A system and method is described in which protected memory writes are achieved in single transaction without leaving open a window in time for erroneous data to corrupt space in a target register. A single data packet preferably includes both user data to be written to a target storage device or location as well as the key data for authorizing the writing of such user data. key data is preferably calculated by manipulating user data contained in the same packet or transmission thereby simplifying a verification process conducted the controller associated with target storage location.
|
6. A system for conducting a protected memory write to a storage device in a single transaction within a computer system, the system comprising:
means for simultaneously delivering user data and key data to a controller of said storage device; and means for determining whether said key data authorizes writing said user data to said storage device; and an algorithm at a delivering device for calculating said key data, wherein said algorithm calculates said key data from said user data and based on a clock setting of said computer system.
1. A method for protecting memory space in a target storage device during a write operation in a computer system, the method comprising the steps of:
composing a single data packet including user data and key data, wherein the composing step includes: gathering user data for transmission to said data storage device, calculating key data based on said gathered user data, wherein the calculating step includes performing a boolean operation on selected bits of said user data to generate said key data, and combining said gathered user data and said calculated key data to form said composed single data packet; transmitting said single data packet to a data storage device; determining whether said key data is valid; and writing said user data into said data storage device only when said key data is valid.
10. A computer program product having a computer readable medium having computer program logic recorded thereon for protecting memory space in a target storage device during a write operation in a computer system, the computer program product comprising:
code for composing a single data packet including user data and key data, wherein the code for composing includes: code for gathering user data for transmission to said data storage device; code for calculating key data based on said gathered user data, wherein the code for calculating includes code for performing a boolean operation on selected bits of said user data to generate said key data; and code for combining said gathered user data and said calculated key data to form said composed single data packet; code for transmitting said single data packet to a data storage device; and code for determining whether said key data is valid.
2. The method of
generating verification key data from said user data at a controller of said data storage device; and establishing said calculated key data as valid only if said generated verification key data matches said key data included in said single data packet.
3. The method of
repeating said step of calculating key data at said controller of said data storage device.
4. The method of
generating key data based on a destination address of said write operation.
5. The method of
generating key data based on a system clock setting of said computer system.
7. The system of
means for writing said user data to said storage device only when said key data authorizes writing said user data.
8. The system of
means for generating verification data at said storage device controller; and means for comparing said verification data to said key data.
9. The system of
means for authorizing writing of said user data only where said verification data matches said key data.
11. The computer program product of
code for writing said user data into said data storage device only when said key data is valid.
12. The computer program product of
code for generating verification key data from said user data at a controller of said data storage device; and code for establishing said calculated key data as valid only if said generated verification key data matches said key data included in said single data packet.
13. The computer program product of
code for repeating said step of calculating key data at said controller of said data storage device.
|
The invention relates in general to data storage access and in particular to data storage access authorization.
In multi-processor, multi-entity data processing environments, a number of different devices may transmit data to a number of different possible destinations. In this environment, it is possible for a malfunctioning processor or other device to send erroneous data to a number of possible destinations including sensitive data storage areas, such as random access memory and registers. In order to avoid corruption of data in such data storage devices, a mechanism for controlling access to data devices has been implemented in the prior art.
A common prior art approach to restricting unauthorized access to a storage device involves employing one register for verification of a key value associated with proper authorization to transfer data and a separate register or other storage device for storage of the actual transmitted data, if a transfer is authorized. The key value is generally a stored value which should be matched by an incoming write request in order for the target register or target data storage device to be made accessible or unlocked.
If a response granting write authorization is received, data is generally written to the target register in step 104. Afterward, the program awaits a response indicating that the write of data to the target register has been successfully completed. When a response arrives indicating successful execution of the write to the target register, the program generally writes data to the key register to again lock the target register in step 105. In step 107, the program then awaits an indication that the key register has been re-locked. It will be appreciated that during a "window of vulnerability" in between steps 102 and 106, assuming both steps are successful at their respective tasks, the target register may be written to not only by an intended source but is also vulnerable to being written to by any device in the surrounding computing system, thereby presenting the possibility of data corruption in the target register during the identified window of opportunity. Generally, upon receiving an indication that the key register has been successfully re-locked, the program concludes at step 108. The above approach presents certain shortcomings which are outlined below.
It is a problem in the art that three separate transactions are generally conducted in order to temporarily grant access to a usually locked target register.
It is a further problem in the art that there is a period of time (window) between unlocking and re-locking the target register by the key register and during this window, erroneous information could potentially be written to the target register.
These and other objects, features and technical advantages are achieved by a system and method which incorporates user data to be written to a storage device and key data for establishing authority to write to the storage device into a single data transmission to a single target storage device. This approach preferably enables a protected write operation to be conducted in a single transaction without leaving open a window of opportunity for an erroneous data transmission to corrupt data storage in the target storage device.
In a preferred embodiment, a communication path to the target data storage device, which may be a register, memory location or other storage mechanism, is 64 bits wide, although communication paths of any width could be employed. The communication path preferably includes both user data and key data. Herein, "user data" generally refers to data which the inventive mechanism seeks to store in a target storage device, "key data" generally refers to data employed to establish authorization to store the data in the pertinent storage device, and "packet" or "data packet" generally refers to a combination of the user data and key data. The number of bits dedicated to each of user data and key data is variable. For example, where the communication path to the target register is 64 bits wide, 32 bits could be dedicated to user data and 32 bits to key data. Alternative distributions of bits between user data and key data may be employed and all such variations are included within the scope of the present invention.
In a preferred embodiment, a single storage device and associated controller perform the functions of receiving and storing the user data (if authorized) and establishes authorization for the storage to occur by determining whether the key data portion of the received data packet properly authorizes storage of the user data portion of the received packet. In this manner, the granting of access to the target device, the writing of user data to the target device, and the restoration of security against unauthorized writing to the target device may preferably be accomplished in single transaction. Moreover, since the user data and key data preferably arrive at the target device simultaneously, there is preferably no window of opportunity within which unauthorized data may be written to the target device.
In a preferred embodiment, an algorithm for determining the key data involves performing a boolean operation on a selection of the user data bits. Preferably, the algorithm and the user data bits upon which the algorithm is performed, is established both at the microprocessor and at one or more data storage devices which will receive the data packets containing both user data and key data. Within the various data storage devices, the algorithm for calculating key data from the user data may be fixed, or dynamically alterable in software or hardware. Where a plurality target storage devices are employed in conjunction with one or more processors, the various target storage devices may each have unique key data calculation algorithms, or alternatively, two or more target storage devices may share a common key data calculation algorithm, and all such variations are included within the scope of the present invention.
Therefore, it is an advantage of a preferred embodiment of the present invention that device access control operations and the writing of user data may be accomplished in a single write transaction.
It is a further advantage of a preferred embodiment of the present invention that the simultaneous arrival at the target device of user data and key data removes any window of opportunity within which erroneous data may overwrite data in the target storage device.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:
Returning to
In a preferred embodiment, all of data packet 400 (FIG. 4), and therefore user data 403 and key data 402, is transmitted simultaneously. Such simultaneous transmission preferably operates to remove any time period during which the target storage device is vulnerable to an erroneous data transmission. In an alternative embodiment, data packet 400 could be transmitted serially, in which case, although the key data and user data would arrive in close succession, their arrival at a controller for the target storage device would not be simultaneous.
In a preferred embodiment, an algorithm for determining the key is implemented at the CPU 300 and memory controller 302. The same algorithm should preferably be employed at CPU 301 as at memory controller 302 so that a properly established key is recognized as such by memory controller 302. A preferred algorithm for calculating the key data 402 is to perform a boolean operation on a selected number of user bits 403.
In an exemplary case, P 403 includes more than 6 bits, and M 402 includes three bits, the algorithm could consist of performing a logical AND operation of user data bits 1, 2, and 3 with user data bits 4, 5, and 6, respectively. With this approach, correct key data associated with a user data 403 may be determined having knowledge of the algorithm and the user data itself, thereby removing a need a separate transmission of key data to memory controller 302. Once the user data is identified at CPU 301, the key data is preferably calculated and added to the user data to form data packet 400. Upon reception at memory controller 302, the memory controller 302 preferably repeats the calculation of key data 402 based on the user data 403 and compares the key data calculated at the memory controller 302 with the key data 402 included in memory packet 400. The system response to correct and incorrect key data was described above in connection with FIG. 2 and will therefore not be repeated here. It will be appreciated that a controller for any type of data storage device could be substituted for memory controller 302 in the above discussion.
It will be appreciated that the above approach is but one way to determine an algorithm for calculating key data and that numerous others may be practiced without departing from the scope of the present invention. Other data from which key data may be calculated includes but is not limited to: system clock settings, and memory address locations to which user data is directed. Alternatively, a key may be employed which is constant and not dependent upon a data source or an algorithm.
In a preferred embodiment, algorithms employed at different storage devices in a complex computing system may either all use the same algorithm or alternatively, each storage device could employ an algorithm specific to that device. Where a plurality of different algorithms are employed, transmitting CPUs would preferably retain access to a log of the algorithms employed at the various different target storage devices. Algorithms employed at the various storage devices may be either fixed or re-programmable. In a simpler alternative approach, a key may be employed which is constant and independent of the user data.
Bus 502 is also coupled to input/output (I/O) adapter 505, communications adapter card 511, user interface adapter 508, and display adapter 509. I/O adapter 505 connects to storage devices 506, such as one or more of hard drive, CD drive, floppy disk drive, tape drive, to the computer system. Communications adapter 511 is adapted to couple the computer system 500 to a network 512, which may be one or more of local (LAN), wide-area (WAN), Ethernet or Internet network. User interface adapter 508 couples user input devices, such as keyboard 513 and pointing device 507, to the computer system 500. Display adapter 509 is driven by CPU 501 to control the display on display device 510.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Dickey, Kent A., Farmer, James C.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4396914, | Jul 01 1980 | YALE SECURITY INC , A CORP OF DE | Electronic security device |
4597061, | Jan 03 1983 | Texas Instruments Incorporated | Memory system using pipeline circuitry for improved speed |
4604727, | Aug 31 1983 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED 13500 NORTH CENTRAL EXPRESSWAY DALLAS, TX 75265 A CORP OF DE | Memory with configuration RAM |
4665506, | Jan 03 1983 | Texas Instruments Incorporated | Memory system with write protection |
4918728, | Aug 30 1989 | International Business Machines Corporation | Data cryptography operations using control vectors |
5692178, | Aug 20 1992 | Borland Software Corporation | System and methods for improved file management in a multi-user environment |
6081785, | Oct 09 1995 | Panasonic Corporation | Optical disk, optical recorder, optical reproducer, crytocommunication system and program license system |
6301569, | Oct 09 1995 | Matsushita Electric Industrial Co., Ltd. | Optical disk, optical recorder, optical reproducer, cryptocommunication system and program license system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 29 2000 | Hewlett-Packard Company | (assignment on the face of the patent) | / | |||
Jun 16 2000 | FARMER, JAMES CURTIS | Hewlett-Packard Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011150 | /0278 | |
Jun 16 2000 | DICKEY, KENT | Hewlett-Packard Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011150 | /0278 | |
Jan 31 2003 | Hewlett-Packard Company | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026945 | /0699 |
Date | Maintenance Fee Events |
May 01 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 29 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 06 2014 | REM: Maintenance Fee Reminder Mailed. |
Oct 29 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 29 2005 | 4 years fee payment window open |
Apr 29 2006 | 6 months grace period start (w surcharge) |
Oct 29 2006 | patent expiry (for year 4) |
Oct 29 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 29 2009 | 8 years fee payment window open |
Apr 29 2010 | 6 months grace period start (w surcharge) |
Oct 29 2010 | patent expiry (for year 8) |
Oct 29 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 29 2013 | 12 years fee payment window open |
Apr 29 2014 | 6 months grace period start (w surcharge) |
Oct 29 2014 | patent expiry (for year 12) |
Oct 29 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |