitors in a maximally flat time delay filter |
9791560, | Aug 13 2014 | Infineon Technologies AG | Radar signal processor, radar system and method for monitoring a functional safety of a radar system |
ER5699, | |||
RE48781, | Sep 27 2001 | ZIONS BANCORPORATION, N A DBA ZIONS FIRST NATIONAL BANK | Vehicular traffic sensor |
Patent | Priority | Assignee | Title |
3522527, | |||
3628136, | |||
4211987, | Nov 30 1977 | Harris Corporation | Cavity excitation utilizing microstrip, strip, or slot line |
4781063, | Oct 01 1984 | Method of measuring orientation of sheet or web like material | |
4890054, | Dec 09 1986 | Dipole Electronics Co., Ltd. | Apparatus and method for measuring physical quantities |
4943778, | Dec 21 1987 | NEW OJI PAPER CO , LTD | Instrument for measuring high frequency characteristics of sheet-like materials |
5023618, | Oct 24 1989 | THALES NEDERLAND B V | FM-CW radar apparatus |
5325095, | Jul 14 1992 | Bechtel Nevada Corporation | Stepped frequency ground penetrating radar |
5396250, | Dec 03 1992 | The United States of America as represented by the Secretary of the Air | Spectral estimation of radar time-of-arrival periodicities |
5504490, | Apr 05 1994 | Thomson-CSF | Radar method and device for the measurement of distance |
5596325, | Jul 07 1995 | Nonlinear Technologies, Inc. | FM-CW radar transceiver |
6107957, | Jun 27 1997 | Rosemount Inc | Radar level gauge |
DE19543179, | |||
DE19833220, | |||
DE4040084, | |||
EP121824, | |||
EP558759, | |||
GB1331525, | |||
JP57197734, | |||
JP7030584, | |||
SU1103098, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 12 2000 | Mikrowellen-Technologie und Sensoren GmbH | (assignment on the face of the patent) | / | |||
Feb 18 2002 | HOHNE, FELIX | Mikrowellen-Technologie und Sensoren GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012900 | /0850 | |
May 25 2006 | Mikrowellen-Technologie und Sensoren GmbH | ASTYX GmbH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 024823 | /0562 | |
Sep 28 2021 | ASTYX GmbH | CRUISE MUNICH GMBH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 058188 | /0957 |
Date | Maintenance Fee Events |
Nov 02 2005 | REM: Maintenance Fee Reminder Mailed. |
Nov 17 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 17 2005 | M1554: Surcharge for Late Payment, Large Entity. |
Nov 21 2005 | ASPN: Payor Number Assigned. |
Oct 12 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 17 2013 | ASPN: Payor Number Assigned. |
Jun 17 2013 | RMPN: Payer Number De-assigned. |
Oct 10 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 16 2005 | 4 years fee payment window open |
Oct 16 2005 | 6 months grace period start (w surcharge) |
Apr 16 2006 | patent expiry (for year 4) |
Apr 16 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 16 2009 | 8 years fee payment window open |
Oct 16 2009 | 6 months grace period start (w surcharge) |
Apr 16 2010 | patent expiry (for year 8) |
Apr 16 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 16 2013 | 12 years fee payment window open |
Oct 16 2013 | 6 months grace period start (w surcharge) |
Apr 16 2014 | patent expiry (for year 12) |
Apr 16 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |