A fusible collar for securing sutures without knots and for securing living tissue structures together without sutures is provided. The fusible collar is made of a resilient compressible material and is formed generally in a c-shape which can be compressed into an O-shape, with portions of the collar overlapping around the structures to be secured. energy is applied to the overlapping portions of the collar to cause localized heating and plastic flow so as to fuse the overlapped portions together. The collar can include one or more energy directors on a contact surface to direct and focus energy to particular regions so as to effect collar-to-suture welding.
The invention further provides a kit for securing elongated structures without knots. The kit includes the fusible collar and a tool for compressing the collar around the elongated structures and fusing the collar to itself and/or the elongated structures. The tool includes generally an energy source; a weld head; and an end effector for supporting the collar during compression; and electronics, switches, and control devices for supplying the weld energy and activating the end effector. Suitable energy sources for welding include thermal, optical, heat, radiofrequency energy, current sources, and preferably ultrasonic energy.
|
24. A method for joining a plurality of polymeric surgical sutures together in a knotless weld, comprising the steps of:
a collar disposed about a central recion, the central region extending along a central axis, for containing at least a portion of the polymeric surgical sutures aligned with the central axis, wherein the collar extends circumferentially between two end portions and is made of a flexible, fusible material, and wherein the collar is biasable into a nominally closed position so that the end portions of the collar overlap, and wherein the overlapping portions of the collar are adapted to fuse to each other around the central region upon application of sufficient eniergy to at least one of the overlapping portions of the collar; and encircling a plurality of surgical sutures to be joined together with the collar; compressing the collar around the sutures so that the end portions of the collar overlap one another and contact the sutures; and applying sufficient energy to the overlapped portions of the collar while the collar is compressed around the sutures to fuse the overlapped portions of the collar to each other and portions of the collar to portions of the sutures.
35. A device for securing one or more elongated living tissue structures, comprising:
a collar having a c-shape, said collar being resilient so that after cessation of a deforming force, said collar returns to substantially said c-shape, said collar being disposed about a central region, said central region extending along a central axis for containing at least a portion of said living tissue structures aligned with said central axis, wherein said collar extends circumferentially between two end portions said collar having an innermost surface and an outermost surface extending between said end portions, and is made of a flexible, fusible material, and wherein said collar is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost and outermost surfaces are opposite each other forming overlapping portions, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, and wherein said overlapping portions of said collar are adapted to fuse to each other around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar.
1. A device for securing one or more elongated members, comprising:
a collar having a c-shape, said collar being disposed about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar extends circumferentially between two end portions, said collar having an innermost surface and an outermost surface, said surfaces extending between said end portions, said collar being resilient so that after cessation of a deforming force, said collar returns to substantially said c-shape, is made of a flexible, fusible material, and wherein said collar is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost surface and said outermost surface are opposite each other forming overlapping portions, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable and wherein said overlapping portions of said collar are adapted to fuse to each other around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar.
11. A device for securing one or more elongated members, comprising:
a collar disposed about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar extends circumferentially between two end portions, said collar having an outermost surface and an innermost surface extending between said end portions, wherein said collar is made of a flexible, fusible material and is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost surface and said outermost surface are opposite each other forming overlapping portions, wherein the surfaces of said overapping portions are substantially smooth and wherein the amount of overlapping is selectively adustable, wherein the collar includes one or more energy directors located on one or more opposing surfaces of the overlapping portions, said energy directors defining fusion regions for the end portions within the overlapped portions and are adapted to focus energy applied to the collar to the fusion regions so that the end portions are fusible together and around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar.
25. A device for securing one or more elongated members, comprising: a collar assembly disposable about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar assembly includes two U-shaped cross-sectioned elements, each extending between a first end portion and a second end portion and each having a innermost surface and an outermost surface extending between said end portions, wherein said U-shaped elements are adapted to interfit to extend circumferentially about said central region, with said first end portions mutually adjacent and said second end portions mutually adjacent, being made of a flexible, fusible material, and wherein said collar assembly, when interfit, is deformable into a nominally closed position so that said first end portions of said U-shaped elements overlap, and said second end portions of said U-shaped elements overlap, so that said innermost surfaces and said outermost surfaces are opposite each other forming an overlap area, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, and wherein said overlapping end portions of said U-shaped elements are adapted to fuse to each other around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar assembly.
41. A device for securing one or more living tissue structures, comprising:
a collar assembly disposable about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar assembly includes two U-shaped cross-sectioned elements, each extending between a first end portion and a second end portion and each having an innermost surface and an outermost surface extending between said end portions, wherein said U-shaped elements are adapted to interfit to extend circumferentially about said central region, with said first end portions mutually adjacent and said second end portions mutually adjacent, being made of a flexible, fusible material, and wherein said collar assembly, when interfit deformable into a norninally closed position so that said first end portions of said U-shaped elements overlap, and said second end portions of said U-shaped elements overlap, so that said innermost surfaces and said outermost surfaces are opposite each other forming overlap areas, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, and wherein said overlapping end portions of said U-shaped elements are adapted to fuse to each other around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar assembly.
9. A device for securing one or more elongated members, comprising:
a collar disposed about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar extends circumferentially between two end portions, said collar having an outermost surface and an innermost surface extending between said end portions, wherein said collar is made of a flexible, fusible material and is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost surface and said outermost surface are opposite each other forming overlapping portions, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, wherein said overlapping portions of said collar are adapted to fuse to each other around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar, wherein the elongated members comprise surgical sutures made of a fusible material, and wherein the collar includes one or more energy directors extending from said innermost surface of the collar into the central region, wherein the energy directors define fusion regions of said surgical sutures and collar and are adapted to focus energy applied to the collar to the fusion regions so that one or more of said surgical sutures and collar are fusible together at the fusion regions in a knotless weld upon application of sufficient energy to the collar.
22. A method for securing one or more elongated members together, comprising the steps of:
providing a collar having a c-shape, said collar being disposed about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar extends circumferentially between two end portions, said collar having an innermost surface and an outermost surface, said surfaces extending between said end portions, said collar being resilient so that after cessation of a deforming force, said collar returns to substantially said c-shape, is made of a flexible, fusible material, and wherein said collar is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost surface and said outermost surface are opposite each other forming overlapping portions, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, and wherein the overlapping portions of the collar are adapted to fuse to each other around the central region upon application of sufficient energy to at least one of the overlapping portions of the collar; encircling the elongated members to be joined with the collar; compressing the collar around the elongated members so that the end portions of the collar overlap one another; and applying sufficient energy to the overlapping portions of the collar while the collar is compressed so as to fuse the overlapping portions of the collar to each other around the elongated members.
13. A kit for securing one or more elongated living tissue structures, the kit comprising:
a collar having a c-shape, said collar being disposed about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar extends circumferentially between two end portions, said collar having an innermost surface and an outermost surface, said surfaces extending between said end portions, said collar being resilient so that after cessation of a deforming force, said collar returns to substantially said c-shape, is made of a flexible, fusible material, and wherein said collar is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost surface and said outermost surface are opposite each other forming overlapping portions, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, and wherein said overlapping portions of said collar are adapted to fuse to each other around said central region upon application of sufficient energy to at least one of said overlapping portions of said collar; and a fusing tool for compressing the collar around the tissue structures so that the tissue structures are securely retained within the central region, and for applying energy to the collar to fuse the overlapped portions together, wherein the fusing tool includes an energy source, a welding head for effecting the fusion, and an end effect for supporting the collar during compression and fusion.
