The present invention provides a frequency domain near infrared oximeter (fdNIRS) instrument and associated method of determining the oxygenation level of tissue. The tissue is irradiated by a near infrared light source whereby the incident light passing through the tissue is detected by a light detector. Specifically, light signals of a single frequency at at least three separate wavelengths are provided from the near infrared light source. The near infrared light signals are collected with the light detector and, the phase differences between the collected near infrared light signals and a reference near infrared light signal are determined. The fdNIRS oximeter utilizes frequency domain technology to monitor phase shifts relative to a reference signal to derive SO2 through photon transport and Beer-Lambert equations.

Patent
   6438399
Priority
Feb 16 1999
Filed
Feb 16 2000
Issued
Aug 20 2002
Expiry
Feb 16 2020
Assg.orig
Entity
Small
250
3
all paid
1. A method of determining an oxygenation level of tissue comprising:
providing light signals of a single frequency at at least three separate wavelengths from a near infrared light source to the tissue;
collecting the light signals passing through the tissue with a light detector, the collected signals defining a first, a second and a third light signal; and
determining phase differences between the collected light signals defining said first, said second and said third light signal and a reference near infrared light signal and using phase differences to calculate the oxygenation level of the tissue.
4. A method of determining oxygenation level of tissue comprising:
providing light signals of a single frequency at three separate wavelengths from a near infrared light source to the tissue;
collecting light signals passing through the tissue with a light detector, the collected signals defining a first, a second, and a third light signal having respective wavelengths λ1, λ2, and λ3;
comparing the collected light signals with a reference near infrared signal;
determining a difference in phase between the first and third collected signals θ13);
determining a difference in phase between the second and third collected signals θ23) to define a phase difference ratio of θ13)/θ23); and
deriving the oxygenation level of the tissue from the phase difference ratio.
2. The method of claim 1 wherein one of the at least three separate wavelengths is less than 800 nm.
3. The method of claim 2 wherein another one of the at least three separate wavelengths is more than 800 nm.
5. The method of claim 4 wherein the first light signal has a wavelength (λ1) of less than 800 nm.
6. The method of claim 5 wherein the second light signal has a wavelength (λ2) of less than 800 nm and greater than that of (λ1).
7. The method of claim 6 wherein the third light signal has a wavelength (λ3) of greater than 800 nm.

This application claims the benefit of U.S. Provisional Application No. 60/120,200, filed Feb. 16, 1999 entitled "Multiwavelength Frequency Domain Near-Infrared cerebral Oximeter".

This invention was supported in part by funds from the U.S. Government (National Institutes of Health contract number N44-NS-5-2314) and the U.S. Government may therefore have certain rights in the invention.

Near infrared spectroscopy (NIRS) is a non-invasive, optical technique for monitoring tissue oxygenation. NIRS relies on the relative transparency of tissues to near infrared light (700-900 nm) where oxygenated- and deoxygenated hemoglobin and cytochiome aa3 have distinct absorption spectra. Depending on the instrument, NIRS systems monitor oxygenation as hemoglobin-O2 saturation (SO2), cytoclirome aa3 redox state, or oxy- and deoxy-hemoglobin concentrations. NIRS differs from other oxygenation monitors such as pulse-oxrmetry in that it monitors parenchymal and microcirculatory (eg, capillaries) oxygenation to reflect tissue oxygen supply relative to demand. In clinical medicine, NIRS has been used as a research device to follow cerebral oxygenation during surgery and critical illnesses.

Despite its applicability and availability for several years, NIRS has not been widely utilized in clinical medicine. Uncertainties concerning optical pathlength and light scattering within the tissue have precluded absolute quantitation, limiting NIRS systems to describing relative oxygenation over time. The lack of a standard measure for NIRS has complicated assessment of its accuracy. Because NIRS monitors a tissue field containing capillaries, arteries, and veins, its calculated SO2 represents a mixed vascular SO2. No other method exists at present to measure this mixed vascular SO2. Before NIRS can be evaluated in clinical trials, essential for widespread use, absolute quantitation is required. Several approaches have recently been explored to improve NIRS quantitation. For example, application of radiative transport theory and time or frequency domain spectroscopy permits absolute quantitation through the determination of tissue absorption coefficients (μa), eliminating uncertainties in optical pathlength and light scattering. Although absolute quantitation of cerebral SO2 is theoretically possible with time-domain and frequency-domain NIRS (fdNIRS), their accuracy remains untested.

Accordingly, there is a need for NIRS instrument wherein absolute oxygenation levels can be determined quickly and accurately in a clinical setting.

The present invention comprises a method of determining the oxygenation level of tissue. The tissue is irradiated by a near infrared light source whereby the incident light passing through the tissue is detected by a light detector. Specifically, light signals of a single frequency at at least three separate wavelengths are provided from the near infrared light source. The near infrared light signals are collected with the light detector and, the phase differences between the collected near infrared light signals and a reference near infrared light signal are determined. The phase differences are used to calculate the oxygenation level of the tissue.

In another aspect of the present invention, a method of determining the oxygenation level of tissue comprises irradiating tissue with a near infrared light source, the incident light passing through the tissue to a light detector. Specifically, light signals of a single frequency at three separate wavelengths are provided from the near infrared light source. The near infrared light signals are collected with the light detector and the collected signals define a first, a second, and a third light signal having respective wavelengths λ1, λ2, and λ3. The collected light signals are compared with a reference near infrared signal and the difference in phase between the first and third collected signals θ(λ13) is determined. The difference in phase between the second and third collected signals θ(λ23) is determined and a phase difference ratio of θ(λ13)/θ(λ23) is defined. The oxygenation level of the tissue is derived from the phase difference ratio and known tissue absorption constants.

The foregoing summary as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:

FIG. 1 is a time vs. amplitude graph of emitted and detected signals of a typical prior art frequency domain oximeter;

FIG. 2 is an a graph of absorption spectra vs. wavelength graph of Hb, HbO2 and H2O;

FIG. 3 is a schematic diagram of an oximeter using the frequency domain algorithm in accordance with the preferred embodiment of the invention;

FIG. 4 is a table showing the linear relationships between fdNIRS SO2 and CO-oximeter SO2 in accordance with a preferred embodiment of the present invention;

FIG. 5 is a table of typical ranges of extracranial tissue thickness;

FIG. 6 is a graph of oxygen saturation (SO2) vs. phase difference ratio in accordance with a preferred embodiment of the invention;

FIG. 7 is a graph of oxygen saturation (SO2) vs. phase difference ratio showing the linear relationship between detected and co-oximetry levels of oxygenation in accordance with a preferred embodiment of the invention;

FIG. 8 is a graph of the difference in oxygen saturation (diff. SO2) between detected oxygenation and co-oximetry levels of oxygenation in accordance with a preferred embodiment of the invention;

FIG. 9 is a graph of detected oxygenation levels vs. varying source-detector separations in accordance with a preferred embodiment of the invention;

FIG. 10 is a graph of detected oxygen saturation vs. blood temperature in accordance with a preferred embodiment of the invention;

FIG. 11 is a graph of a co-oximetry level as compared to hemoglobin concentration vs. detected oxygenation in accordance with a preferred embodiment of the invention; and

FIG. 12 is a graph of detected oxygenation levels vs. varying brain shell (i.e bone) thickness in accordance with a preferred embodiment of the invention.

Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. The term "brain model" is generally defined as any tissue structure. In the supporting examples cited herein, the neonatal brain model was used to demonstrate a particular applicability and to confirm its reliability. The term brain model is not limited to neonatal brains or brain tissue.

Time and frequency domain have been applied to near infrared spectoscopies (NIRS) to determine optical pathlength, light scattering, and absorption. In time-domain spectroscopy, light attenuation is measured as a function of time relative to a pulsed light source, whereas in frequency-domain spectroscopy, light attenuation is measured relative to a light source whose intensity is modulated sinusoidally. The advantages of frequency domain spectroscopy include less expensive and less complex hardware, as well as continuous monitoring capability.

The present invention provides method of determining the oxygenation level of tissue with a frequency domain near infrared spectroscopic (fdNIRS) instrument or "fdNIRS oximeter." The multi-wavelength frequency domain oximeter as described herein utilizes an SO2 algorithm to derive tissue oxygenation. A brain model of an in-vitro neonatal brain is used to demonstrate the accuracy of the oximeter. The brain model is a solid plastic structure containing a vascular network perfused with blood in which hemoglobin oxygen saturation (SO2) was measured by co-oximetry, providing a standard for comparison. The use of NIRS to monitor cerebral oxygenation in adults has been controversial because of concerns of extracranial tissue interference. NIRS monitors the tissue beneath the optical fibers, which includes scalp (skin, subcutaneous fat, muscle), skull, cerebrospinal fluid, and finally, the brain. When the extracranial tissues are thin as in neonates, infants and children, the brain can be monitored from the surface of the head without interference. In adults, the extracranial tissues are thicker and may contaminate the signal and bias the SO2 measurement. (FIG. 5). Data discussed below indicates that at a 4 cm optode separation, the extracranial tissues in adults can bias the measurement as much as 32%. Plastic shells of varying thickness (0.5-2 cm) with a vascular network of their own and encircling the brain model were also added to simulate extracranial tissues of the infant, child, and adult.

Referring now to FIG. 3, a fdNIRS oximeter 5 is shown (Model PMD 4002, NIM Incorporated, Philadelphia, Pa.). The oximeter 5 is a time-shared 3 wavelength/4-channel design utilizing laser diodes D1-D3 at measuring wavelengths of (λ1) 754 nm, (λ2) 785 nm, and (λ3) 816 nm, with a reference wavelength that is not directed through the brain model 10. The laser light intensities are sinusoidally oscillated at a high frequency, such as 200 MHz (RF source 7). The oximeter 5 employs heterodyne frequency-domain technology to monitor phase-shifts at the three measuring wavelengths relative to an internal reference. A reference mold, is used to calibrate the oximeter 5. Preferably, the laser light is delivered to and from the brain model 10 by 2 fiberoptic bundles, each 1-cm in diameter and 1.8 m in length. The fiberoptic bundle ends are in contact with the brain model 10. In the preferred embodiment, the bundle ends are mounted in soft rubber housing (optical probe 15) and secured circumferentially to the side of the brain model 10. The distance separating the bundle and detector(not shown) in the probe 15 is adjustable to 3 cm, 4 cm, 5 cm, or 6 cm. Light returning to the oximeter 5 is detected with a photomultiplier tube (Model R928, Hamamatsu Photonics, Hamamatsu, Japan, also not shown). The output (OUT) of probe 15 is operably linked to a 4 channel LED display for displaying the AC signal at the corresponding wavelength to indicate signal adequacy. Also, an LCD phase meter is operably linked to the output (OUT) of probe 15 to display the phase difference between the measuring wavelength and the internal phase reference. Preferably, phase angle signals for each wavelength are processed by an analog to digital converter for analysis and storage by a processor (not shown). The processor captures the phase angle signals (4/sec) and the signal average over 15 seconds is recorded during the experiments. The oximeter 5 phase angle signal to noise is ±2% (phase noise ±0.1°C, phase drift <0.3°C/h). Those skilled in the art recognize that the hardware described above can be separate components or a single probe device performing the collective functions of the components described above. Similarly the method disclosed herein can be performed with a variety of phase shift monitoring and optical devices, it is understood that the specific hardware embodiment disclosed herein is a single illustrative example.

The brain model 10 is constructed of a series of shells. The shells circumscribe an interior of the brain model 10 to simulate brain and extracranial tissues, respectively. The brain model 10 is a plastic cylinder containing a microvascular network perfused with human blood equilibrated with O2, N2, and CO2 in a closed circuit (not shown). The circuit consists of the model brain, bubble oxygenator (Model Bio-2, Baxter Healthcare Inc, Irvine, Calif.), heater-water bath, and a roller pump (Model RS-7800, Renal Systems, Minneapolis, Minn.). The brain's vascular volume comprises 5% of its total volume to simulate normal cerebral blood volume. Diameter of the brain and vascular channels are 10 cm and 974±20 μm, respectively. Blood SO2 is regulated by adjusting the flow of O2 and N2 in the circuit and measured from an aliquot of blood by CO-Oximetry (Instrumentation Laboratory 282, Lexington, Mass.). Adjusting the quantity of blood and diluent (0.9% NaCl) in the circuit regulates hemoglobin concentration. Blood temperature is adjusted with the water bath jacketing the oxygenator.

The shells encircling the brain model 10 are composed of plastic and contained a microvascular network. The shells fit tightly against the brain model 10. The microvascular network, representing approximately 4% of the shell's total volume, is imbedded in the shell employing the same method as for the brain model 10. After fully oxygenated or deoxygenated blood (obtained from the oxygenator bubbled with O2 or N2) is perfused anaerobically through the shells, the microvascular network is sealed with wax. The shells are constructed of a clear polyester resin (Castin Craft, ETI, Fields Landing, Calif., USA) to which titanium dioxide emulsion (Golden Artist Colors Inc., New Berlin, N.Y., USA) is added to yield a concentration of 0.5%, compared with the 1.2% concentration in the brain model 10, to simulate the lessor light scattering properties of the skull. The thickness of shells is 6 mm, 10 mm, and 20 mm to simulate the thickness of the infant, child, and adult extracranial tissues.

Preliminary studies defined the thickness of the infant, child, and adult extracranial and intracranial tissues. Magnetic resonance images of the head from 8 infants (age 3-10 months), 8 children (age 4-9 years), and 30 adults (age 20-64 years) were reviewed, selected at random from medical records of patients who had normal anatomy, as interpreted by a neuroradiologist for constructing the brain model 10.

The derivation of the algorithm for relating the phase differences of the signals provided by the light source of probe 15 to the detector is explained herein. In the near infrared spectrum, several compounds in biologic tissues contribute to light absorption, including water, oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), and oxygenated and deoxygenated cytochrome aa3. If the absorption coefficient (μa) represents the sum of that contributed by each compound, then expressions may be developed using the Beer-Lambert equation. The Beer-Lambert equation is an algebraic expression relating light behavior to concentration of absorbing compounds.

μa1)=εHb1)Hb+εHbO21)HbO2+μaother1) (1)

μa2)=εHb2)Hb+εHbO22)HbO2+μaother2) (2)

μa3)=εHb3)Hb+εHbO23)HbO2+μaother3) (3)

Where εHb and εHbO2 represent the extinction coefficients for Hb and HbO2, μaother the sum of the absorption coefficients of water and cytochrome aa3, and (λ1), (λ2), and (λ3) indicate wavelengths 1, 2, and 3. SO2 is defined by

SO2=100*HbO2/H (4)

Where H represents total hemoglobin concentration in the tissue, given by

H=HbO2+Hb (5)

If μaother is constant across the measuring wavelengths (μaother 321)), then combining equations 1 through 5 yields

μa13)/μa23)={εHb+SO2HbO2Hb)}(λ13)/{εHb+SO2HbO2hb)}(λ23) (6)

where the notation, μa13), represents the difference in the absorption coefficient between wavelengths 1 and 3. Similarly, the notation, {εHb+SO2HbO2Hb)}(λ13) represents the difference in the expression, {εHb+SO2HbO2Hb)}, between wavelengths 1 and 3. If λ2 and λ3 are selected such that εHb 23 )>>SO2 HbO2Hb)}(λ23), then equation 6 simplifies to

μa13)/μa23)=εHb13)/εHb23)+SO2BbO2Hb}(λ13)/εHb23) (7)

Equation 7 denotes a linear function between the absorption coefficient difference ratio at 3 wavelengths and SO2. For our fdNIRS, wavelengths 1, 2, and 3 are 754 nm, 785 nm, and 816 nm, respectively. Extinction coefficients for Hb and HbO2 at these wavelengths satisfy εHb23)>>SO2HbO2Hb}(λ23). For example, εHb23) is 55 μM-1 cm-1, whereas SO2 HbO2Hb}(λ23) is -95 μM-1 cm-1 at SO2 1% and -9500 μM-1 cm-1 at SO2 100%.

Several mathematical models exist to recover tissue absorption coefficients. In the radiative-transport model, photon migration through tissue is treated as a difflusional process analogous to heat transfer in an object. The radiative transport model is a complex integro-differential equation. The diffusion approximation is used to solve this equation. Although this approach generally requires an iterative solution, analytical solutions exist for some conditions. The advantage of the analytical solution includes minimal computation time to permit continuous, real-time oximetry. The disadvantage stems from computation errors if the analytical assumptions are incorrect. The results provided herein point to the general adequacy of the radiative transport model assumptions.

The diffusion equation describes the photon fluence rate, Φ(r,t), or the effective concentration of photons at position (r) and time (t) in the tissue from a light source (S)

(1/c) ∂/∂tΦ(r,t)Dv2Φ(r,t)+μa(r,t)=S(r,t) (8)

where D is the diffusion coefficient and c is the speed of light. The difflusion coefficient is given by

D=1/(3 μ's) (9)

where μ's is the reduced scattering coefficient of the tissue. The fluence rate within a tissue volume depends non-linearly on the absorption and scattering coefficients of the tissue, such that fluence rate is specified as Φ(r, t, μaμ's). Temporal reflectance, R(ρ,t), corresponds to the photon current density remitted from the surface of a scattering semi-infinite medium at distance (ρ) from the source following impulses of light.

R(p,t)=(4 πDc)-3/2μ's-1t5/2exp(-μact) exp(-ρ2/4Dct) (10)

In frequency domain spectroscopy, the light source consists of intensity-modulated light rather than impulses of light. The intensity is sinusoidally modulated at a frequency (f). The detected light intensity a distance (ρ) away from the source is both amplitude demodulated (M) and phase-shifted (θ) with respect to the source intensity. Expressions were developed for θ from the sine and cosine Fourier transforms of equation 10.

θ(ρ,f)=-Ψ sin(Θ/2)-tan-1{[-Ψ sin(Θ/2)/[1+Ψ cos(Θ/2)]} (11)

Where

ψ={{3 μ'sρ2[(μac)2+(2 πf)2]½c-1}½ (12)

And

Θ=tan-1{2 πf/μac} (13)

In an appropriate scattering and absorbing medium, light source frequency, and emitter-detector separation (eg, 6 πμ's'p2f>>c and 2 πf>>μac), it is possible to reduce equation 11 to

θ=(6 π/c)½ sin(π/4)ρ(μ'sf)½[1-μac/4 πf] (14)

In the present invention, μ's, μa, ρ, and f are approximately 7 cm-1, 0.10 cm-1, 5 cm, and 200 MHz, respectively. Although 2 πf>>μa is not fully satisfied, equation 14 has been shown experimentally to hold for these conditions. Accordingly, an expression can be developed for θ at 3 wavelengths.

θ(λ1)=(6 πc)½ sin(π/4) ρ[μ's1)f]½[1-μ's1)c/4 πf] (15)

θ(λ1)=(6 πc)½ sin(π/4) ρ[μ's2)f]½[1-μ's2)c/4 πf] (16)

θ(λ1)=(6 πc)½ sin(π/4) ρ[μ's3)f]½[1-μ's3)c/4 πf] (17)

If light scattering is wavelength independent (μ's123)), equations 15-17 can be solved to yield

θ(λ13)/θ(λ23)=μa13)/μa23) (18)

Thus, the absorption coefficient difference ratio is given by the phase difference ratio at 3 wavelengths. SO2 can be calculated from the combination of equation 7 and 18

θ(λ13)/θ(λ23)=εHb13)/εHb23)+SO2HbO2Hb}(λ13)/εHb23) (19)

Equation 19 linearly relates the phase angle difference ratio at 3 wavelengths to SO2.

The extinction coefficients of oxy- and deoxy- hemoglobin at 3 wavelengths (equation 7) are constants that have been determined previously, the wavelengths are selected to satisfy the assumption to derive equation 7. The wavelength independence of absorption by nonhemoglobin compounds (equation 6) and of light scattering (equation 18) are assumed. In-vitro data justify these assumptions. The non-hemoglobin compounds in the brain model were water, plastic, and titanium dioxide (cytochromes were not present). The absorption spectra of these compounds are flat between our measuring wavelengths (754-816 nm) to satisfy equation 6. For in-vivo application, fdNIRS oximetry should not be affected by cytochrome aa3 even though its absorption spectra is not flat, because its absorption is greatly overshadowed by hemoglobin. Light scattering in the brain model 10 arises from red blood cells and titanium dioxide and is wavelength independent from 670 to 830 nm to satisfy equation 18.

Example tests were performed to verify equation 19 and develop an algorithm for the fdNIRS oximeter to calculate SO2, then test prospectively the accuracy of the algorithm. These experiments examined bias, precision, and linear regression of fdNIRS relative to CO-Oximetry; repeatability of fdNIRS; and the effect of fdNIRS source-detector separation, blood temperature, hemoglobin concentration, and shell thickness on fdNIRS SO2.

The fdNIRS optical probe 15 was secured against the side of the brain model 10, emitter and detector 4 cm apart (shells were not present). In the first example, the oxygenator receives nitrogen to deoxygenate the blood perfusing in the brain model 10. fdNIRS phase signals (θ) were recorded at each wavelength as oxygen was added incrementally to increase perfusate oxygen saturation by approximately 5% increments. Perfusate total hemoglobin concentration was constant (15 g/dl). To test equation 19, the phase difference ratio ([θ(λ13) ]/[θ(λ23)]) is plotted against perfusate SO2 and an algorithm is developed based on this relationship. In the next 6 experiments, the algorithm was prospectively examined, in which fdNIRS SO2 was compared with CO-oximetry SO2 of the perfusate. The flows of O2 and N2 to the oxygenator are adjusted to achieve 5 levels of perfusate SO2: 0-10%, 20-35%, 45-60%, 70-85%, and 95-100%. The order of the levels is selected at random. Perfusate total hemoglobin concentration is constant during each experiment, varying between 14-16 g/dl among experiments.

In the brain model 10, the fdNIRS phase difference ratio was linearly related to perfusate SO2, consistent with equation 19 (FIG. 6). Using this relationship as the fdNIRS SO2 algorithm, linearity was observed between fdNIRS SO2 and CO-Oximeter SO2 in 6 subsequent experiments (FIG. 4, FIG. 7). The line between the variables was not significantly different from the line of identity for any experiment or the combined analysis. fdNIRS SO2 bias and precision were 2% and 6%, respectively (FIG. 8).

The phantom brain was perfused with either deoxygenated or oxygenated blood, achieved by using either N2 or O2, respectively, flowing through the oxygenator. fdNIRS SO2 was measured at each oxygenation state 10 times with the optical probe 15 held in constant position against the brain model 10, or with the probe 15 removed from the brain model 10 between each measurement and repositioned.

fdNIRS SO2 values were similar whether the probe 15 was left on the model brain 10 or repositioned between measurements; however, the measurement variance (SD) was significantly less when the probe was left on vs. repositioned (for oxygenated perfusate, as fdNIRS SO2 was 100±1% vs. 98±5% and 2±1% vs. 6±6% for the oxygenated and deoxygenated perfusate.

The flows of N2 or O2to the oxygenator are adjusted to achieve 5 levels of perfusate SO2 as measured by CO-Oximetry: 0-10%, 20-35%, 45-60%, 70-85%, and 95-100%. At each level, fdNIRS SO2is recorded with the source and detector fibers in the probe 15 separated by 4 cm and 5 cm for one experiment, and 5 cm and 6 cm for the second experiment. It is not possible to measure fdNIRS SO2 at 4, 5 and 6 cm for all perfusate SO2 levels during one experiment because of time constraints associated with hemolysis in the brain model 10.

fdNIRS SO2 was measured with emitter-detector separations of 4 cm, 5 cm, and 6 cm as perfusate SO2 was varied (FIG. 9). Linear relationships were observed at each separation, and the lines had similar slopes and intercepts (p=0.27), indicating that source-detector separation did not affect fdNIRS measurement of SO2.

The brain model perfusate SO2 and total hemoglobin concentration are held constant (100%, 15 g/dl) during the experiment. fdNIRS SO2 was recorded as temperature of the perfusate was decreased from 37°C C. to 16°C C. over 30 minutes.

With oxygenated blood perfusing the brain model 10, fdNIRS SO2 remained unchanged as temperature was decreased from 37°C C. to 16°C C. (FIG. 5), demonstrating that blood temperature did not affect fdNIRS.

At perfusate total hemoglobin concentrations of 15 g/dl, 10 g/dl, or 6 g/dl, fdNIRS SO2 are recorded as perfusate SO2 in the brain model 10 is varied from 0% to 100%. Experiments with the different hemoglobin concentration are performed on separate days, selected at random.

Linear relationships were observed between fdNIRS SO2 and CO-Oximeter SO2 at each perfusate hemoglobin concentration. (FIG. 6). However, as hemoglobin concentration decreased, slope decreased and intercept increased significantly. Thus, at the lowest hemoglobin concentration and highest oxygenation, fdNIRS SO2 measured -20% low; at the lowest hemoglobin concentration and lowest oxygenation, fdNIRS SO2 measured -10% high.

Thus, hemoglobin concentration influenced oximeter accuracy at very low and high saturation. fdNIRS oximetry errors associated with hemoglobin concentration are related to modulation frequency. By increasing the modulation frequency, the error at very low saturation can be decreased. According to their calculations, modulation frequencies greater than 500 MHz are required to monitor very low saturation in physiologic hemoglobin concentrations. Increasing our fdNIRS to such a frequency may have eliminated the error at very low and high saturation. However, these high modulation frequencies are not obtainable at reasonable cost with current technology, and clinical utility is unlikely to be affected by a 10-15% error at extreme saturations.

FIG. 5 displays the thickness of the intracranial and extracranial tissues in infants, children, and adults. Thickness of the scalp, skull, and subarachnoid space (CSF) increased significantly from infants to adults. Thickness of cortical gray and white matter, however, did not change significantly with age. In children and adults, the extracranial tissues in the occipital region were thicker than those in the frontal region. In the frontal region, the distance from the skin surface to the cortical surface in infants, children, and adults was, respectively, 4±1 mm 6.6±2 mm, and 10.2±4 mm; upper 95% confidence intervals were 6 mm, 10.6 mm, and 20 mm.

While the brain model 10 is perfused with deoxygenated blood, fdNIRS SO2is recorded with each shell containing either oxygenated blood or no blood, interposed between the model and the optical probe. The experiment is repeated with the brain model 10 perfused with oxygenated blood and each shell containing either deoxygenated blood or no blood. fdNIRS source and detector were 4 cm apart.

Shell thickness around the brain model 10 significantly altered the accuracy of fdNIRS SO2 (FIG. 12). When the perfusate was oxygenated (SO2 100%), fdNIRS SO2 decreased 26±3% (p<0.001) with the 20 mm shell without blood and 32±6% (p<0.001) with the 20 mm shell containing deoxygenated blood. When the perfusate was deoxygenated (SO2≈0%), fdNIRS SO2 increased 21±7% (p<0.001) with the 20 mm shell without blood and 26±3% (p<0.001) with the 20 mm shell containing oxygenated blood. The 6 mm and 10 mm shells, with or without blood, had no significant effect on fdNIRS SO2. Thus, infant and child simulated extracranial tissues did not affect fdNIRS, whereas the adult simulated extracranial tissue created significant error.

Data were analyzed by least squares linear regression analysis, analysis of variance, or analysis of co-variance. Bias and precision were defined as the mean and SD of, respectively, the ordinate for the difference between fdNIRS and Co-oximeter SO2 vs. the average of fdNIRS and CO-Oximeter SO2. Significance was defined as p<0.05.

Thus, the fdNIRS oximeter of the present invention accurately measures SO2 of tissue. The fdNIRS oximeter had excellent linear correlation, bias, and precision relative to CO-Oximetry, a standard method to measure SO2. The fdNIRS oximeter is not influenced by source-detector separation or blood temperature. However, low blood hemoglobin concentration and thick layers overlying the brain model influenced accuracy, suggesting that errors can occur with respect to anemic or adult patients.

It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. For example, while the methods described herein relate to analysis of the oxygenation of cerebral tissue, the methods described are broadly applicable for determining the oxygenation level of any tissue. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications within the spirit and scope of the present invention.

Kurth, Charles D.

Patent Priority Assignee Title
10022058, Sep 28 2006 Covidien LP System and method for pulse rate calculation using a scheme for alternate weighting
10032526, May 17 2001 Lawrence A., Lynn Patient safety processor
10058269, Feb 10 2006 Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
10076276, Feb 19 2008 Covidien LP Methods and systems for alerting practitioners to physiological conditions
10194870, May 27 2015 Covidien LP Systems and methods for optimizing autoregulation measurements
10201302, Jan 27 2014 Covidien LP Systems and methods for determining whether regional oximetry sensors are properly positioned
10213550, Jan 23 2014 Covidien LP Systems and methods for monitoring clinical procedures using regional blood oxygen saturation
10219705, May 08 2015 Covidien LP System and method for identifying autoregulation zones
10271779, Jun 30 2015 Covidien LP System and method of monitoring autoregulation
10292663, Jun 30 2015 Covidien LP System and method of monitoring autoregulation
10297348, May 17 2001 Lawrence A., Lynn Patient safety processor
10328202, Feb 04 2015 Covidien LP Methods and systems for determining fluid administration
10354753, May 17 2001 Lawrence A., Lynn Medical failure pattern search engine
10366790, May 17 2001 Lawrence A., Lynn Patient safety processor
10383579, Oct 16 2014 Covidien LP System and method for monitoring autoregulation
10463292, Oct 16 2015 Covidien LP System and method for identifying autoregulation zones
10499818, Oct 19 2015 Covidien LP System and method for providing blood pressure safe zone indication during autoregulation monitoring
10610164, Apr 25 2018 Covidien LP Determining changes to autoregulation
10660530, Apr 25 2018 Covidien LP Determining changes to autoregulation
10674964, Apr 25 2018 Covidien LP Determining changes to autoregulation
10736578, Jul 14 2016 Covidien LP Systems and methods of monitoring autoregulation
10827961, Aug 29 2012 Masimo Corporation Physiological measurement calibration
10836403, Dec 04 2017 Lear Corporation Distractedness sensing system
10867218, Apr 26 2018 Lear Corporation Biometric sensor fusion to classify vehicle passenger state
10932724, Jun 17 2015 Covidien LP Systems and methods for monitoring autoregulation using a confidence level
11026586, Apr 25 2018 Covidien LP Determining changes to autoregulation
11096588, Oct 06 2015 Covidien LP System and method for monitoring autoregulation utilizing normalized regional oxygen saturation values
11298076, Feb 19 2008 Covidien LP Methods and systems for alerting practitioners to physiological conditions
11311246, Apr 25 2018 Covidien LP Determining changes to autoregulation
11419506, Aug 22 2016 Covidien LP System and method for identifying blood pressure zones during autoregulation monitoring
11419558, May 24 2017 Covidien LP Determining a limit of autoregulation
11439321, Feb 10 2006 Monitoring system for identifying an end-exhalation carbon dioxide value of enhanced clinical utility
11524691, Jul 29 2019 Lear Corporation System and method for controlling an interior environmental condition in a vehicle
11653840, Oct 19 2015 Covidien LP System and method for providing blood pressure safe zone indication during autoregulation monitoring
11771376, Apr 25 2018 Covidien LP Determining changes to autoregulation
6827681, Jun 28 2001 Brainlab AG Method and device for transcranial magnetic stimulation
6830544, Jun 28 2001 BrianLAB AG Methods and devices for transcranial magnetic stimulation and cortical cartography
7008370, Jun 28 2001 Brainlab AG Method and device for transcranial magnetic stimulation
7239910, Jun 28 2001 Brainlab AG Methods and devices for transcranial magnetic stimulation and cortical cartography
7477924, May 02 2006 Covidien LP Medical sensor and technique for using the same
7483731, Sep 30 2005 Covidien LP Medical sensor and technique for using the same
7486979, Sep 30 2005 Covidien LP Optically aligned pulse oximetry sensor and technique for using the same
7489958, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
7499740, Feb 25 2004 Covidien LP Techniques for detecting heart pulses and reducing power consumption in sensors
7499741, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
7509154, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7522948, May 02 2006 Covidien LP Medical sensor and technique for using the same
7555327, Sep 30 2005 Covidien LP Folding medical sensor and technique for using the same
7570979, Mar 30 2004 PORT-A-NIRS PTY LTD Methods and apparatus for patient monitoring
7574244, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
7574245, Sep 27 2006 Covidien LP Flexible medical sensor enclosure
7590439, Aug 08 2005 Covidien LP Bi-stable medical sensor and technique for using the same
7647084, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7650177, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
7657294, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
7657295, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7657296, Aug 08 2005 Covidien LP Unitary medical sensor assembly and technique for using the same
7658652, Sep 29 2006 Covidien LP Device and method for reducing crosstalk
7676253, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7680522, Sep 29 2006 Covidien LP Method and apparatus for detecting misapplied sensors
7684842, Sep 29 2006 Covidien LP System and method for preventing sensor misuse
7684843, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7689259, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
7693559, Aug 08 2005 Covidien LP Medical sensor having a deformable region and technique for using the same
7698002, Sep 29 2006 Covidien LP Systems and methods for user interface and identification in a medical device
7706896, Sep 29 2006 Covidien LP User interface and identification in a medical device system and method
7720516, Oct 10 1996 Nellcor Puritan Bennett LLC Motion compatible sensor for non-invasive optical blood analysis
7725146, Sep 29 2005 Covidien LP System and method for pre-processing waveforms
7725147, Sep 29 2005 Covidien LP System and method for removing artifacts from waveforms
7729736, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7738937, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7794266, Sep 29 2006 Covidien LP Device and method for reducing crosstalk
7796403, Sep 28 2006 Covidien LP Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
7848891, Sep 29 2006 Covidien LP Modulation ratio determination with accommodation of uncertainty
7869849, Sep 26 2006 Covidien LP Opaque, electrically nonconductive region on a medical sensor
7869850, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
7880884, Jun 30 2008 Covidien LP System and method for coating and shielding electronic sensor components
7881762, Sep 30 2005 Covidien LP Clip-style medical sensor and technique for using the same
7884933, May 05 2010 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
7887345, Jun 30 2008 Covidien LP Single use connector for pulse oximetry sensors
7890153, Sep 28 2006 Covidien LP System and method for mitigating interference in pulse oximetry
7890154, Mar 08 2004 Covidien LP Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
7894869, Mar 09 2007 Covidien LP Multiple configuration medical sensor and technique for using the same
7899510, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7904130, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7922665, Sep 28 2006 Covidien LP System and method for pulse rate calculation using a scheme for alternate weighting
7925511, Sep 29 2006 Covidien LP System and method for secure voice identification in a medical device
7937130, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
7962190, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8007441, Mar 08 2004 Covidien LP Pulse oximeter with alternate heart-rate determination
8019400, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8036728, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8046041, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8046042, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8060171, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8062221, Sep 30 2005 Covidien LP Sensor for tissue gas detection and technique for using the same
8064975, Sep 20 2006 Covidien LP System and method for probability based determination of estimated oxygen saturation
8068890, Sep 29 2006 Covidien LP Pulse oximetry sensor switchover
8068891, Sep 29 2006 Covidien LP Symmetric LED array for pulse oximetry
8070508, Dec 31 2007 Covidien LP Method and apparatus for aligning and securing a cable strain relief
8071935, Jun 30 2008 Covidien LP Optical detector with an overmolded faraday shield
8073518, May 02 2006 Covidien LP Clip-style medical sensor and technique for using the same
8078246, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
8078250, Jul 26 2002 Edwards Lifesciences Corporation Method for spectrophotometric blood oxygenation monitoring
8092379, Sep 29 2005 Covidien LP Method and system for determining when to reposition a physiological sensor
8092993, Dec 31 2007 Covidien LP Hydrogel thin film for use as a biosensor
8095192, Jan 10 2003 Covidien LP Signal quality metrics design for qualifying data for a physiological monitor
8109882, Mar 09 2007 Covidien LP System and method for venous pulsation detection using near infrared wavelengths
8112375, Mar 31 2008 Covidien LP Wavelength selection and outlier detection in reduced rank linear models
8123695, Sep 27 2006 Covidien LP Method and apparatus for detection of venous pulsation
8126528, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8128572, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8133176, Apr 14 1999 Covidien LP Method and circuit for indicating quality and accuracy of physiological measurements
8140272, Mar 27 2008 Covidien LP System and method for unmixing spectroscopic observations with nonnegative matrix factorization
8145288, Aug 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8160668, Sep 29 2006 Covidien LP Pathological condition detector using kernel methods and oximeters
8160683, Sep 29 2006 Covidien LP System and method for integrating voice with a medical device
8160726, Sep 29 2006 Covidien LP User interface and identification in a medical device system and method
8175667, Sep 29 2006 Covidien LP Symmetric LED array for pulse oximetry
8175670, Mar 09 2004 Covidien LP Pulse oximetry signal correction using near infrared absorption by water
8175671, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8180420, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8190224, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8190225, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8190227, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8195262, Feb 25 2004 Covidien LP Switch-mode oximeter LED drive with a single inductor
8195263, Mar 09 2004 Covidien LP Pulse oximetry motion artifact rejection using near infrared absorption by water
8195264, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8199007, Dec 31 2007 Covidien LP Flex circuit snap track for a biometric sensor
8199322, Aug 20 2010 Revolutionary Business Concepts, Inc. Apparatus and method for determining analyte concentrations
8204567, Dec 13 2007 Covidien LP Signal demodulation
8219170, Sep 20 2006 Covidien LP System and method for practicing spectrophotometry using light emitting nanostructure devices
8221319, Mar 25 2009 Covidien LP Medical device for assessing intravascular blood volume and technique for using the same
8221326, Mar 09 2007 Covidien LP Detection of oximetry sensor sites based on waveform characteristics
8224412, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
8229530, Mar 09 2007 Covidien LP System and method for detection of venous pulsation
8233954, Sep 30 2005 Covidien LP Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
8238994, Oct 28 2005 Covidien LP Adjusting parameters used in pulse oximetry analysis
8260391, Sep 12 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8265724, Mar 09 2007 Covidien LP Cancellation of light shunting
8275553, Feb 19 2008 Covidien LP System and method for evaluating physiological parameter data
8280469, Mar 09 2007 Covidien LP Method for detection of aberrant tissue spectra
8292809, Mar 31 2008 Covidien LP Detecting chemical components from spectroscopic observations
8311601, Jun 30 2009 Covidien LP Reflectance and/or transmissive pulse oximeter
8311602, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
8315684, Feb 25 2004 Covidien LP Oximeter ambient light cancellation
8315685, Sep 27 2006 Covidien LP Flexible medical sensor enclosure
8346328, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8352004, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8352009, Sep 30 2005 Covidien LP Medical sensor and technique for using the same
8352010, Sep 30 2005 Covidien LP Folding medical sensor and technique for using the same
8359080, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8364220, Sep 25 2008 Covidien LP Medical sensor and technique for using the same
8364221, Sep 30 2005 Covidien LP Patient monitoring alarm escalation system and method
8364224, Mar 31 2008 Covidien LP System and method for facilitating sensor and monitor communication
8364226, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8366613, Dec 26 2007 Covidien LP LED drive circuit for pulse oximetry and method for using same
8376955, Sep 29 2009 Covidien LP Spectroscopic method and system for assessing tissue temperature
8380271, Jun 15 2006 Covidien LP System and method for generating customizable audible beep tones and alarms
8386000, Sep 30 2008 Covidien LP System and method for photon density wave pulse oximetry and pulse hemometry
8386002, Sep 30 2005 Covidien LP Optically aligned pulse oximetry sensor and technique for using the same
8391941, Jul 17 2009 Covidien LP System and method for memory switching for multiple configuration medical sensor
8396527, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8401606, Jul 19 2001 Covidien LP Nuisance alarm reductions in a physiological monitor
8401607, Jul 19 2001 Covidien LP Nuisance alarm reductions in a physiological monitor
8417309, Sep 30 2008 Covidien LP Medical sensor
8417310, Aug 10 2009 Covidien LP Digital switching in multi-site sensor
8423109, Mar 03 2005 Covidien LP Method for enhancing pulse oximery calculations in the presence of correlated artifacts
8423112, Sep 30 2008 Covidien LP Medical sensor and technique for using the same
8428675, Aug 19 2009 Covidien LP Nanofiber adhesives used in medical devices
8433382, Sep 30 2008 Covidien LP Transmission mode photon density wave system and method
8433383, Oct 12 2001 Covidien LP Stacked adhesive optical sensor
8437822, Mar 28 2008 Covidien LP System and method for estimating blood analyte concentration
8437826, May 02 2006 Covidien LP Clip-style medical sensor and technique for using the same
8442608, Dec 28 2007 Covidien LP System and method for estimating physiological parameters by deconvolving artifacts
8452364, Dec 28 2007 Covidien LP System and method for attaching a sensor to a patient's skin
8452366, Mar 16 2009 Covidien LP Medical monitoring device with flexible circuitry
8463349, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8483790, Oct 18 2002 Covidien LP Non-adhesive oximeter sensor for sensitive skin
8494604, Sep 21 2009 Covidien LP Wavelength-division multiplexing in a multi-wavelength photon density wave system
8494606, Aug 19 2009 Covidien LP Photoplethysmography with controlled application of sensor pressure
8494786, Jul 30 2009 Covidien LP Exponential sampling of red and infrared signals
8505821, Jun 30 2009 Covidien LP System and method for providing sensor quality assurance
8509869, May 15 2009 Covidien LP Method and apparatus for detecting and analyzing variations in a physiologic parameter
8514067, Aug 16 2011 Elwha LLC Systematic distillation of status data relating to regimen compliance
8515511, Sep 29 2009 Covidien LP Sensor with an optical coupling material to improve plethysmographic measurements and method of using the same
8528185, Aug 08 2005 Covidien LP Bi-stable medical sensor and technique for using the same
8538500, Sep 20 2006 Covidien LP System and method for probability based determination of estimated oxygen saturation
8560034, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8560036, Mar 08 2004 Covidien LP Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics
8577434, Dec 27 2007 Covidien LP Coaxial LED light sources
8577436, Aug 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8599009, Aug 16 2011 Elwha LLC Systematic distillation of status data relating to regimen compliance
8600469, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
8611977, Mar 08 2004 Covidien LP Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue
8634891, May 20 2009 Covidien LP Method and system for self regulation of sensor component contact pressure
8649838, Sep 22 2010 Covidien LP Wavelength switching for pulse oximetry
8649839, Oct 10 1996 Covidien LP Motion compatible sensor for non-invasive optical blood analysis
8660626, Sep 28 2006 Covidien LP System and method for mitigating interference in pulse oximetry
8666467, May 17 2001 Lawrence A., Lynn System and method for SPO2 instability detection and quantification
8696593, Sep 27 2006 Covidien LP Method and system for monitoring intracranial pressure
8702606, Mar 21 2006 Covidien LP Patient monitoring help video system and method
8704666, Sep 21 2009 Covidien LP Medical device interface customization systems and methods
8723640, Aug 16 2011 Elwha LLC Distillation of status data relating to regimen compliance responsive to the presence and absence of wireless signals relating to one or more threshold frequencies
8728001, Feb 10 2006 Lawrence A., Lynn Nasal capnographic pressure monitoring system
8728059, Sep 29 2006 Covidien LP System and method for assuring validity of monitoring parameter in combination with a therapeutic device
8744543, Sep 29 2005 Covidien LP System and method for removing artifacts from waveforms
8750953, Feb 19 2008 Covidien LP Methods and systems for alerting practitioners to physiological conditions
8755856, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8781753, Feb 19 2008 Covidien LP System and method for evaluating physiological parameter data
8788001, Sep 21 2009 Covidien LP Time-division multiplexing in a multi-wavelength photon density wave system
8788004, Jul 26 2002 Edwards Lifesciences Corporation Method for spectrophotometric blood oxygenation monitoring
8798704, Sep 24 2009 Covidien LP Photoacoustic spectroscopy method and system to discern sepsis from shock
8801622, Sep 28 2006 Covidien LP System and method for pulse rate calculation using a scheme for alternate weighting
8816814, Aug 16 2011 Elwha LLC Systematic distillation of status data responsive to whether or not a wireless signal has been received and relating to regimen compliance
8818475, Mar 03 2005 Covidien LP Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
8838196, Jul 19 2001 Covidien LP Nuisance alarm reductions in a physiological monitor
8845543, Apr 14 1997 Masimo Corporation Signal processing apparatus and method
8862194, Jun 30 2008 Covidien LP Method for improved oxygen saturation estimation in the presence of noise
8862196, May 17 2001 Lawrence A., Lynn System and method for automatic detection of a plurality of SP02 time series pattern types
8874181, Feb 25 2004 Covidien LP Oximeter ambient light cancellation
8888708, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8897850, Dec 31 2007 Covidien LP Sensor with integrated living hinge and spring
8914088, Sep 30 2008 Covidien LP Medical sensor and technique for using the same
8930145, Jul 28 2010 Covidien LP Light focusing continuous wave photoacoustic spectroscopy and its applications to patient monitoring
8932227, Jul 28 2000 Lawrence A., Lynn System and method for CO2 and oximetry integration
8942777, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8948834, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8965473, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8968193, Sep 30 2008 Covidien LP System and method for enabling a research mode on physiological monitors
8983800, Jan 13 2003 Covidien LP Selection of preset filter parameters based on signal quality
9010634, Jun 30 2009 Covidien LP System and method for linking patient data to a patient and providing sensor quality assurance
9031793, May 17 2001 Lawrence A., Lynn Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
9042952, May 17 2001 Lawrence A., Lynn; LAWRENCE A LYNN System and method for automatic detection of a plurality of SPO2 time series pattern types
9053222, May 17 2002 Lawrence A., Lynn; LYNN, LAWRENCE A Patient safety processor
9289167, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
9351674, Mar 03 2005 Covidien LP Method for enhancing pulse oximetry calculations in the presence of correlated artifacts
9380969, Jul 30 2009 Covidien LP Systems and methods for varying a sampling rate of a signal
9468378, Jul 14 1998 Lawrence A., Lynn; LYNN, LAWRENCE A Airway instability detection system and method
9521971, May 17 2001 LYNN, LAWRENCE ALLAN System and method for automatic detection of a plurality of SPO2 time series pattern types
9585606, Sep 29 2009 Covidien LP Oximetry assembly
9597023, Sep 29 2009 Covidien LP Oximetry assembly
9770189, Aug 16 2011 Elwha LLC Systematic distillation of status data relating to regimen compliance
9833146, Apr 17 2012 Covidien LP Surgical system and method of use of the same
9861317, Feb 20 2014 Covidien LP Methods and systems for determining regional blood oxygen saturation
9867561, Jan 27 2014 Covidien LP Systems and methods for determining whether regional oximetry sensors are properly positioned
9895068, Jun 30 2008 Covidien LP Pulse oximeter with wait-time indication
D626561, Jun 30 2008 Covidien LP Circular satseconds indicator and triangular saturation pattern detection indicator for a patient monitor display panel
D626562, Jun 30 2008 Covidien LP Triangular saturation pattern detection indicator for a patient monitor display panel
D736250, Jun 30 2008 Covidien LP Portion of a display panel with an indicator icon
Patent Priority Assignee Title
5187672, Feb 06 1989 NON-INVASIVE TECHNOLOGY, INC Phase modulation spectroscopic system
5792051, Dec 21 1988 NON-INVASIVE TECHNOLOGY, INC Optical probe for non-invasive monitoring of neural activity
6263221, Jan 24 1991 NON-INVASIVE TECHNOLOGY, INC Quantitative analyses of biological tissue using phase modulation spectroscopy
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 16 2000The Children's Hospital of Philadelphia(assignment on the face of the patent)
Mar 16 2000KURTH, CHARLES D CHILDREN S HOSPITAL OF PHILADELPHIA, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0108300169 pdf
May 24 2000CHILDREN S HOSPITAL OF PHILADELPHIANATIONAL INSTITUTES OF HEALTH NIH , U S DEPT OF HEALTH AND HUMAN SERVICES DHHS , U S GOVERNMENTCONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS 0211340803 pdf
Date Maintenance Fee Events
Feb 20 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Aug 28 2006ASPN: Payor Number Assigned.
Feb 18 2010M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Mar 05 2014M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.
Mar 05 2014M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Aug 20 20054 years fee payment window open
Feb 20 20066 months grace period start (w surcharge)
Aug 20 2006patent expiry (for year 4)
Aug 20 20082 years to revive unintentionally abandoned end. (for year 4)
Aug 20 20098 years fee payment window open
Feb 20 20106 months grace period start (w surcharge)
Aug 20 2010patent expiry (for year 8)
Aug 20 20122 years to revive unintentionally abandoned end. (for year 8)
Aug 20 201312 years fee payment window open
Feb 20 20146 months grace period start (w surcharge)
Aug 20 2014patent expiry (for year 12)
Aug 20 20162 years to revive unintentionally abandoned end. (for year 12)