Low current leakage DRAM structures are achieved using a selective silicon epitaxial growth over an insulating layer on memory cell (device) areas. An insulating layer, that also serves as a stress-release layer, and a Si3N4 hard mask are patterned to leave portions over the memory cell areas. Shallow trenches are etched in the substrate and filled with a CVD oxide which is polished back to the hard mask to form shallow trench isolation (STI) around the memory cell areas. The hard mask is selectively removed to form recesses in the STI aligned over the memory cell areas exposing the underlying insulating layer. openings are etched in the insulating layer to provide a silicon-seed surface from which is grown a selective epitaxial layer extending over the insulating layer within the recesses. After growing a gate oxide on the epitaxial layer, FETs and DRAM capacitors can be formed on the epitaxial layer. The insulating layer under the epitaxial layer drastically reduces the capacitor leakage current and improves DRAM device performance. This self-aligning method also increases memory cell density, and is integratable into current DRAM processes to reduce cost.
|
1. Dynamic random access memory (DRAM) cells on and in an epitaxial silicon layer over an insulating layer on a semiconductor substrate comprised of:
a shallow trench isolation around device areas having recesses over and aligned to said device areas; said insulating layer on said substrate in said recesses, each of said recesses having an opening in said insulating layer to said substrate; an epitaxial layer in each of said recesses extending from said opening and laterally over said insulating layer; a gate oxide on said epitaxial layer in each of said recesses; FET gate electrodes on said gate oxide and over said openings in said insulating layer, and including lightly doped source/drain areas and source/drain contact areas in said epitaxial layer adjacent to said gate electrodes; capacitor node contacts to said source/drain contact areas in said epitaxial layer over said insulating layer; bit line contacts in said epitaxial layer over said insulating layer; capacitors over and contacting said capacitor node contacts, and bit lines over and contacting said bit line contacts.
2. The structure of
3. The structure of
4. The structure of
5. The structure of
|
This is a division of patent application Ser. No. 09/697,946, filling date Oct. 30, 2000, A Method For Making Low-Leakage Dram Structures Using Selective Silicon Epitaxial Growth Growth (Seg) On An Insulating Layer, assigned to the same assignee as the present invention.
(1) Field of the Invention
The present invention relates to the fabrication of integrated circuit devices on semiconductor substrates, and more particularly relates to a method for fabricating Dynamic Random Access Memory (DRAM) cells using selective silicon epitaxial growth over an insulating layer on the cell (device) areas. The method is particularly useful for reducing capacitor leakage currents and soft error due to Alpha particles on DRAM cells.
(2) Description of the Prior Art
Advances in the semiconductor process technologies have dramatically decreased the semiconductor device feature sizes and increased the circuit density on the integrated circuits on chips. One device type that has experienced a rapid increase in density is the array of memory cells on DRAM devices. Each memory cell consists of a single pass transistor (FET) and a storage capacitor. As the cell area decreases and the capacitance of the storage capacitor decreases, it becomes increasingly difficult to maintain sufficient charge on the capacitor due to the capacitor leakage current, and the refresh cycle time needed to maintain the charge on the capacitor becomes unacceptably short. Another problem is the natural presence of Alpha particles, which can generate electron-hole pairs resulting in soft errors in the more conventional DRAM capacitors in which their node contacts are made directly to the diffused junctions in the silicon substrate.
One method of reducing the leakage current and reducing soft error is to use a silicon-on-insulator (SOI). However, SOI technology is still too expensive and complicated for manufacturing. However, as devices are further diminished in size, the junction depths and well depths decrease proportionally. The use of a thin silicon epitaxial layer is required for future device generations to achieve these shallow device structures.
Several methods for making and using SOI have been described in the literature. For example, in U.S. Pat. No. 5,691,776 to Hebert et al. a method is described for forming field oxide regions by etching trenches in which a conformal silicon nitride (Si3N4) is deposited over the trenches. An opening is etched in the Si3N4 layer and a selective epitaxial growth (SEG) is used to partially fill the trenches. The SEG is then thermally oxidized to form the field oxide. In U.S. Pat. No. 5,686,343 to Lee, Lee isolates a semiconductor layer on an insulator by first forming an insulating layer on a silicon substrate, etching a window to the substrate, depositing an amorphous silicon layer that is annealed to form an epitaxial layer over the window. The epitaxial layer is patterned and a Si3N4 layer is deposited over the patterned epitaxial layer, and a thermal oxidation is used to oxidize the silicon in the window under the semiconductor layer. In U.S. Pat. No. 6,037,199 to Huang et al. an insulating layer is formed on a silicon substrate, an opening is formed in the insulator, and an amorphous silicon layer is deposited and annealed to form an epitaxial layer extending from the opening laterally over the insulating layer. The epitaxial layer is patterned over the insulating layer to form isolated silicon regions (islands) in which FETs are formed. In U.S. Pat. No. 5,763,314 to Chittipeddi a method is described for forming two separate selective epitaxial layers, having different dopant concentrations, on the same silicon substrate. The epitaxial layers are separated by a trench filled with an insulating material.
However, there is still a strong need in the semiconductor industry to provide DRAM cells with low capacitor-leakage currents and reduced Alpha soft errors while providing a process that is integratable into the current manufacturing process without significantly increasing manufacturing process complexity.
Therefore a principal object of this invention is to make DRAM cells with increased cell density while reducing capacitor leakage currents.
Another object of this invention is to reduce the leakage currents and soft error by using a silicon epitaxial layer over an insulating layer on which are formed the DRAM FETs and storage capacitors.
It is another object to integrate this novel DRAM cell into the current DRAM process to minimize manufacturing cost by integrating the selective silicon epitaxy on insulator without significantly increasing the processing steps.
Another objective of this invention by a first embodiment is to make a flat capacitor structure using this selective epitaxy DRAM process having low leakage currents.
Still another objective of this invention by a second embodiment is to make a stacked capacitor structure using this selective epitaxy DRAM process having low leakage currents.
In accordance with the objects of the present invention a method for fabricating dynamic random access memory (DRAM) cells on and in an epitaxial silicon layer formed over a first insulating layer on a semiconductor substrate is described. The method by a first embodiment begins by providing a P doped single-crystal silicon semiconductor substrate for N channel FETs. Alternatively an N doped substrate can be used if P channel FETs are desired. A first insulating layer that also serves as a stress-release layer is formed on the substrate. A hard-mask layer composed of Si3N4 is deposited on the first insulating layer. The hard mask is patterned to leave portions over the desired device areas. The hard mask and plasma etching are then used to etch shallow trenches in the substrate that are aligned to the hard mask (cell or device areas). A second insulating layer is deposited to a thickness sufficient to fill the shallow trenches and is polished back to the hard-mask layer to form shallow trench isolation and to expose the hard-mask surface. The hard-mask layer is selectively removed, such as by wet etching in a hot phosphoric acid solution. This results in recesses in the field oxide isolation that are self-aligned over the device areas and also exposes the first insulating (stress-release) layer in the recesses. Next, openings are etched in the first insulating layer over the device areas to expose the substrate. For example, the bit line contact mask can be used to etch the openings, thereby saving additional mask cost. Next, an epitaxial layer is selectively grown from the silicon substrate exposed in the openings and extends laterally over the first insulating layer in the recesses. By the method of a first embodiment, a portion of the epitaxial layer is doped N+ over the first insulating layer to form capacitor bottom electrodes in regions where flat capacitors are to be formed for the DRAM cells. A thin gate oxide is formed on the epitaxial layer, for example by thermal oxidation. A polysilicon layer is deposited on the substrate and is doped N+ by ion implantation. The polysilicon layer is then patterned to form FET gate electrodes over the openings in the first insulating layer and also to form capacitor top electrodes for the capacitors over the capacitor bottom electrodes. The FET thin gate oxide also serves as an interelectrode dielectric layer for the flat capacitor. In addition, the polysilicon layer can be concurrently patterned to form polysilicon resistors on the shallow trench isolation. Lightly doped source/drain areas are formed in the epitaxial layer adjacent to the gate electrodes, and insulating sidewall spacers are then formed on the gate electrodes. The DRAM FETs are now completed by forming first and second source/drain contact areas, one on each side of the FET gate electrode adjacent to the sidewall spacers, by ion implantation. The dopant regions in the first source/drain contact areas are contiguous with the doped capacitor bottom electrodes. Bit line electrical contacts are formed to the second source/drain areas to complete the DRAM cells.
In the second embodiment the process is identical to the first embodiment up to and including the deposition of the polysilicon layer to form the gate electrodes. The implant to form the bottom electrodes of the flat capacitors in the first embodiment is optional in the second embodiment, and can be eliminated to reduce process cost. The polysilicon layer is then patterned to form only the FET gate electrodes over the openings in the first insulating layer. The N- lightly doped source/drain areas in the epitaxial layer are implanted adjacent to the gate electrodes. Insulating sidewall spacers are formed on the gate electrodes, and N+ doped first and second source/drain contact areas are formed in the epitaxial layer adjacent to the sidewall spacers by ion implantation to complete the FETs. Continuing with the second embodiment, the stacked capacitors are formed next. A first interpolysilicon oxide (IPO1) layer is deposited, and first contact openings are etched in the IPO1 to the first source/drain contact areas. Capacitor node contacts are formed in the first contact openings, for example by depositing an N+ doped polysilicon layer and polishing back. The stacked capacitors are then formed over the node contacts by various means, as commonly practiced in the industry. A second interpolysilicon oxide (IPO2) layer is deposited, and second contact openings for bit lines are etched to the second source/drain contact areas. Conducting plugs are formed in the second openings, and a conducting layer is deposited and patterned to form the bit lines to complete the array of DRAM cells having stacked capacitors. In both embodiments the first insulating layer, utilized as a stress-release layer for the hard-mask layer, is also used under the epitaxial layer. The dual use of the first insulating layer results in reduced process cost while reducing the capacitor leakage current to the substrate.
The objects and other advantages of the invention will become more apparent in the preferred embodiments when read in conjunction with the following drawings.
The method for making the DRAM cells by a first embodiment using the selective epitaxial silicon layer over an insulating layer is now described in detail. The method and structure are applicable to both simple flat band or stacked capacitor DRAM devices. This novel structure can also be used for transistors, in general, to reduce leakage current.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Continuing with
Still referring to
Referring now to
Continuing with the second embodiment and still referring to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Cha, Randall Cher Liang, Chan, Lap, Tee, Kheng Chok
Patent | Priority | Assignee | Title |
6740918, | Aug 10 2001 | Renesas Electronics Corporation; NEC Electronics Corporation | Semiconductor memory device |
7122899, | Apr 26 2001 | Polaris Innovations Limited | Semiconductor device and production process |
7547605, | Nov 22 2004 | Taiwan Semiconductor Manufacturing Company, Ltd | Microelectronic device and a method for its manufacture |
7645339, | Oct 18 2002 | Applied Materials, Inc. | Silicon-containing layer deposition with silicon compounds |
7758697, | Oct 18 2002 | Applied Materials, Inc. | Silicon-containing layer deposition with silicon compounds |
9018108, | Jan 25 2013 | Applied Materials, Inc | Low shrinkage dielectric films |
Patent | Priority | Assignee | Title |
5681776, | Mar 15 1994 | National Semiconductor Corporation | Planar selective field oxide isolation process using SEG/ELO |
5686343, | Dec 22 1992 | Goldstar Electron Co. Ltd. | Process for isolating a semiconductor layer on an insulator |
5763314, | Nov 30 1994 | Bell Semiconductor, LLC | Process for forming isolation regions in an integrated circuit |
6037199, | Aug 16 1999 | Taiwan Semiconductor Manufacturing Company, Ltd. | SOI device for DRAM cells beyond gigabit generation and method for making the same |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 27 2001 | Chartered Semiconductor Manufacturing Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 31 2005 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 14 2009 | REM: Maintenance Fee Reminder Mailed. |
May 07 2010 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 07 2005 | 4 years fee payment window open |
Nov 07 2005 | 6 months grace period start (w surcharge) |
May 07 2006 | patent expiry (for year 4) |
May 07 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 07 2009 | 8 years fee payment window open |
Nov 07 2009 | 6 months grace period start (w surcharge) |
May 07 2010 | patent expiry (for year 8) |
May 07 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 07 2013 | 12 years fee payment window open |
Nov 07 2013 | 6 months grace period start (w surcharge) |
May 07 2014 | patent expiry (for year 12) |
May 07 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |