Two dice may be provided within a single package so that one pin and associated leadfinger may be coupled to bond pads on different dice. This may mean that two different bond pads on different dice are coupled, for example by wirebonding, to the same leadfinger. An adhesive tape may be secured so as to bridge the two dice. One or more conductive traces are formed on the upper side of the adhesive tape and adhesive is provided on the other side to secure the tape to the two dice. As a result, wire bonds may be made from a pad on one die to a trace and then from the opposite side of the trace to a leadfinger. At the same time, a wire bond may be made from a pad on the other die to the same leadfinger. In another embodiment, an adhesive tape with a conductive trace on it may be used as a wire bond bridge to join spaced bond pads on a single chip.

Patent
   6453547
Priority
Nov 10 1999
Filed
Nov 10 1999
Issued
Sep 24 2002
Expiry
Nov 10 2019
Assg.orig
Entity
Large
4
11
all paid
22. A method comprising:
providing an adhesive tape on a leadframe;
using said adhesive tape to connect said leadframe to a die; and
forming wire bonds from said die to said adhesive tape.
10. A method of coupling spaced apart bond pads to the same contact comprising:
wirebonding one of said bond pads to a trace formed on an adhesive tape;
wirebonding the trace to the contact; and
wirebonding the other of said bond pads to said contact.
15. A method of coupling spaced apart bond pads to the same contact comprising:
securing an interposer to a die using adhesive tape;
wirebonding a first bond pad to a trace formed on said adhesive tape;
wirebonding the trace to the contact; and
wirebonding a second bond pad to said contact.
1. A method of electrically coupling first and second bond pads to the same contact comprising:
securing a tape, with a conductive trace, on a support;
wirebonding said first bond pad to said trace;
wirebonding said trace to said contact; and
wirebonding said second bond pad to said contact.
7. A method of electrically coupling first and second bond pads on different dice to a leadfinger comprising:
packaging said first and second chips in the same package;
providing a leadframe for said chips;
positioning an adhesive tape on each of said chips, said adhesive tape having a conductive trace formed thereon;
wirebonding a first bond pad on said first chip to one end of said conductive trace and wirebonding the other end of said conductive trace to said leadframe; and
wirebonding a second bond pad on said second chip to said leadframe.
2. The method of claim 1 wherein securing a tape includes forming a plurality of conductive traces on adhesive tape.
3. The method of claim 1 wherein securing a tape includes securing said tape across two chips, said first bond pad being on one of said chips and said second bond pad being on the other of said chips.
4. The method of claim 1 further including coupling said pair of bond pads on different chips to a leadfinger.
5. The method of claim 1 including coupling a first and second bond pad on the same chip.
6. The method of claim 1 including using said tape to secure a leadframe to a die.
8. The method of claim 7 including using said tape to secure a leadframe to said chips.
9. The method of claim 8 including insulating said chips from said trace.
11. The method of claim 10 including securing said tape on a chip.
12. The method of claim 11 including arranging said tape so that said trace extends between said bond pads.
13. The method of claim 12 including gold coating said trace.
14. The method of claim 10 including using said tape to secure a leadframe to a die.
16. The method of claim 15 wherein wirebonding the second bond pad to said contact includes wirebonding the second bond pad to said interposer.
17. The method of claim 15 including securing said tape on a chip.
18. The method of claim 17 including arranging said tape to extend longitudinally on said chip.
19. The method of claim 18 including gold coating said trace.
20. The method of claim 15 including adhesively securing said tape to said interposer and adhesively securing said tape to a die.
21. The method of claim 20 including insulating said interposer from said trace.
23. The method of claim 22 including forming a conductive trace on said adhesive tape.
24. The method of claim 23 including insulating said conductive trace from said leadframe.
25. The method of claim 24 including wirebonding from a bond pad to said trace and from said trace to said leadfinger.
26. The method of claim 25 including securing said tape to a pair of dice.

This invention relates generally to packaging integrated circuit devices.

In some cases it is desirable to provide two integrated circuit devices inside a single package. Sometimes, it may not be feasible to integrate the components of both integrated circuits into a single integrated circuit. Thus, two integrated circuit devices may be combined within a single package to give combined capabilities at a plurality of output pins.

At times, signals from pads on the two different dice need to be coupled to the same output pin. One reason why this may occur is that the number of pins on the package may be limited. Thus, it may be undesirable to have two separate pins that provide or receive the same signal.

The location of bond pads between two dice may not allow direct wirebonding from both pads to a common leadfinger. This is especially likely to occur when two separate dice are used within the same package.

Thus, there is a need for a way to allow spaced apart bond pads to be coupled to the same contact.

In accordance with one aspect, a method of electrically coupling first and second bond pads on different chips to the same contact includes positioning a conductive trace on a support between the different chips. The first bond pad is coupled to the trace. The trace is coupled to the contact. The second bond pad is then coupled to the contact.

Other aspects are set forth in the accompanying detailed description and claims.

FIG. 1 is a greatly enlarged top plan view of one embodiment of the present invention;

FIG. 2 is cross-sectional view taken generally along the line 2--2 in FIG. 1;

FIG. 3 is a greatly enlarged top plan view of another embodiment of the present invention;

FIG. 4 is a greatly enlarged top plan view of still another embodiment of the present invention; and

FIG. 5 is a greatly enlarged longitudinal cross-sectional view of another embodiment of the present invention.

Referring to FIG. 1, an integrated circuit package 10 may contain a pair of chips 14 and 16. In one embodiment of the present invention, each chip may be a memory array. It may be desirable to couple some of the bond pads 18 and 20 on each chip to the same leadfinger 22a for connection to the same external pin 12a. This may be useful for pins that provide output or input signals for the pair of dice.

Each chip includes bond pads 18 or 20 which may be coupled by wire bond wires 30 to leadfingers 22 and pins 12. A bond pad 18 on the die 14 may be coupled to a leadfinger 22a on the die 20 using an adhesive tape 32. The adhesive tape 32, adhesively secured to both dice, bridges the gap A between the two dice. A plurality of parallel conductive traces 24 may be pre-formed on the tape 32. Thus, a plurality of avenues for interconnection between the two dice are made available by the parallel conductive traces 24.

Thus, for example, the bond pad 18a may be coupled by a wire bond wire 26 to one end of a trace 24. The other end of the trace 24 is coupled by a wire bond 28 to the leadfinger 22a. Similarly, the pad 20a is coupled by the wire 30 to the same leadfinger 22a. In this way, both pads 20a and 18a are coupled to the same pin 12a.

Referring to FIG. 2, the tape 32 may have a plurality of traces 24 deposited thereon on one side of the tape with adhesive on the other side of the tape. The tape may be adhesively secured to both die 14 and 16 with the traces 24 facing upwardly. A die coat may be used to electrically isolate the tape 32 from the chips 14 and 16. The conductive trace may be coated with gold, for example using an immersion technique, while the adhesive layer on the tape is protected. While a plurality of straight-lined conductive traces are illustrated, other shapes are possible as well, including diagonal or curved shapes.

The overall package 10 may be encapsulated in a material 34 as is conventional. The pins 12 extend out of the package 10 and are coupled to the dice 14 and 16 through the leadfingers 22 and the wires 28, 30 and 26. The leadfingers 22 may be coupled to the dice 14 and 20 using lead-on-chip (LOC) tape 36 as is conventional.

Thus, two dice can be contained in the same package and the pin count of the package may be reduced compared to the number of pins that would be needed to provide a separate pin for every single pad. This results in economies and compactness and makes it more feasible to combine multiple dice in a single integrated circuit package.

The tape 32 may be formed by bonding ductile copper foil to thin, flexible dielectric materials. Suitable dielectric materials including polyimide, polyester terephthalate, random fiber aramid, polyamide-imide Teflon®, and polyvinyl chloride. In addition, a non-woven mat of dacron polyester and glass fibers saturated in B-stage epoxy may be used. Copper foils may be directly clad to B-stage material. Suitable adhesives include epoxies, polyesters or acrylics. Epoxy systems include modified epoxies known as phenolic butyrals and nitrile phenolics. Acrylic adhesive systems may be used in high temperature applications. Polyesters can be used with polyester film. Metallic coated films may also be made using advanced vacuum deposition technology to bond copper to polyimide for example. Specially treated polyimide films may have an ultra thin coating of barrier metal applied to promote copper adhesion. The copper may then be electrodeposited onto the film.

In accordance with another embodiment of the present invention shown in FIG. 3, a die 40 may be contained in a package 42. A pin 12 may connect to a leadfinger 22 proximate to a bond pad 20. In this case, an adhesive tape 32a extends along the length of the die 40 from a leadfinger 22 on one end to a leadfinger 22b, on the other end, coupled to a pin 12b. A connection can be made from a bond pad 20c, widely spaced from the leadfinger 22b, using a conductive trace 24a formed on the tape 32a. For example, the bond pads 20 and 20c may be spaced too far apart to couple them by wirebonding.

Thus, a wire bond is made from the bond pad 20c to one end of the trace 24a. A wire bond is then made from the other end of the trace 24a to the leadfinger 22b. A wire bond may also be made from the bond pad 20b to the leadfinger 22b. In this way, two different bond pads, which are widely spaced apart, may be connected to the same leadfinger.

Referring next to FIG. 4, a package 44 includes a pair of bond pads 18b and 18c on a chip 14. The bond pads 18b and 18c may be coupled to the same leadfinger 22b on a chip 16 using a tape 32 with an L-shaped trace 24b. One end of the longer arm of the trace 24b may be wirebonded to the bond pad 18b. The other end of the longer arm of the trace may be wirebonded to the bond pad 18c. The short arm of the L-shaped trace 24b may be wirebonded directly to the leadfinger 22b. Similarly, the bond pad 20a on the chip 16 may be wirebonded to the trace 22b. In this case, three different wire bond bond pads on two different chips may be coupled to the same trace 22b. Thus, by custom designing the trace 24 on the tape 32, a variety of interconnection arrangements are possible.

Referring now to FIG. 5, still another embodiment of the present invention includes an adhesive tape 32b secured for example to a die 16. The embodiment shown in FIG. 5 is applicable to tape secured to one die as illustrated in FIGS. 3 and tape secured across two dice as illustrated in FIGS. 1, 2 and 4.

The tape 32b may be pre-attached to leadfingers 22. The tape 32b includes a tape core 42 covered by a conductive trace 24c which may extend along the entire length of the tape 32a. An insulator 44 may be disposed along two opposed longitudinally displaced edges. Thus, a window 43 is defined immediately between the longitudinal end portions which may be covered by the insulator 44. The insulator 44 may be covered by an adhesive material 46. The adhesive material 46 may be the same as the adhesive at the joint 48 formed by the tape 32b. Conventional adhesives used for lead-on-chip (LOC) tape may be utilized for this function.

Thus, the tape 32b may be pre-taped to the leadfingers 32. The tape 32b may then be applied using the adhesive 48 to the surface of one or more dice 16. Preferably, the tape runs longitudinally along the length of the die 16. This enables free access from either side in the latitudinal direction to bond pads along the die. For reference, in FIG. 1, the longitudinal direction would be up and down on the page.

With the embodiment shown in FIG. 5, the tape 32b may be pre-attached to an interposer such as a leadframe 22 without concern for shorting to the leadframe 22. Namely, the insulator 46 prevents shorting of the trace 24c to the leadframe fingers 22. Thus, in some instances, the tape 32b, shown in FIG. 5, may be more easily applied as a composite unit including a leadframe with the tape pre-attached. Moreover, the tape may not only provide the interconnection function described above, but may also function to secure the leadframe to one or more dice.

The tape 32b may be used in the same fashion as the tape 32. It may act as a bridge, for example, to allow wire bonds to extend from a bond pad to the conductive trace 24c and from the conductive trace 24c to a leadfinger.

While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.

Yang, Jicheng

Patent Priority Assignee Title
6580160, Aug 17 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Coupling spaced bond pads to a contact
6768187, Aug 17 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Coupling spaced bond pads to a contact
6909167, Aug 17 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Coupling spaced bond pads to a contact
7075173, Aug 17 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Interposer including adhesive tape
Patent Priority Assignee Title
4714952, Nov 01 1984 NEC Electronics Corporation Capacitor built-in integrated circuit packaged unit and process of fabrication thereof
5012323, Nov 20 1989 Micron Technology, Inc. Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe
5227583, Aug 20 1991 POLESE COMPANY, INC Ceramic package and method for making same
5422435, May 22 1992 National Semiconductor Corporation Stacked multi-chip modules and method of manufacturing
5569625, Jan 08 1992 Fujitsu Semiconductor Limited Process for manufacturing a plural stacked leadframe semiconductor device
5569956, Aug 31 1995 National Semiconductor Corporation Interposer connecting leadframe and integrated circuit
5613295, Dec 20 1990 Kabushiki Kaisha Toshiba Semiconductor device having an interconnecting circuit board and method for manufacturing same
5777265, Jan 21 1996 Intel Corporation Multilayer molded plastic package design
5815427, Apr 02 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Modular memory circuit and method for forming same
5869895, Dec 15 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Embedded memory assembly
5903443, Apr 07 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Interdigitated leads-over-chip lead frame, device, and method for supporting an integrated circuit die
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 03 1999YANG, JICHENGMicron Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0103920547 pdf
Nov 10 1999Micron Technology, Inc.(assignment on the face of the patent)
Apr 26 2016Micron Technology, IncMORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0389540001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTCORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0430790001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0386690001 pdf
Jun 29 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0472430001 pdf
Jul 03 2018MICRON SEMICONDUCTOR PRODUCTS, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 03 2018Micron Technology, IncJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMICRON SEMICONDUCTOR PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0509370001 pdf
Date Maintenance Fee Events
Feb 24 2006M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 11 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 26 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 24 20054 years fee payment window open
Mar 24 20066 months grace period start (w surcharge)
Sep 24 2006patent expiry (for year 4)
Sep 24 20082 years to revive unintentionally abandoned end. (for year 4)
Sep 24 20098 years fee payment window open
Mar 24 20106 months grace period start (w surcharge)
Sep 24 2010patent expiry (for year 8)
Sep 24 20122 years to revive unintentionally abandoned end. (for year 8)
Sep 24 201312 years fee payment window open
Mar 24 20146 months grace period start (w surcharge)
Sep 24 2014patent expiry (for year 12)
Sep 24 20162 years to revive unintentionally abandoned end. (for year 12)