18. A kit for joining a plurality of surgical sutures together without a knot, the kit comprising:
a collar having a c-shape, said collar being disposed about a central region, said central region extending along a central axis for containing at least a portion of said elongated members aligned with said central axis, wherein said collar extends circumferentially between two end portions, said collar having an innermost surface and an outermost surface, said surfaces extending between said end portions, said collar being resilient so that after cessation of a deforming force, said collar returns to substantially said c-shape, is made of a flexible, fusible material, and wherein said collar is deformable into a nominally closed position so that said end portions of said collar overlap so that regions of said innermost surface and said outermost surface are opposite each other forming overlapping portions, wherein the surfaces of said overlapping portions are substantially smooth and wherein the amount of overlapping is selectively adjustable, and wherein the overlapping portions of the collar are adapted to fuse to each other around the central region upon application of sufficient energy to at least one of the overlapping portions of the collar; a fusing tool for compressing the collar around the surgical sutures so that the surgical sutures are securely retained within the central region, and for applying energy to the collar to fuse the overlapped portions together, wherein the fusing tool includes an energy source, a welding head for effecting the fusion, and an end effector for supporting the collar during compression and fusion.
2. The device according to
3. The device according to
4. The device according to
6. The device according to
7. The device according to
8. The device according to
10. The device according to
12. The device according to
14. The kit according to
15. A kit according to
16. A kit according to
17. A kit according to
19. A kit according to
20. A kit according to
21. A kit according to
23. The method according to
26. The device according to
27. The device according to
28. The device according to
29. The device according to
30. The device according to
31. The device according to
32. The device according to
33. The device according to
34. The device according to
36. The device according to
37. The device according to
38. The device according to
39. The device according to
40. The device according to
42. The device according to
43. The device according to
44. The device according to
45. The device according to
46. The device according to
|
This application is a continuation in part of provisional U.S. applications Ser. No. 60/092,073, and Ser. No. 60/092074, both filed Jul. 8, 1998, the disclosures of which are hereby incorporated by reference into this application.
The present invention relates generally to devices and methods for joining sutures together without knots, and for securing living tissue structures together without sutures.
In minimally invasive surgical procedures that use elongated instruments and videoscopic viewing of the surgery site, there is a significant elevation in the difficulty of knot tying and wound approximating. Traditional methods of wound closure routinely involve the use of individual hand-knotted sutures. The suture strands are directed through portions of tissue to be joined and formed into a single stitch, which is then knotted. However, due to the location of the area being sutured, the delicate nature of anatomical features, and the stiffness of the suture used, it can be difficult to tie uniform stitches to close the wound that do not unravel or tie off (or ligate) a vessel. Non-uniform stitches (i.e., stitches of varying tension) or varied bite size (depth into the tissue) can cause uneven healing, localized trauma, infection, and patient discomfort.
To reduce the discomfort and aid healing, it is desirable to secure sutures uniformly and close to a wound. Due to the stiffness of some sutures, knotting the sutures can be difficult, particularly when the tissue to be sutured is deep within the body. Typical knots may be relatively large and elevated above the tissue being sutured, which can increase patient discomfort.
It is also desirable in many surgical procedures where sutures are used to reduce the size of the knot bundle and the amount of foreign material in the body. The knot bundle can become an irritant and retard the healing process and cause discomfort or pain for the patient. The knot bundle can also be a source of infection.
Methods known in the art to overcome these problems include various suture securing devices such as buttons, and methods of fusing synthetic sutures. Although buttons can produce sutures with even tension and without the concomitant dexterity of knot tying, their elevated location above the wound or within the body cavity can cause irritation and discomfort. Furthermore, there is a risk of button migration, since they are discrete objects in the body.
Suture fusion techniques, whereby synthetic polymer suture strands are melted together by the application of heat or other energy to the sutures, are known in the art. Examples of devices to perform such suture fusion are disclosed in U.S. Pat. No. 5,417,700, assigned to the assignee of this application and incorporated herein by reference. However, some polymeric sutures are not amenable to this process. For example, braided or multi-filament sutures may not completely fuse since spaces between the individual strands may interfere with the heat or energy transfer needed for fusion to occur. As a result, the sutures may be incompletely fused, and the resulting joint may fail.
It would be advantageous to provide suture and tissue joining devices which are fusible to and/or around sutures and other structures, including living tissue, so as to avoid the need for suture knots.
According to one aspect of the invention, there is provided a device for securing one or more elongated members or the same elongated member looped upon itself. The device is a flexible, fusible collar that is disposed about a central region which extends about a central axis. The collar extends circumferentially between two end portions and is biasable into a nominally closed position so that the end portions of the collar overlap. In this form the collar is adapted to encircle a portion of the elongated members. The overlapping portions of the collar are adapted to fuse to each other around the elongated members upon application of sufficient energy to the overlapping portions of the collar.
In one embodiment, the elongated members are surgical sutures which are made of a fusible material. The sutures are adapted to fuse at least to each other and possibly also to the collar in a knotless weld upon application of sufficient energy to the collar.
In another embodiment, the sutures are made of non-fusible, or minimally fusible material and only the collar is providing the welded interface. In another embodiment, the sutures are made of braided material that is marginally fusible. In another embodiment, the elongated members are a band of material that encircles a bundle of other structures, such as blood vessels.
The collar is preferably made of a thermoplastic polymeric material. The elongated members can be surgical sutures which are also made of a fusible, thermoplastic polymeric material. In another embodiment, the elongated members can be living tissue structures. The energy may be generated from a variety of sources known in the art, such as for example, thermal energy, optical energy, radio-frequency energy, current sources or more preferably, ultrasonic energy.
In a preferred embodiment, the collar includes one or more energy directors extending from a surface of the collar. The energy directors define fusion regions of the sutures and the collar and are adapted to focus energy applied to the collar to the fusion regions so that the sutures and collar fuse together preferentially at the fusion regions. The energy directors can be located along the inner surface of the collar, at the opposing surfaces of the overlap region, or both.
The inside surface of the collar may also be smooth, or have protrusions, grooves or other texturing to aid in securing the encircled structures.
According to another aspect of the invention, there is provided a kit for securing one or more elongated living tissue structures. The kit includes a fusible collar as described above, and a fusing tool which compresses the collar around the tissue structures so that the tissue structures are securely retained within the collar and portions of the collar overlap. The fusing tool applies energy to the collar to fuse the overlapped portions of the collar together around the tissue structures. The fusing tool includes generally an energy source, a welding head, an end effector, and general electronics, switches, control devices and the like for supplying weld energy and activating the end effector.
In one embodiment of the fusing tool, the energy source is ultrasonic energy. The fusing tool preferably includes an ultrasonic transducer, an ultrasonic welding horn, and an end effector. The end effector may include one or more jaw members adapted for selective deployment around at least a portion of the collar to form an ultrasonic welding anvil. In various embodiments, the end effector can be a pair of opposable jaws which move with respect to each other, or a pair of jaws which are resiliently biased toward each other.
In alternate embodiments, energy for bonding is supplied by thermal energy (e.g., heat), optical energy (e.g., laser generated), electrical energy (e.g., radio frequency, RF), or current sources (e.g., resistive heating).
According to another aspect of the invention, there is provided a kit for joining a plurality of surgical sutures together without a knot. The kit provides a fusible collar as described above, and a fusing tool as described above, for compressing the collar around the sutures so that the sutures are securely retained within the collar. The fusing tool applies energy to the collar to fuse the overlapping portions of the collar to each other and may also fuse portions of the collar to portions of the sutures.
According to yet another aspect of the invention, there is provided a method for securing one or more elongated members, such as living tissue structures. A fusible collar as described above is provided. The collar encircles the elongated members to be secured, and the collar is then compressed around the elongated member or members so that portions of the collar overlap. Energy is applied to the overlapped portions of the collar while it is compressed so that the overlapped portions are fused together around the elongated structures. The method further provides that when the living tissue structure is a blood vessel or duct, the structure is compressed within the collar so that fluid passage through the structure is impeded.
A method of joining surgical sutures together in a knotless weld comprises the steps of providing a fusible collar as described above, and encircling the sutures to be joined with the collar. The collar is then compressed around the sutures to retain them securely and to cause portions of the collar to overlap. Energy is applied to the overlapped portions of the collar to fuse those portions together, as well as to fuse portions of the collar to portions of the sutures.
These and other objects and advantages of the invention will in part be obvious and will in part appear hereinafter. The invention accordingly comprises the apparatus possessing the construction, combination of elements and arrangement of parts which are exemplified in the following detailed disclosure, the scope of which will be indicated in the claims.
For a fuller understanding of the nature and objects of the present invention, reference should be made to the following detailed description taken in connection with the accompanying drawings, in which:
Like features in the figures are labeled with like numerals.
The present invention provides, in one aspect, a device, kit, and method for securing sutures or anatomical features in human or animal tissue that eliminates the need for tying knots in sutures. The invention is practiced with the aid of a tool that joins a fusible banding device or collar to itself around the sutures or around living tissue structures, such as ligaments, vessels and ducts. Alternatively, the collar can be fused to itself around a number of sutures, which can also be fused to one another. The devices and methods of the invention secure a fusible collar to sutures or living tissue structures close to a wound site so that the sutures can be made taut and secured without coming undone and without the bulk and inconvenience associated with knots and knotting processes, which are difficult, time-consuming and cumbersome in confined spaces. Furthermore, the joining process insures that braided and multi-filament sutures will fuse adequately and remain secure. Various methods of fusing or joining sutures or other elongated structures together joining by the application of energy to the fusible collar are well known in the art and can be employed to secure the band and sutures. Examples of such techniques include, but are not limited to, thermal energy (e.g., heat), optical energy (e.g. laser), electrical (e.g., radiofrequency RF), current sources (e.g., resistive heating), and preferably, ultrasonic energy.
Application of energy to the fusible collar may be carefully controlled, as detailed more fully below, to ensure localized melting and joining of the collar without causing trauma to underlying and nearby tissue structures.
In a preferred form of the invention, the collar is formed as a split, or open, ring-like structure which is made of a biocompatible, flexible material that is adapted to allow sutures, and/or other anatomical structures (vessels, ducts, ligaments and the like) to be encircled by it. The collar may be resilient or substantially resilient so that after cessation of a deforming force, it returns to substantially its original shape. The collar can be made in various geometries and may have one or more energy directors extending from a surface of the collar to focus energy propagating through the collar at particular areas, or fusion regions, on the collar. Such fusion regions may be regions of contact between the collar and sutures contained therein, so that fusion occurs preferentially at those regions during compression of the collar and application of energy thereto.
Throughout the specification, it will be understood that the collar can be used to encircle living tissue structures and cinch or bundle them together, wherein the collar is then fused to itself at an overlap region to secure the bundled structures together. Similarly, the collar can encircle one living tissue structure, such as a blood vessel or duct, then fuse to itself in a manner that restricts the flow of fluid through the structure (ligate). Alternatively, the collar can be used to encircle and secure a plurality of fusible surgical sutures, which can themselves be melted and fused together, and optionally to the collar, upon application of energy to the collar.
Central region 3 of the tubular structure should be large enough to permit the sutures or tissue structures to be secured therein by the collar so that the its end portions 6, 8 overlap. The inner surface 4 of the collar can be smooth, or it can be grooved, have protrusions, or be otherwise textured in some way, to create a roughened surface area to enhance contact between the collar and the structure(s) therein. This latter form is particularly useful when securing a collar to a tissue such as a ligament.
Depending on the selection of materials for the collar and the sutures, fusion can occur in selected regions, i.e., in the overlap region 10 of the collar, between the collar and the sutures at energy directors, discussed more fully below, and at interface regions 16 between the sutures themselves.
To form the tubular fused structure, end portion 6' overlaps end portion 8' at overlap area 10'. Longitudinally running edge 12' on the end portion 8' may be in contact with inner surface 4' or spaced apart from inner surface 4' to give the collar an open, or "c", shape. Inner surface 4' may be smooth, or it can be grooved, or have protrusions or be otherwise textured to enhance engagement of the sutures and collar for efficient fusing or welding.
To permit attached tissue structures to be encircled by collar 1', end portions 6' and 8' may be eased apart in opposite directions so as to admit and encircle the structures. Alternately, sutures or non-attached structures may be threaded through the central region 3' of the collar.
An alternate embodiment of the collar is shown in FIG. 4. This embodiment contains all the details found in the embodiment shown in
The collar is preferably made of a biocompatible material which is sufficiently flexible to allow for moderate deformation of the collar to allow sutures or other anatomical structures to be placed within the collar. The collar may be substantially resilient so that after cessation of a deforming force, it returns substantially to its original shape around the sutures or structures therein. In one form, the material is resilient so as to retain the structures within the collar and create contact surfaces or fusion regions for the welds. Any type of material that meets these requirements can be used.
The collar material is preferably also capable of being fused or joined together upon the application of energy, such as thermal energy (heat), optical energy (laser generated), electrical energy (radio frequency, RF), current sources (resistive heating) or, preferably, ultrasonic energy, to the collar. Preferred materials are synthetic polymers capable of being repeatedly softened or melted with the application of heat or pressure (commonly known as thermoplastics). Thermosetting plastics and other heat-fusible materials may also be suitable for use as a collar under certain conditions.
The collar can be made by methods known in the art, such as, but not limited to, machining, injection molding, extrusion, thermoforming and the like.
If desired, a collar made of one material, and sutures made of a different material having a different melting temperature, can be employed together so as to further direct the melting and fusing upon application of energy to the collar. Higher melting point materials may be preferred for the collar, particularly if braided or multi-filament sutures are used, as the bonding energy can fuse underlying fibers as well as the sutures themselves. The energy required to melt the material using the various processes and the time required for the molten material to resolidify are well known in the art.
The suture material can be of any type customarily used for sutures such as silk, but preferred materials are polymers such as PTFE, and especially preferred are thermoplastic materials, such as polyamide (nylon), polypropylene, polyester, polyglycolic acid (PGA), polyglyconate, and polydioxanone. The sutures can be either substantially monofilamentous, multiple stranded, twisted, braided, or otherwise interlinked material. The suture filament can have any cross-sectional shape, for example, substantially circular, elliptical or rectangular.
The choice of materials for the sutures and the collar and the geometry of the collar determines which materials fuse, and where fusing occurs. For example, if a collar and sutures are made from materials with largely differing melting temperatures (for example, collars are thermoset polymers or non polymer material, and the suture strands are thermoplastic polymers), the bonds can occur at the suture to suture interface, and within the individual fibers that make up the suture strand (in the case of a multi filament or braided material), but little or no fusing of sutures to the collar occurs. Conversely, when the collar is made of a thermoplastic material, and the suture is a thermoset polymer, non polymer or when an anatomical feature is within the collar, fusing of the collar to itself at the overlap areas occurs. This could be beneficial for retaining ligaments, vessels or ducts, while allowing the collar to move relative to the ligaments, vessels or ducts retained therein, or for lioating a vessel or duct. In a most preferred embodiment, the collar material and the sutures are both made of a material that melts at similar temperatures (e.g. both are thermoplastic polymers). This allow for bonds to occur at all or any of the contact interfaces described.
The fusing tool used to compress and fuse the collar generally is shown in
In the ultrasonic embodiment, the welding head WH is adapted to intimately contact the surface of the collar when the collar is positioned within the end effector. End effector 24 is mounted to the shaft and surrounds the welding horn. In one embodiment, shown in
Prongs 26' define an aperture 34' for holding collar 1' during positioning, compression and fusing of the collar and structures therein. Prongs 26' are spaced apart by sufficient distance to allow collar 1' to fit snugly yet releasably therebetween. Inner surfaces 30' of prongs 26' can be smooth, grooved or otherwise textured to enhance contact between the suture collar 1' and the prongs. Flattened or rounded ends 32' on the prongs allow for the tip to abut tissue 38 when the sutures are pulled tight through the collar, such as at a wound site, thereby minimizing any gaps in the tissue to be joined and maintaining a desired tension on the sutures. In one embodiment, the prongs can also function as an anvil. In other embodiments, underlying bone, tissue, anatomical features, or other materials temporarily or permanently placed under the end effector may also act as an anvil. The latter design may be preferable if it is necessary or otherwise advantageous to secure the collar as closely as possible to tissue so as to permit minimal gapping between the joined sutures and the collar.
Prongs 26' can flex slightly to expand and accommodate the collar within aperture 34' and hold the collar snugly, yet releasably within the aperture. This moderate compression of the collar within the aperture can also further compress the sutures within the collar, increasing the contact interfaces between the sutures and the collar. This is especially preferred when braided sutures are used, as the compressive force on braided sutures reduces the volume of air spaces between the braid filaments. As the fusing tool is energized, fusing energy is transferred to the collar and sutures. Fusing may occur, for example, at the overlap area 10', between the inner surface 30' of the collar and the sutures 13, and between the suture strands themselves. Since the collar is frictionally held within the aperture 34' by the prongs 26', it can be easily removed from the opening after the weld is completed.
In an alternate embodiment, the tool includes a collar ejection mechanism 50, an example of which is shown in FIG. 8B. In this example, the injection mechanism includes one or more wedge shaped members 52, located within a recess or channel 54 in shaft, exterior to the welding horn. The release mechanism is moved downwardly toward the collar, separating prongs 26'. This separation causes a space to open between the prongs, thereby releasing the bonded collar from the assembly. Other release mechanism are also envisioned, for example, a mechanism whereby the ultrasonic horn 25 is moved downwardly into aperture 34' toward the prong ends and pushes the collar free from the prongs.
In another embodiment of the invention, the fusing tool end effector and collar comprise a kit. The kit may include various end effectors that are interchangeable on the tool shaft for accommodating different collar shapes and sizes.
A process for securing suture strands within a fusible collar is demonstrated in
This method for closing a wound can be employed for other surgical procedures and anatomical structures. For example, the process for ligating a vessel or duct is similar to the one described except that the suture is threaded under or around the vessel or duct rather than throuoh tissue, and the suture is secured with an appropriate collar. Alternatively, a collar can be placed around the vessel or duct, compressed, and fused to itself.
Although preferred and other embodiments of the invention are described herein, further embodiments may be perceived by those skilled in the art without departing from the scope of the invention as defined by the following claims.
Patent | Priority | Assignee | Title |
10004489, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10004493, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10004588, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
10016196, | Sep 11 2008 | Covidien LP | Tapered looped suture |
10022118, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10039543, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10058321, | Mar 05 2015 | ANCORA HEART, INC | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
10058393, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
10076377, | Jan 05 2013 | P Tech, LLC | Fixation systems and methods |
10085747, | Sep 11 2015 | INCISIVE SURGICAL, INC | Surgical fastening instrument |
10092288, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10092402, | Jun 13 2002 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
10094401, | Nov 16 2012 | BRIJJIT MEDICAL, INC | Fixation device for securing a linear element to a workpiece |
10098629, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10136886, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10149767, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting knee prosthesis assembly with ligament link |
10154837, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10238378, | Oct 26 2004 | P Tech, LLC | Tissue fixation system and method |
10251637, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10265064, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
10265128, | Mar 20 2002 | P Tech, LLC | Methods of using a robotic spine system |
10265159, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
10314576, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
10321906, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
10342650, | Sep 27 2013 | Covidien LP | Skirted hernia repair device |
10349931, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10363028, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
10368856, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
10368924, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
10368953, | Mar 20 2002 | P Tech, LLC | Robotic system for fastening layers of body tissue together and method thereof |
10376259, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
10390817, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
10398428, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10398430, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
10441264, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10441269, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
10441275, | Dec 21 2012 | Edwards Lifesciences Corporation | Systems for securing sutures |
10492782, | Jun 25 2002 | INCISIVE SURGICAL, INC | Mechanical method and apparatus for bilateral tissue fastening |
10517584, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
10517587, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10517714, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
10531873, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
10542967, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10542987, | Feb 06 2008 | Ancora Heart, Inc. | Multi-window guide tunnel |
10595851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10603029, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
10610217, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
10624741, | Jun 13 2002 | Ancora Heart, Inc. | Delivery devices and methods for heart valve repair |
10625047, | Jan 20 2009 | Ancora Heart, Inc. | Anchor deployment devices and related methods |
10667914, | Nov 18 2016 | ANCORA HEART, INC | Myocardial implant load sharing device and methods to promote LV function |
10675073, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for sternal closure |
10687803, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10695045, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for attaching soft tissue to bone |
10695052, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10702259, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
10716557, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
10729421, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
10729423, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
10729430, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10743856, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
10743925, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10758221, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
10765484, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
10779848, | Jan 20 2006 | Cilag GmbH International | Ultrasound medical instrument having a medical ultrasonic blade |
10799233, | May 01 2012 | Brigham and Women's Hospital, Inc. | Suturing device for laparoscopic procedures |
10806443, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
10813764, | Oct 26 2004 | P Tech, LLC | Expandable introducer system and methods |
10828057, | Mar 22 2007 | Cilag GmbH International | Ultrasonic surgical instruments |
10835232, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
10835768, | Feb 11 2010 | Cilag GmbH International | Dual purpose surgical instrument for cutting and coagulating tissue |
10842475, | Sep 03 2012 | Super Seton BV; Academisch Medisch Centrum | Seton for treating fistulae, and a method of forming a closed loop of a seton |
10869728, | Mar 20 2002 | P Tech, LLC | Robotic surgery |
10874418, | Feb 27 2004 | Cilag GmbH International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
10898328, | Jun 13 2002 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
10912551, | Mar 31 2015 | Biomet Sports Medicine, LLC | Suture anchor with soft anchor of electrospun fibers |
10912552, | Sep 11 2008 | Covidien LP | Tapered looped suture |
10932770, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
10932869, | Mar 20 2002 | P Tech, LLC | Robotic surgery |
10952759, | Aug 25 2016 | Cilag GmbH International | Tissue loading of a surgical instrument |
10959791, | Mar 20 2002 | P Tech, LLC | Robotic surgery |
10966744, | Jul 12 2016 | Cilag GmbH International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
10973507, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
10980529, | Mar 05 2015 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
10980973, | May 12 2015 | ANCORA HEART, INC | Device and method for releasing catheters from cardiac structures |
10987099, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11000707, | Jun 24 2009 | Cilag GmbH International | Ultrasonic surgical instruments |
11006971, | Oct 08 2004 | Cilag GmbH International | Actuation mechanism for use with an ultrasonic surgical instrument |
11013542, | Feb 22 2005 | P Tech, LLC | Tissue fixation system and method |
11020140, | Jun 17 2015 | Cilag GmbH International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
11033292, | Dec 16 2013 | Cilag GmbH International | Medical device |
11039826, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11045195, | Apr 25 2014 | Incisive Surgical, Inc. | Method and apparatus for wound closure with sequential tissue positioning and retention |
11058447, | Jul 31 2007 | Cilag GmbH International | Temperature controlled ultrasonic surgical instruments |
11065103, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
11067107, | Nov 16 2012 | BRIJJIT MEDICAL, INC | Fixation device for securing a linear element to a workpiece |
11096684, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11109857, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
11116495, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11129645, | Feb 07 2006 | P Tech, LLC | Methods of securing a fastener |
11134995, | Feb 07 2006 | P Tech, LLC | Method and devices for intracorporeal bonding of implants with thermal energy |
11179582, | Jun 24 2009 | Cilag GmbH International | Ultrasonic surgical instruments |
11185320, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
11207168, | Sep 27 2013 | Covidien LP | Skirted hernia repair device |
11219443, | Aug 22 2014 | Biomet Sports Medicine, LLC | Non-sliding soft anchor |
11219446, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
11224420, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
11241305, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
11253288, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical instrument blades |
11253296, | Feb 07 2006 | P Tech, LLC | Methods and devices for intracorporeal bonding of implants with thermal energy |
11259792, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11259794, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11266433, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical instrument blades |
11272952, | Mar 14 2013 | Cilag GmbH International | Mechanical fasteners for use with surgical energy devices |
11278331, | Feb 07 2006 | P TECH LLC | Method and devices for intracorporeal bonding of implants with thermal energy |
11284884, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11311287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
11317907, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
11317974, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
11350959, | Aug 25 2016 | Cilag GmbH International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
11369402, | Feb 11 2010 | Cilag GmbH International | Control systems for ultrasonically powered surgical instruments |
11376115, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
11382616, | Dec 21 2012 | Edwards Lifesciences Corporation | Systems for securing sutures |
11419607, | Jun 25 2002 | Incisive Surgical, Inc. | Mechanical method and apparatus for bilateral tissue fastening |
11439426, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
11446019, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11457958, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
11471147, | May 29 2009 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11534157, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
11534159, | Aug 22 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
11547398, | Nov 19 2015 | Boston Scientific Scimed, Inc. | Implant fixation devices and methods of using the same |
11553954, | Jun 30 2015 | Cilag GmbH International | Translatable outer tube for sealing using shielded lap chole dissector |
11589859, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
11602371, | Jun 29 2012 | Cilag GmbH International | Ultrasonic surgical instruments with control mechanisms |
11607268, | Jul 27 2007 | Cilag GmbH International | Surgical instruments |
11612391, | Jan 15 2008 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11617572, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11648004, | Dec 20 2013 | Biomet Sports Medicine, LLC | Knotless soft tissue devices and techniques |
11653911, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
11666784, | Jul 31 2007 | Cilag GmbH International | Surgical instruments |
11672524, | Jul 15 2019 | ANCORA HEART, INC | Devices and methods for tether cutting |
11672527, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
11684430, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
11690641, | Jul 27 2007 | Cilag GmbH International | Ultrasonic end effectors with increased active length |
11690643, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
11717283, | May 01 2012 | The Brigham and Women's Hospital, Inc. | Suturing device for laparoscopic procedures |
11723648, | Feb 03 2003 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
11730464, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
11730507, | Feb 27 2004 | Cilag GmbH International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
11744651, | Oct 21 2015 | P Tech, LLC | Systems and methods for navigation and visualization |
11766276, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
11786236, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
11801044, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
11812950, | Sep 11 2008 | Covidien LP | Tapered looped suture |
11819205, | Jan 16 2007 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
11867223, | Nov 16 2012 | BRIJJIT MEDICAL, INC | Fixation device for securing a linear element to a workpiece |
11877734, | Jul 31 2007 | Cilag GmbH International | Ultrasonic surgical instruments |
11883055, | Jul 12 2016 | Cilag GmbH International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
11896210, | Jan 15 2008 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
6569187, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
6652562, | Dec 28 2001 | Ethicon, Inc | Suture anchoring and tensioning device |
6932835, | Aug 01 1997 | ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC | Suture securing tool |
7033379, | Jun 08 2001 | INCISIVE SURGICAL, INC | Suture lock having non-through bore capture zone |
7094251, | Aug 27 2002 | Bonutti Skeletal Innovations LLC | Apparatus and method for securing a suture |
7112214, | Jun 25 2002 | INCISIVE SURGICAL, INC | Dynamic bioabsorbable fastener for use in wound closure |
7147652, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method and apparatus for securing a suture |
7247164, | Dec 30 1999 | Arthrocare Corporation | Methods for attaching connective tissues to bone using a multi-component bone anchor |
7371244, | Aug 25 2003 | Ethicon, Inc. | Deployment apparatus for suture anchoring device |
7429266, | Mar 13 2000 | P Tech, LLC | Method of using ultrasonic vibration to secure body tissue |
7534204, | Sep 03 2003 | ANCORA HEART, INC | Cardiac visualization devices and methods |
7547315, | Jun 25 2002 | INCISIVE SURGICAL, INC | Mechanical method and apparatus for tissue fastening |
7556640, | Feb 12 2001 | BANK OF AMERICA, N A | Bone anchor device having toggle member for attaching connective tissues to bone |
7582097, | Dec 18 2001 | DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC | Suture welding system and method |
7588582, | Jun 13 2002 | ANCORA HEART, INC | Methods for remodeling cardiac tissue |
7601165, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable suture loop |
7608092, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for performing meniscus repair |
7608098, | Nov 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Bone fixation device |
7615061, | Feb 28 2006 | Arthrocare Corporation | Bone anchor suture-loading system, method and apparatus |
7621930, | Jan 20 2006 | Cilag GmbH International | Ultrasound medical instrument having a medical ultrasonic blade |
7637926, | Feb 04 2002 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
7651509, | Dec 02 1999 | Smith & Nephew, Inc. | Methods and devices for tissue repair |
7658751, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
7666193, | Jun 13 2002 | GUIDED DELIVERY SYSTEMS, INC | Delivery devices and methods for heart valve repair |
7674274, | Jun 06 2001 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a cortical bone anchoring device |
7682374, | Oct 21 2003 | Arthrocare Corporation | Knotless suture lock and bone anchor implant method |
7686200, | Jun 25 2002 | Incisive Surgical, Inc. | Mechanical method and apparatus for bilateral tissue fastening |
7695494, | Feb 12 2001 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
7749250, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
7753858, | Jul 27 2004 | ANCORA HEART, INC | Delivery devices and methods for heart valve repair |
7753922, | Sep 04 2003 | ANCORA HEART, INC | Devices and methods for cardiac annulus stabilization and treatment |
7753924, | Jul 27 2004 | ANCORA HEART, INC | Delivery devices and methods for heart valve repair |
7758637, | Jun 13 2002 | ANCORA HEART, INC | Delivery devices and methods for heart valve repair |
7854735, | Feb 16 2006 | Cilag GmbH International | Energy-based medical treatment system and method |
7854750, | Aug 27 2002 | Bonutti Skeletal Innovations LLC | Apparatus and method for securing a suture |
7857830, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
7862583, | May 27 2004 | Ethicon Endo-Surgery, Inc | Fusible suture and method for suturing therewith |
7879072, | Aug 01 1997 | Bonutti Skeletal Innovations LLC | Method for implanting a flowable fastener |
7883538, | Jun 13 2002 | ANCORA HEART, INC | Methods and devices for termination |
7887551, | Dec 02 1999 | Smith & Nephew, Inc | Soft tissue attachment and repair |
7905903, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
7905904, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7909851, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
7914539, | Nov 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Tissue fixation device |
7922762, | Sep 04 2003 | ANCORA HEART, INC | Devices and methods for cardiac annulus stabilization and treatment |
7950559, | Jun 25 2002 | INCISIVE SURGICAL, INC | Mechanical method and apparatus for bilateral tissue fastening |
7959650, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
7963972, | Sep 12 2007 | Arthrocare Corporation | Implant and delivery system for soft tissue repair |
7967820, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
8034090, | Nov 09 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Tissue fixation device |
8056599, | Sep 24 2008 | Covidien LP | System and method of making tapered looped suture |
8066736, | Jun 25 2002 | INCISIVE SURGICAL, INC | Dynamic bioabsorbable fastener for use in wound closure |
8066766, | Jun 13 2002 | ANCORA HEART, INC | Methods and devices for termination |
8074857, | Jun 25 2002 | INCISIVE SURGICAL, INC | Method and apparatus for tissue fastening with single translating trigger operation |
8088130, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8100939, | Jul 15 2005 | INCISIVE SURGICAL, INC | Mechanical method and apparatus for sequential tissue fastening |
8105343, | Jun 30 2008 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
8109966, | Dec 30 1999 | Arthrocare Corporation | Methods for attaching connective tissues to bone using a multi-component anchor |
8118836, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8128658, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8133258, | Aug 03 2006 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
8137381, | Apr 25 2007 | Arthrocare Corporation | Knotless suture anchor having discrete polymer components and related methods |
8137382, | Nov 05 2004 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8162977, | Aug 27 2002 | Bonutti Skeletal Innovations LLC | Method for joining implants |
8221454, | Feb 20 2004 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Apparatus for performing meniscus repair |
8231654, | Sep 29 2006 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
8246642, | Dec 01 2005 | Cilag GmbH International | Ultrasonic medical instrument and medical instrument connection assembly |
8251998, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8273106, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair and conduit device |
8287555, | Jun 13 2002 | ANCORA HEART, INC | Devices and methods for heart valve repair |
8287557, | Jun 13 2002 | ANCORA HEART, INC | Methods and devices for termination |
8292902, | Jun 25 2007 | AXYA MEDICAL, INC | Double row fixation system, medial row anchor placement system |
8292921, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8298262, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for tissue fixation |
8303604, | Nov 05 2004 | Biomet Sports Medicine, LLC | Soft tissue repair device and method |
8317825, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device and method |
8317829, | Aug 03 2006 | Arthrocare Corporation | Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device |
8323315, | Dec 30 1998 | DePuy Mitek, Inc. | Suture locking device |
8337525, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8343173, | Jul 27 2004 | ANCORA HEART, INC | Delivery devices and methods for heart valve repair |
8343227, | May 28 2009 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8361113, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8366744, | Dec 02 1999 | Smith & Nephew, Inc. | Apparatus for tissue repair |
8403017, | Oct 27 2008 | Covidien LP | System, method and apparatus for making tapered looped suture |
8409253, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
8425536, | Sep 12 2007 | Arthrocare Corporation | Implant and delivery system for soft tissue repair |
8444672, | Feb 12 2001 | Arthrocare Corporation | Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device |
8496657, | Feb 07 2006 | P Tech, LLC | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
8500818, | Sep 29 2006 | Biomet Manufacturing, LLC | Knee prosthesis assembly with ligament link |
8506597, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for interosseous membrane reconstruction |
8512374, | Dec 30 1998 | DePuy Mitek, LLC | Soft tissue locking device |
8512375, | Dec 02 1999 | Smith & Nephew, Inc | Closure device and method for tissue repair |
8517073, | Jul 16 2009 | Covidien LP | Apparatus and method for joining similar or dissimilar suture products |
8551140, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8562645, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8562647, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method and apparatus for securing soft tissue to bone |
8574235, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for trochanteric reattachment |
8590588, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
8597327, | Feb 03 2006 | Biomet Manufacturing, LLC | Method and apparatus for sternal closure |
8608777, | Feb 03 2006 | Biomet Sports Medicine | Method and apparatus for coupling soft tissue to a bone |
8617185, | Feb 13 2007 | P Tech, LLC | Fixation device |
8617186, | Jun 30 2008 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
8617208, | Mar 13 2000 | P Tech, LLC | Method of using ultrasonic vibration to secure body tissue with fastening element |
8623051, | Jun 24 2005 | Smith & Nephew, Inc. | Tissue repair device |
8632569, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
8641727, | Jun 13 2002 | ANCORA HEART, INC | Devices and methods for heart valve repair |
8652171, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
8652172, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
8657854, | Feb 12 2001 | Arthrocare Corporation | Knotless suture anchoring device having deforming section to accommodate sutures of various diameters |
8672968, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
8672969, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
8685060, | Feb 12 2001 | Arthrocare Corporation | Methods and devices for attaching connective tissues to bone using a knotless suture anchoring device |
8721684, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8740938, | Dec 18 2007 | Abbott Laboratories | System, method, and device for closing an opening |
8747439, | Mar 13 2000 | Bonutti Skeletal Innovations LLC | Method of using ultrasonic vibration to secure body tissue with fastening element |
8771316, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
8771352, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
8777956, | Aug 16 2006 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Chondral defect repair |
8790367, | Feb 06 2008 | ANCORA HEART, INC | Multi-window guide tunnel |
8795298, | Oct 10 2008 | ANCORA HEART, INC | Tether tensioning devices and related methods |
8801783, | Sep 29 2006 | Biomet Sports Medicine, LLC | Prosthetic ligament system for knee joint |
8808329, | Feb 06 1998 | ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC | Apparatus and method for securing a portion of a body |
8814902, | May 03 2000 | Bonutti Skeletal Innovations LLC | Method of securing body tissue |
8821517, | Jun 25 2002 | Incisive Surgical, Inc. | Mechanical method and apparatus for bilateral tissue fastening |
8828029, | Jun 30 2008 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
8834495, | Jun 30 2008 | Arthrocare Corporation | Independent suture tensioning and snaring apparatus |
8840645, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
8845699, | Aug 09 1999 | Bonutti Skeletal Innovations LLC | Method of securing tissue |
8900314, | May 28 2009 | Biomet Manufacturing, LLC | Method of implanting a prosthetic knee joint assembly |
8932330, | Feb 17 2004 | Bonutti Skeletal Innovations LLC | Method and device for securing body tissue |
8932331, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
8936621, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
8940016, | Jul 15 2005 | Incisive Surgical, Inc. | Mechanical method and apparatus for sequential tissue fastening |
8968362, | Apr 08 2010 | Covidien LP | Coated looped suture |
8968364, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fixation of an ACL graft |
8979894, | Apr 08 2010 | Covidien LP | Coated looped suture |
8998949, | Nov 09 2004 | Biomet Sports Medicine, LLC | Soft tissue conduit device |
9005287, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method for bone reattachment |
9017381, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9023083, | Jan 27 2012 | Arthrocare Corporation | Method for soft tissue repair with free floating suture locking member |
9034014, | Jan 27 2012 | Arthrocare Corporation | Free floating wedge suture anchor for soft tissue repair |
9038688, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
9060767, | Apr 30 2003 | P Tech, LLC | Tissue fastener and methods for using same |
9067362, | Mar 13 2000 | Bonutti Skeletal Innovations LLC | Method of using ultrasonic vibration to secure body tissue with fastening element |
9072513, | Jun 13 2002 | ANCORA HEART, INC | Methods and devices for termination |
9078644, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9089323, | Feb 22 2005 | P Tech, LLC | Device and method for securing body tissue |
9095335, | Jul 16 2009 | Covidien LP | Apparatus and method for joining similar or dissimilar suture products |
9131939, | Feb 27 2008 | Edwards Lifesciences Corporation | Device for percutaneously delivering a cardiac implant through the application of direct actuation forces external to the body |
9138222, | Feb 17 2004 | Bonutti Skeletal Innovations LLC | Method and device for securing body tissue |
9149267, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9149281, | Mar 20 2002 | P Tech, LLC | Robotic system for engaging a fastener with body tissue |
9155544, | Mar 20 2002 | P Tech, LLC | Robotic systems and methods |
9173647, | Feb 22 2005 | P Tech, LLC | Tissue fixation system |
9173650, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
9173651, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9173653, | Jun 24 2005 | Smith & Nephew, Inc. | Tissue repair device |
9186133, | Dec 06 2001 | Arthrocare Corporation | Bone anchor insertion device |
9192395, | Mar 20 2002 | P Tech, LLC | Robotic fastening system |
9198649, | Jan 27 2012 | Arthrocare Corporation | Rotating locking member suture anchor and method for soft tissue repair |
9216078, | May 17 2011 | Biomet Sports Medicine, LLC | Method and apparatus for tibial fixation of an ACL graft |
9220494, | Dec 02 1999 | Smith & Nephew, Inc. | Methods for tissue repair |
9226742, | Jan 27 2012 | Arthrocare Corporation | Restricted wedge suture anchor and method for soft tissue repair |
9226825, | Jun 13 2002 | ANCORA HEART, INC | Delivery devices and methods for heart valve repair |
9226828, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9259217, | Jan 03 2012 | Biomet Manufacturing, LLC | Suture Button |
9271713, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for tensioning a suture |
9271741, | Mar 20 2002 | P Tech, LLC | Robotic ultrasonic energy system |
9271766, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9271779, | Mar 20 2002 | P Tech, LLC | Methods of using a robotic spine system |
9295461, | Dec 02 1999 | Smith & Nephew, Inc. | Methods for tissue repair |
9314235, | Feb 05 2003 | Smith & Nephew, Inc. | Tissue anchor and insertion tool |
9314241, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9357991, | Nov 03 2011 | Biomet Sports Medicine, LLC | Method and apparatus for stitching tendons |
9357992, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9364210, | Jan 27 2012 | Arthrocare Corporation | Biased wedge suture anchor and method for soft tissue repair |
9370350, | Nov 10 2011 | Biomet Sports Medicine, LLC | Apparatus for coupling soft tissue to a bone |
9381013, | Nov 10 2011 | Biomet Sports Medicine, LLC | Method for coupling soft tissue to a bone |
9402621, | Feb 03 2006 | Biomet Sports Medicine, LLC. | Method for tissue fixation |
9402668, | Feb 13 2007 | P Tech, LLC | Tissue fixation system and method |
9414833, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair assembly and associated method |
9414925, | Sep 29 2006 | Biomet Manufacturing, LLC | Method of implanting a knee prosthesis assembly with a ligament link |
9421005, | Feb 07 2006 | P Tech, LLC | Methods and devices for intracorporeal bonding of implants with thermal energy |
9433407, | Jan 03 2012 | Biomet Manufacturing, LLC | Method of implanting a bone fixation assembly |
9439642, | May 03 2006 | P Tech, LLC | Methods and devices for utilizing bondable materials |
9445827, | Oct 25 2011 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method and apparatus for intraosseous membrane reconstruction |
9463012, | Oct 05 2005 | P Tech, LLC | Apparatus for guiding and positioning an implant |
9468433, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9468528, | Jun 13 2002 | ANCORA HEART, INC | Devices and methods for heart valve repair |
9486211, | Sep 29 2006 | Biomet Sports Medicine, LLC | Method for implanting soft tissue |
9486227, | Mar 20 2002 | P Tech, LLC | Robotic retractor system |
9492158, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9492160, | Dec 02 1999 | Smith & Nephew, Inc. | Closure device and method for tissue repair |
9498204, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9504460, | Nov 05 2004 | Biomet Sports Medicine, LLC. | Soft tissue repair device and method |
9510819, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9510821, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling anatomical features |
9532777, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9538998, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for fracture fixation |
9539003, | Sep 29 2006 | Biomet Sports Medicine, LLC. | Method and apparatus for forming a self-locking adjustable loop |
9545251, | Dec 02 1999 | Smith & Nephew, Inc. | Apparatus for tissue repair |
9545268, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9561025, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9572655, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9579129, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
9585725, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9592047, | Dec 21 2012 | Edwards Lifesciences Corporation | System for securing sutures |
9592049, | Jul 15 2005 | Incisive Surgical, Inc. | Mechanical method and apparatus for sequential tissue fastening |
9603591, | Feb 03 2006 | Biomet Sports Medicine, LLC | Flexible anchors for tissue fixation |
9610073, | Feb 07 2006 | P Tech, LLC | Methods and devices for intracorporeal bonding of implants with thermal energy |
9615822, | May 30 2014 | Biomet Sports Medicine, LLC | Insertion tools and method for soft anchor |
9616197, | Jan 20 2009 | ANCORA HEART, INC | Anchor deployment devices and related methods |
9622736, | Feb 03 2006 | Biomet Sports Medicine, LLC | Soft tissue repair device and associated methods |
9629687, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9636101, | Sep 01 2011 | Arthrocare Corporation | Bone anchor having an integrated stress isolator |
9636106, | Oct 10 2008 | ANCORA HEART, INC | Termination devices and related methods |
9636107, | Jun 13 2002 | ANCORA HEART, INC | Devices and methods for heart valve repair |
9642661, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and Apparatus for Sternal Closure |
9681940, | Sep 29 2006 | Biomet Sports Medicine, LLC | Ligament system for knee joint |
9687228, | Apr 08 2010 | Covidien LP | Coated looped suture |
9700291, | Jun 03 2014 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Capsule retractor |
9706996, | Feb 06 2008 | ANCORA HEART, INC | Multi-window guide tunnel |
9713472, | Jun 25 2002 | Incisive Surgical, Inc. | Mechanical method and apparatus for bilateral tissue fastening |
9724090, | Sep 29 2006 | Biomet Manufacturing, LLC | Method and apparatus for attaching soft tissue to bone |
9743963, | May 03 2006 | P Tech, LLC | Methods and devices for trauma welding |
9750496, | Aug 27 2002 | P TECH LLC | System for securing a portion of a body |
9757119, | Mar 08 2013 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Visual aid for identifying suture limbs arthroscopically |
9763656, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for soft tissue fixation |
9770238, | Dec 03 2001 | P Tech, LLC | Magnetic positioning apparatus |
9775606, | Apr 29 2009 | Covidien LP | System and method for making tapered looped suture |
9788876, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9801620, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to bone |
9801708, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for coupling soft tissue to a bone |
9808318, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9814453, | Oct 05 2005 | P Tech, LLC | Deformable fastener system |
9833230, | Sep 29 2006 | Biomet Sports Medicine, LLC | Fracture fixation device |
9833231, | Dec 02 1999 | Smith & Nephew, Inc. | Apparatus for tissue repair |
9844377, | Apr 25 2014 | INCISIVE SURGICAL, INC | Method and apparatus for wound closure with sequential tissue positioning and retention |
9855028, | Apr 06 2012 | Arthrocare Corporation | Multi-suture knotless anchor for attaching tissue to bone and related method |
9861350, | Sep 03 2010 | ANCORA HEART, INC | Devices and methods for anchoring tissue |
9861351, | Apr 10 2007 | Biomet Sports Medicine, LLC | Adjustable knotless loops |
9867706, | Oct 26 2004 | P Tech, LLC | Tissue fastening system |
9877793, | Mar 20 2002 | P Tech, LLC | Robotic arthroplasty system |
9884451, | Mar 13 2000 | Bonutti Skeletal Innovations LLC | Method of using ultrasonic vibration to secure body tissue |
9888916, | Mar 09 2004 | P Tech, LLC | Method and device for securing body tissue |
9918826, | Sep 29 2006 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9918827, | Mar 14 2013 | Biomet Sports Medicine, LLC | Scaffold for spring ligament repair |
9949829, | Jun 13 2002 | ANCORA HEART, INC | Delivery devices and methods for heart valve repair |
9955980, | Feb 24 2015 | Biomet Sports Medicine, LLC | Anatomic soft tissue repair |
9962162, | Apr 30 2003 | P Tech, LLC | Tissue fastener and methods for using same |
9980717, | Feb 22 2005 | P Tech, LLC | Device and method for securing body tissue |
9980761, | Feb 22 2005 | P Tech, LLC | Tissue fixation system and method |
9986994, | Mar 13 2000 | P Tech, LLC | Method and device for securing body tissue |
9993241, | Feb 03 2006 | Biomet Sports Medicine, LLC | Method and apparatus for forming a self-locking adjustable loop |
9999449, | Oct 26 2004 | P Tech, LLC | Devices and methods for stabilizing tissue and implants |
D532107, | Jun 25 2003 | INCISIVE SURGICAL, INC | Tissue fastening instrument |
D752219, | Jan 02 2015 | INCISIVE SURGICAL, INC | Tissue fastening instrument |
D924400, | Aug 16 2016 | Cilag GmbH International | Surgical instrument |
Patent | Priority | Assignee | Title |
3503119, | |||
3513848, | |||
3664345, | |||
3802438, | |||
3857396, | |||
3879981, | |||
3995870, | Dec 02 1974 | Process of manufacturing wrought-iron lattices | |
4050100, | May 12 1976 | BARRY COSMETIC SUTURE COMPANY, INC , A CORP OF N J | Permanently implanted hair piece attaching means |
4291698, | Dec 09 1978 | B BRAUN-SSC AG | Button for surgical applications |
4588408, | Mar 29 1979 | Treated hair for implantation | |
5078731, | Jun 05 1990 | Suture clip | |
5356417, | Oct 09 1992 | United States Surgical Corporation | Absorbable sternum closure buckle |
5376101, | Oct 09 1992 | The United States Surgical Corporation | Suture retaining clip |
5383883, | Jun 07 1992 | AXYA HOLDINGS, INC ; TORNIER, INC | Method for ultrasonically applying a surgical device |
5383905, | Oct 09 1992 | United States Surgical Corporation | Suture loop locking device |
5391173, | Feb 10 1994 | Wilk Patent Development Corporation | Laparoscopic suturing technique and associated device |
5413585, | Dec 22 1992 | ANCEL SURGICAL R & D, INC | Self locking suture lock |
5417700, | Mar 30 1992 | AXYA MEDICAL, INC | Automatic suturing and ligating device |
5425489, | Dec 20 1990 | United States Surgical Corporation | Fascia clip and instrument |
5437685, | Jan 25 1993 | Sternum banding assembly | |
5500018, | Mar 23 1993 | Protek AG; Sulzer Medizinaltechnik AG | Sealing element in the form of a strap |
5527341, | May 24 1991 | Synthes (U.S.A) | Resorbable tendon and bone augmentation device |
5586983, | May 22 1990 | BioMedical Enterprises, Inc | Bone clamp of shape memory material |
5593425, | Jun 28 1990 | P Tech, LLC | Surgical devices assembled using heat bonable materials |
5611801, | Nov 29 1994 | PIONEER SURGICAL TECHNOLOGY, INC | Method and apparatus for bone fracture fixation |
5618311, | Sep 28 1994 | FASTITCH SURGICAL INC | Surgical subcuticular fastener system |
5643289, | Feb 24 1994 | LSI Solutions, Inc | Surgical crimping device and method of use |
5732530, | Nov 20 1995 | Method of sealing a balloon after it is inflated | |
5735877, | Feb 28 1996 | ANCEL SURGICAL R & D, INC | Self locking suture lock |
5766218, | Oct 01 1996 | METAMORPHIC SURGICAL DEVICES, INC | Surgical binding device and method of using same |
5769894, | Feb 05 1997 | Smith & Nephew, Inc | Graft attachment device and method of attachment |
5881452, | Sep 10 1997 | Apparatus for applying deformable metal fastener clips to concrete reinforcement steel and the like | |
5893880, | Aug 28 1997 | AXYA HOLDINGS, INC ; TORNIER, INC | Fused loop filamentous material |
5941901, | Apr 16 1998 | AXYA HOLDINGS, INC ; TORNIER, INC | Bondable expansion plug for soft tissue fixation |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 08 1999 | Axya Medical, Inc. | (assignment on the face of the patent) | / | |||
Jul 08 1999 | FENTON, PAUL V , JR | AXYA MEDICAL, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010092 | /0357 | |
Jul 25 2008 | AXYA HOLDINGS, INC | TORNIER, INC | MERGER SEE DOCUMENT FOR DETAILS | 023319 | /0579 | |
Jul 25 2008 | AXYA MEDICAL, INC | AXYA HOLDINGS, INC | MERGER SEE DOCUMENT FOR DETAILS | 023319 | /0590 | |
Oct 04 2012 | TORNIER, INC | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | PATENT SECURITY AGREEMENT | 029076 | /0361 | |
Oct 01 2015 | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | TORNIER, INC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 036900 | /0672 |
Date | Maintenance Fee Events |
Jan 11 2006 | REM: Maintenance Fee Reminder Mailed. |
Feb 22 2006 | ASPN: Payor Number Assigned. |
Jun 22 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 22 2006 | M2554: Surcharge for late Payment, Small Entity. |
Oct 05 2009 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Oct 13 2009 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 31 2014 | REM: Maintenance Fee Reminder Mailed. |
Jun 25 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 25 2005 | 4 years fee payment window open |
Dec 25 2005 | 6 months grace period start (w surcharge) |
Jun 25 2006 | patent expiry (for year 4) |
Jun 25 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 25 2009 | 8 years fee payment window open |
Dec 25 2009 | 6 months grace period start (w surcharge) |
Jun 25 2010 | patent expiry (for year 8) |
Jun 25 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 25 2013 | 12 years fee payment window open |
Dec 25 2013 | 6 months grace period start (w surcharge) |
Jun 25 2014 | patent expiry (for year 12) |
Jun 25 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |