A method and apparatus for treatment of the skin or other biologic tissue includes the ability to subject said skin or other tissue to temperature modulation and radiation, simultaneously. The apparatus that delivers warm or cold material to the treatment site to effect this modulation of temperature may be attached to the apparatus that delivers radiation or it may be a separate entity, that could be utilized with a variety of radiation generating equipment.

Patent
   6475211
Priority
Jun 17 1997
Filed
Jun 17 1998
Issued
Nov 05 2002
Expiry
Jun 17 2018
Assg.orig
Entity
Small
308
20
EXPIRED
20. A method of treating a treatment site of biologic tissue that has a normal temperature, said method comprising:
delivering radiation to said treatment site;
simultaneously delivering a temperature modifying medium to said treatment site; and
controlling the temperature of said medium in a range that extends above or below said normal temperature as said medium is being delivered to said treatment site.
1. An apparatus for delivery of a temperature modifying medium to a treatment site of biologic tissue, coincident with the delivery of radiation to said treatment site, said apparatus comprising:
means for delivering a flow of said medium toward said treatment site; and
means for controlling the temperature of said medium, said controlling means having the capability of controlling said temperature in a range that extends above or below the normal temperature of said treatment site.
23. An apparatus for delivery of a temperature modifying medium to a treatment site of biologic tissue, coincident with the delivery of radiation to said treatment site, said apparatus comprising:
means for delivering a flow of said medium toward said treatment site; and
means for controlling the temperature and flow rate of said medium, said controlling means having the capability of controlling said temperature in a range that extends above or below the normal temperature of said treatment site and of maintaining said flow rate either steady or variable.
10. An apparatus for delivering radiation and a temperature modifying medium simultaneously to a treatment site of biologic tissue, said apparatus comprising:
first and second delivery means for simultaneously delivering said radiation and said temperature modifying medium, respectively, to said treatment site;
means for controlling the temperature of said medium, said controlling means having the capability of controlling said temperature in a range that extends above and below the normal temperature of said treatment site; and
means for connecting said first and second delivery means together to permit manual manipulation of the direction of said radiation and said medium flow in concert to said treatment site.
2. The apparatus according to claim 1, wherein said delivery means includes a source of said medium and a delivery device for conveying said medium from said source to said treatment site.
3. The apparatus according to claim 2, wherein said delivery device includes tubing to convey said medium; and
wherein said tubing is attached to a semi-rigid stand to maintain the direction of flow of said medium toward said treatment site.
4. The apparatus according to claim 1, wherein said medium is selected from the group consisting of liquid and gas.
5. The apparatus according to claim 1, wherein said medium is air.
6. The apparatus according to claim 1, further comprising:
means for controlling the flow rate of said medium to said treatment site, wherein said means for controlling said flow rate has the capability of maintaining said flow rate to be either steady or variable.
7. The apparatus according to claim 1, wherein said controlling means modulates said temperature of the medium during treatment of said treatment site.
8. An apparatus according to claim 1, wherein said temperature of said medium is controlled to provide a temperature at said treatment site that is in a range from slightly below freezing as well as above freezing to about a high fever temperature.
9. The apparatus according to claim 1, wherein said treatment site is topical.
11. The apparatus according to claim 10, wherein said connecting means includes at least one clamp for clamping together said first and second delivery means.
12. The apparatus according to claim 10, wherein said connecting means includes a housing; and
wherein said first and second delivery means are secured to said housing to permit manual manipulation of said housing to control the direction of said radiation and said medium flow in concert to said treatment site.
13. The apparatus according to claim 12, wherein said first and second delivery means are disposed within said housing.
14. The apparatus according to claim 13, wherein said first and second delivery means are secured to said housing by at least one spacer.
15. The apparatus according to claim 12, wherein said first delivery means is disposed within a cavity in said housing to deliver said radiation through an open end of said cavity to said treatment site; and
wherein said second delivery means is disposed to deliver said medium into said cavity so that said medium flows adjacent said first delivery means and through said opening toward said treatment site.
16. The apparatus according to claim 15, wherein said first delivery means is tubing centrally disposed within said cavity and said medium flows in a space between said tubing and a wall of the cavity.
17. The apparatus according to claim 12, wherein said first delivery means comprises a fiber optic cable.
18. The apparatus according to claim 12, wherein said first delivery means is an articulated arm.
19. The apparatus according to claim 10, wherein said medium is transparent to the wavelength of a substantial amount of said radiation.
21. The method according to claim 20, wherein said temperature of said medium is modulated by said controlling step as said medium is being delivered to said treatment site and wherein the temperature of said medium is controlled to warm and/or cool the biologic tissue of said treatment site.
22. The method of claim 21, further comprising:
controlling the flow rate of said medium as it is being delivered to said treatment site to be either steady or variable.
24. The apparatus of claim 23, wherein said means for controlling includes an adjustable valve that adjusts said flow rate.

This application claims the benefit of Provisional application Ser. No 60/049,858, filed Jun. 17, 1997.

The present invention relates generally to a method and apparatus that allows an area of biologic tissue such as the skin to be affected by alteration of its normal temperature,,and by a variety of different kinds of radiation. The method and apparatus allow these effects of temperature change and irradiation to occur simultaneously.

Radiation from various portions of the spectrum is currently utilized in the treatment of a variety of skin conditions. Lasers, intense pulsed light. sources and other radiation emitting devices have been used to treat conditions including birthmarks, tattoos, benign vascular lesions, pigmented lesions, scars, warts, stria distensae, wrinkles and other benign or malignant skin lesions. Lasers and other light sources are also currently used for the removal of unwanted hair on various parts of the body.

For some of these conditions, cooling of the skin is used adjuctively to the delivery of light. Cooling is accomplished in a variety of ways. Cooling is used to reduce side effects and discomfort associated with the delivery of light in the above mentioned clinical situations. Some cooling of the skin is accomplished by the use of cold packs, or ice before and/or after light is delivered to the treatment site. Simultaneous cooling and lasing is currently accomplished by several methods.

One method of simultaneous cooling and lasing (Cool Laser Optics, Coherent Versapulse, Palomar Epitouch, Light Shear, Chill-Tip) utilizes an apparatus that subjects the treatment site to cooling delivered by a lens that is substantially transparent to the wavelength of light to be delivered to the skin. The lens must be in contact with the treatment site. This same lens is made cold by having a recirculating coolant contact an aspect of the lens other than the lens surface contacting the treatment site. A similar apparatus is used where the coolant does not recirculate, but rather is kept cool by ice that is held within the apparatus. Another apparatus sprays coolant at the lens. An index matching gel is sometimes used between the cooling lens and the surface being treated.

A problem with contact lens apparatus is an inability to make good skin contact on concave aspects of the skin surface. Although some contact cooling units have a flexible contact surface, certain areas of the skin, such as naso-ocular angle still cannot be contacted adequately. Another problem is that the lens is substantially transparent to the light being delivered. The lenses are commonly made of quartz glass or sapphire to maximize thermal conductance.

The pulsed spray cooling of the Dynamic Cooling Device (DCD) needs no contact with the treatment surface, but has other problems. DCD uses volatile liquid to spray at the skin. These substances may, or may not, have some hazard potential for the environment or for individuals inhaling these vapors. Whether these concerns are valid will require long term evaluation, and due to these concerns DCD will not be considered suitable or appropriate for some practitioners and patients.

In some instances, pre-cooled transparent gels are applied for similar purposes as stated above but without any method for maintaining a cool temperature of the gel after application to the skin.

Another kind of cooling utilizes a sprayed cryogenic liquid (dynamic cooling). The cryogenic liquid is sprayed at the treatment site just before the laser light is delivered to the skin. Evaporation of the sprayed cryogenic liquid cools the skin's surface.

Cryogenic liquids used with DCD may cause technical problems due to frosting or icing in the delivery system. Furthermore, very exact timing is necessary with DCD to achieve the desired cooling without interfering with the transmittance of light through vaporizing sprayed cryogenic liquid or frosting of the skin. This exact timing as well as the exact quantity of. cryogenic liquid sprayed is microprocessor controlled, and any alteration due to suboptimal functioning could reduce or eliminate the benefit of treatment or cause unanticipated injury.

These various methods of cooling are utilized in an expanding list of laser amenable conditions. Specifically, contact cooling units with a cooling lens component were originally designed for use with laser treatment for lower extremity telangiectasia. These cooling units are now also used with laser treatment for other benign vascular lesions, such as port wine birthmarks, and also for laser removal of hair. Similarly, the spray cooling units are utilized for treating vascular lesions and for hair. removal. Additionally, contact and spray cooling are used for laser treatment of facial wrinkles.

All of the above apparatus and techniques are used to cool tissues. None allow the treatment site to be warmed.

There are lasers (Erbium YAG) that cause debris to be scattered during treatment. Some of these lasers have air flow directed through and out of the end of the laser hand piece. The purpose of this air flow is to prevent debris from entering the laser hand piece and clouding the laser optics inside the hand piece. The temperature of this air flow is not controlled nor is its purpose to modulate the temperature of the treatment site.

Against the forgoing background it is a primary object of the present invention to enhance the ability to alter the temperature of the skin during laser or other irradiation of the skin. Existing technology only has the ability to reduce the skin's temperature.

It is another object of the present invention to allow heating of the skin during laser irradiation or alternatively to allow cooling.

It is still another object of the present invention to provide heating and/or cooling of the skin without making contact with the skin.

It is yet another object of the present invention to vary the temperature of the skin up or down depending on what kind of radiation is being utilized, and what condition is being treated.

Simply from the standpoint of simultaneous cooling and lasing the present invention has the additional object of avoiding problems that exist with the current cooling modalities that were mentioned above.

A further object of the present invention is to deliver warm or cool air to the skin surface without any potential for environmental or personal hazard.

It is an additional object of the present invention to avoid the use of complex technology in the delivery of a cooling medium to the treatment site so as to minimize cost to the user and maximize reliability, efficiency, and safety.

Other and further objects, advantages and features of the present invention will be understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference characters denote like elements of structure and:

FIG. 1 is an elevational view in part and a cross sectional view in part of the temperature modulating device according to the present invention;

FIG. 2 is an elevational view in part and a cross sectional view in part of a combined temperature modulating device and radiation tool according to the present invention;

FIG. 3 is an elevational view in part and a cross sectional view in part of another embodiment of a combined temperature modulating device and radiation tool according to the present invention;

FIG. 4 is a top view of FIG. 3;

FIG. 5,is an elevational view in part and a cross sectional view in part of still another embodiment of a combined temperature modulating device and radiation tool according to the present invention;

FIG. 6 is a top view of FIG. 5;

FIG. 7 is a cross sectional view of a vortex tube for the embodiments of FIGS. 1 through 6;

FIG. 8 is an elevational view of a semi-rigid stand useful with apparatus of FIG. 1; and

FIG. 9 is an elevational view of an articulated arm useful for delivery of radiation in the embodiments of FIGS. 1 through 6.

The present invention provides apparatus and a method for treatment of biologic tissue that alters the temperature of the tissue either by cooling or by heating or by both while the tissue is being irradiated.

The benefits attributed to cooling laser treatment sites relate to decreased pain and side effects caused by the heat produced by certain high power laser systems or non laser light sources.

The benefits resulting from heating the treatment site include increased blood flow and the ability to reduce the amount of laser power needed. By reducing laser power less side effects result.

With reference to the drawings and, in particular, to FIG. 1, there is provided an apparatus generally represented by reference numeral 10 that delivers a temperature controlled medium 11 to a treatment site 12 of biologic tissue 13. Apparatus 10 includes a source 14 that delivers medium 11 via a delivery device 15 to treatment site 12. The temperature of medium 11 is controlled to be above or below the normal temperature of the biological tissue during irradiation of treatment site 12 by radiation 16.

Radiation 16 is provided from a radiation tool generally designated by reference numeral 17. Radiation tool 17 includes a radiation source 18 that delivers radiation 16 via a delivery device 19.

Although the present invention contemplates the use of any type of radiation that is useable to treat biologic tissue, the invention will be described herein where source 18 is a laser. For laser embodiments, delivery device 19 may comprise tubing such as fiber optic cable or other suitable conveyor of laser radiation.

The present invention also contemplates that medium 11 may be any suitable medium in liquid or gas state that can be controlled to warm and/or cool the temperature of the biologic tissue 13 above or below its normal temperature. Also, medium 11 is transparent to radiation 16. In the preferred embodiment, medium 11 is air and source 14 is shown as a source of compressed air.

The temperature and/or flow rate of air 11 are controlled by means situated either at compressed air source 14 or at any suitable location along its flow toward treatment site 12. In a preferred embodiment, the flow rate is controlled at air source 14 and the temperature is controlled by means of a vortex tube 20.

Delivery device 15 is connected at its proximal end to air source 14 by means of a suitable coupler such as a quick connect/disconnect device (not shown). Delivery-device 15 has a delivery tube 21 that is covered by an insulating material 22-made of similar material, running its entire length up to, but not including, vortex tube 20.

Vortex tube 20 controls the temperature of air 11 during its delivery. With reference to FIG. 7, vortex tube 20 typically has an inlet 23, a hot air vent 24 and an outlet 25 through which air 11 exits at a desired temperature. Inlet 23 is coupled to the distal end of delivery device 15 by plastic or polyurethane clamps or screw mounts (not shown). A manually adjustable valve 26 is situated at the hot air end of vortex tube 20 for control of the temperature of air 11 that exits outlet 25. Vortex tubes are available from The Air Research Technology Company of Fairfield, Ohio.

For the case of human skin tissue, the temperature of air 11 is in a range that controls the temperature of the biological tissue at treatment site 12 in a tissue temperature range that extends above and below the normal temperature of the tissue. For many clinical situations, the tissue temperature range will be from slightly above the freezing temperature of water and to about a high fever temperature, for example, about 32.5°C F. to about 105°C F. It is also contemplated that the temperature and/or flow of air may be controlled by valve 26 to be steady or variable during a treatment to accommodate clinical situations having different cooling and/or warming requirements. Depending on these modulating parameters and the heat transfer characteristics of air 11 as it moves from the point of control to treatment site 12, the actual temperature of the air 11 may vary from the above mentioned tissue temperature range.

A hand grip 27 preferably envelopes vortex tube 20. The enveloping is preferably from just above the distal end of hand grip 27 up to and including its proximal end and its connection to delivery device 15. Hand grip 27 permits manipulation of the direction of delivery device 15 as air 11 is delivered to the biologic tissue 13. Hand grip 27 is made of plastic, ASS, or anodized aluminum. In this embodiment, the vortex tube 20 is preferably directed at an angle that permits radiation 16 to pass through air 11 to treatment site 12. In this embodiment, the distal end of the vortex tube 20 is directed at an angle that permits the radiation 16 to pass through air 11 as it is delivered to the treatment site 12.

Delivery device 15 may be formed in a variety of lengths and diameters. In a preferred embodiment, delivery device 15 is about 12 feet long with an inside diameter of about ½ inch and an outside diameter of about ⅝ inch. It may be made from flexible polyurethane, or some other similar material. Vortex tube 17 is preferably flexible, but may be inflexible in some embodiments.

In other embodiments, vortex tube 17 may be omitted and the temperature of air 11 will be controlled by the source 14 or by a cooling or heating device (not shown) that is disposed between the source and treatment site 12.

Referring to FIG. 8, there is provided a semi-rigid stand 45 for holding delivery device 15 in a semi-rigid position. Stand 45 includes a rigid base 46 that is attached to a floor, wall, ceiling or portable structure that has some degree of rigidity. A semi-rigid gooseneck tubing 47 is attached to and extends from base 46. Delivery device 15 is attached to gooseneck tubing 47 by one or more clasps 48. The gooseneck tubing can be flexed with some exertion of force to move from one position to another. It is semi-rigid in the sense that it holds a position until such force is exerted. In operation, the gooseneck is positioned for delivery of air 11 to treatment site 12. This position is then held due to the semi-rigid nature of semi-rigid stand 45.

In another embodiment shown in FIG. 2, the distal end of air delivery device 15 is coupled to radiation delivery device 19 by clamps 28. The coupling is in a manner that permits manual manipulation of the direction of both the delivery device 15 of temperature modulation apparatus 10 and delivery device 19 of radiation tool 17 in concert with each other as they simultaneously deliver air 11 and radiation 16 to treatment site 12. Clamps 28 may be made of plastic, polyurethane or metal. In this embodiment, the distal end of the delivery device 15 is generally angled in such a manner as to permit radiation 16 to pass directly through air 11 being directed at treatment site 12.

In another embodiment shown in FIGS. 3 and 4, a hand-held housing or hand piece 32 encases delivery devices 15 and 19 of apparatus 10 and radiation tool 17 in a generally parallel manner. This permits the simultaneous manual manipulation of both radiation delivery device 19 and air delivery device 15. In this embodiment, the distal end of air delivery device 15 is angled as indicated at 33 in a manner which permits radiation 16 to pass directly through the air 11 being delivered to biologic tissue 13. The housing 32 may be made of plastic or metal, or other similar material. A lens arrangement (not shown) may optionally be provided for the delivery of radiation 16 to treatment site 12. One or more spacers 29 are provided to hold delivery devices 15 and 19 in place within housing 32.

In another embodiment, shown in FIGS. 5 and 6, a hand-held housing or hand piece 35 encases the delivery device 19. Hand piece 35 includes a cylindrical or annular cavity 36 that surrounds delivery device 19. Spacers (not shown) may be provided to hold delivery device 19 in place within hand piece 35. The cooling or warming air 11 is introduced into cavity 36 from delivery device 15 via an in-line coupling 37 at the side of hand piece 35 or other suitable point. The in-line coupling 37 may be made of nylon or metal or other similar material. As air 11 is introduced into cavity 36, it completely surrounds the delivery device 19 and then exits at the distal end of hand piece 35 onto treatment site 12. The radiation 16 is simultaneously delivered by delivery device 19 through air 11 to treatment site 12.

The delivery device 19 that conveys radiation 16 from radiation source 18 in the embodiments of FIGS. 1 through 6 may comprise tubing such as fiber optic cable or other suitable conveyor of laser radiation. Such cable or other conveyor may suitably be implemented in an articulated arm 50 shown in FIG. 9. Articulated arm 50 includes a base 51 that receives radiation from radiation source 18. The radiation is directed through a series of arm elements 52, 53, 54 and 55 to a laser hand piece 57. A set of knuckles 56 is provide to enclose mirrors or prisms that redirect the laser radiation from one arm element to the next in the series and joint that allow motion along one or more axes.

The method of the present invention involves delivering radiation to treatment site 12 of biologic tissue 13 and simultaneously delivering a temperature modifying medium to the treatment site. The temperature of the medium is controlled above and below the normal temperature of the tissue. The temperature of the medium can also be modulated during its delivery to the treatment site. Additionally, the flow rate of the medium can be controlled or adjusted.

The present invention having been thus described with particular reference to the preferred forms thereof, it will be obvious that various changes and modifications may be made therein without departing from the spirit and scope of the present invention as defined in the appended claims.

Chess, Cyrus, Barretti, Michael L.

Patent Priority Assignee Title
10092346, Jul 20 2010 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
10166072, Apr 19 2007 MIRADRY, INC Systems and methods for creating an effect using microwave energy to specified tissue
10201380, Jan 31 2014 ZELTIQ AESTHETICS, INC Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
10245107, Mar 15 2013 Cynosure, LLC Picosecond optical radiation systems and methods of use
10285757, Mar 15 2013 Cynosure, LLC Picosecond optical radiation systems and methods of use
10292859, Sep 26 2006 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
10305244, Apr 18 2012 Cynosure, LLC Picosecond laser apparatus and methods for treating target tissues with same
10321954, Aug 01 2011 MIRADRY, INC Applicator and tissue interface module for dermatological device
10383787, May 18 2007 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
10413359, Jul 18 2013 International Business Machines Corporation Laser-assisted transdermal delivery of nanoparticulates and hydrogels
10434324, Apr 22 2005 Cynosure, LLC Methods and systems for laser treatment using non-uniform output beam
10441308, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
10463429, Apr 19 2007 MIRADRY, INC Methods, devices, and systems for non-invasive delivery of microwave therapy
10463887, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10500413, Jun 19 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for treatment of cutaneous and subcutaneous conditions
10517627, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
10524956, Jan 07 2016 ZELTIQ AESTHETICS, INC Temperature-dependent adhesion between applicator and skin during cooling of tissue
10531910, Jul 27 2007 Cilag GmbH International Surgical instruments
10537352, Oct 08 2004 Cilag GmbH International Tissue pads for use with surgical instruments
10555831, May 10 2016 ZELTIQ AESTHETICS, INC Hydrogel substances and methods of cryotherapy
10556123, Jun 19 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for treatment of cutaneous and subcutaneous conditions
10568759, Aug 19 2014 ZELTIQ AESTHETICS, INC Treatment systems, small volume applicators, and methods for treating submental tissue
10575890, Jan 31 2014 ZELTIQ AESTHETICS, INC Treatment systems and methods for affecting glands and other targeted structures
10575892, Dec 31 2015 Cilag GmbH International Adapter for electrical surgical instruments
10581217, Apr 18 2012 Cynosure, LLC Picosecond laser apparatus and methods for treating target tissues with same
10595929, Mar 24 2015 Cilag GmbH International Surgical instruments with firing system overload protection mechanisms
10603064, Nov 28 2016 Cilag GmbH International Ultrasonic transducer
10603117, Jun 28 2017 Cilag GmbH International Articulation state detection mechanisms
10610286, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
10624696, Apr 19 2007 MIRADRY, INC Systems and methods for creating an effect using microwave energy to specified tissue
10639092, Dec 08 2014 Cilag GmbH International Electrode configurations for surgical instruments
10646269, Apr 29 2016 Cilag GmbH International Non-linear jaw gap for electrosurgical instruments
10675176, Mar 19 2014 ZELTIQ AESTHETICS, INC Treatment systems, devices, and methods for cooling targeted tissue
10675178, Aug 21 2007 ZELTIQ AESTHETICS, INC Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
10682297, May 10 2016 ZELTIQ AESTHETICS, INC Liposomes, emulsions, and methods for cryotherapy
10688321, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
10709469, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with energy conservation techniques
10709906, May 20 2009 Cilag GmbH International Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
10716615, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
10722261, Mar 22 2007 Cilag GmbH International Surgical instruments
10722395, Jan 25 2011 ZELTIQ AESTHETICS, INC Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
10729494, Feb 10 2012 Cilag GmbH International Robotically controlled surgical instrument
10736685, Sep 30 2015 Cilag GmbH International Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
10751108, Sep 30 2015 Cilag GmbH International Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
10751109, Dec 22 2014 Cilag GmbH International High power battery powered RF amplifier topology
10751117, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
10765470, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
10765478, Mar 15 2013 CYNOSURCE, LLC Picosecond optical radiation systems and methods of use
10765552, Feb 18 2016 ZELTIQ AESTHETICS, INC Cooling cup applicators with contoured heads and liner assemblies
10779845, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned transducers
10779847, Aug 25 2016 Cilag GmbH International Ultrasonic transducer to waveguide joining
10779848, Jan 20 2006 Cilag GmbH International Ultrasound medical instrument having a medical ultrasonic blade
10779849, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
10779876, Oct 24 2011 Cilag GmbH International Battery powered surgical instrument
10779879, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10779885, Jul 24 2013 MIRADRY, INC Apparatus and methods for the treatment of tissue using microwave energy
10779887, Apr 19 2007 MIRADRY, INC. Systems and methods for creating an effect using microwave energy to specified tissue
10799284, Mar 15 2017 Cilag GmbH International Electrosurgical instrument with textured jaws
10806500, Jan 31 2014 Zeltiq Aesthetics, Inc. Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments
10820920, Jul 05 2017 Cilag GmbH International Reusable ultrasonic medical devices and methods of their use
10828057, Mar 22 2007 Cilag GmbH International Ultrasonic surgical instruments
10828058, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
10828059, Oct 05 2007 Cilag GmbH International Ergonomic surgical instruments
10835307, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
10835768, Feb 11 2010 Cilag GmbH International Dual purpose surgical instrument for cutting and coagulating tissue
10842523, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument and methods therefor
10842580, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
10849687, Aug 02 2006 Cynosure, LLC Picosecond laser apparatus and methods for its operation and use
10856896, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
10856929, Jan 07 2014 Cilag GmbH International Harvesting energy from a surgical generator
10856934, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
10874418, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
10888347, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
10893883, Jul 13 2016 Cilag GmbH International Ultrasonic assembly for use with ultrasonic surgical instruments
10898256, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue impedance
10912580, Dec 16 2013 Cilag GmbH International Medical device
10912599, Jan 31 2014 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
10912603, Nov 08 2013 Cilag GmbH International Electrosurgical devices
10925659, Sep 13 2013 Cilag GmbH International Electrosurgical (RF) medical instruments for cutting and coagulating tissue
10932847, Mar 18 2014 Cilag GmbH International Detecting short circuits in electrosurgical medical devices
10935174, Aug 19 2014 ZELTIQ AESTHETICS, INC Stress relief couplings for cryotherapy apparatuses
10952759, Aug 25 2016 Cilag GmbH International Tissue loading of a surgical instrument
10952788, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable algorithms
10952891, May 13 2014 ZELTIQ AESTHETICS, INC Treatment systems with adjustable gap applicators and methods for cooling tissue
10959771, Oct 16 2015 Cilag GmbH International Suction and irrigation sealing grasper
10959806, Dec 30 2015 Cilag GmbH International Energized medical device with reusable handle
10966744, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
10966747, Jun 29 2012 Cilag GmbH International Haptic feedback devices for surgical robot
10966785, Aug 02 2006 Cynosure, LLC Picosecond laser apparatus and methods for its operation and use
10987123, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
10987156, Apr 29 2016 Cilag GmbH International Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
10993763, Jun 29 2012 Cilag GmbH International Lockout mechanism for use with robotic electrosurgical device
11006971, Oct 08 2004 Cilag GmbH International Actuation mechanism for use with an ultrasonic surgical instrument
11020140, Jun 17 2015 Cilag GmbH International Ultrasonic surgical blade for use with ultrasonic surgical instruments
11033292, Dec 16 2013 Cilag GmbH International Medical device
11033322, Sep 30 2015 Cilag GmbH International Circuit topologies for combined generator
11033323, Sep 29 2017 Cilag GmbH International Systems and methods for managing fluid and suction in electrosurgical systems
11033325, Feb 16 2017 Cilag GmbH International Electrosurgical instrument with telescoping suction port and debris cleaner
11051840, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
11051873, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
11058447, Jul 31 2007 Cilag GmbH International Temperature controlled ultrasonic surgical instruments
11058448, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multistage generator circuits
11058475, Sep 30 2015 Cilag GmbH International Method and apparatus for selecting operations of a surgical instrument based on user intention
11076879, Apr 26 2017 ZELTIQ AESTHETICS, INC Shallow surface cryotherapy applicators and related technology
11090103, May 21 2010 Cilag GmbH International Medical device
11090104, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11090110, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11095087, Apr 18 2012 Cynosure, LLC Picosecond laser apparatus and methods for treating target tissues with same
11096752, Jun 29 2012 Cilag GmbH International Closed feedback control for electrosurgical device
11123136, Aug 01 2011 MIRADRY, INC. Applicator and tissue interface module for dermatological device
11129669, Jun 30 2015 Cilag GmbH International Surgical system with user adaptable techniques based on tissue type
11129670, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
11134978, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
11141213, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11154418, Oct 19 2015 ZELTIQ AESTHETICS, INC Vascular treatment systems, cooling devices, and methods for cooling vascular structures
11179173, Oct 22 2012 Cilag GmbH International Surgical instrument
11179269, Sep 26 2006 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
11202670, Feb 22 2016 Cilag GmbH International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
11219549, Sep 26 2006 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
11224536, Apr 30 2009 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
11229450, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with motor drive
11229471, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11229472, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
11253288, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11266430, Nov 29 2016 Cilag GmbH International End effector control and calibration
11266433, Nov 30 2007 Cilag GmbH International Ultrasonic surgical instrument blades
11272952, Mar 14 2013 Cilag GmbH International Mechanical fasteners for use with surgical energy devices
11291606, May 18 2007 Zeltiq Aesthetics, Inc. Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue
11311326, Feb 06 2015 Cilag GmbH International Electrosurgical instrument with rotation and articulation mechanisms
11324527, Nov 15 2012 Cilag GmbH International Ultrasonic and electrosurgical devices
11337747, Apr 15 2014 Cilag GmbH International Software algorithms for electrosurgical instruments
11344362, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
11344707, Nov 28 2016 THERMA BRIGHT INC Devices for applying a topical treatment
11350959, Aug 25 2016 Cilag GmbH International Ultrasonic transducer techniques for ultrasonic surgical instrument
11369402, Feb 11 2010 Cilag GmbH International Control systems for ultrasonically powered surgical instruments
11382642, Feb 11 2010 Cilag GmbH International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
11382790, May 10 2016 ZELTIQ AESTHETICS, INC Skin freezing systems for treating acne and skin conditions
11395760, Nov 09 2006 Zeltiq Aesthetics, Inc. Tissue treatment methods
11399855, Mar 27 2014 Cilag GmbH International Electrosurgical devices
11413060, Jul 31 2014 Cilag GmbH International Actuation mechanisms and load adjustment assemblies for surgical instruments
11413102, Jun 27 2019 Cilag GmbH International Multi-access port for surgical robotic systems
11418000, Feb 26 2018 Cynosure, Inc; Cynosure, LLC Q-switched cavity dumped sub-nanosecond laser
11419626, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
11419678, Apr 19 2007 MIRADRY, INC. Methods, devices, and systems for non-invasive delivery of microwave therapy
11426191, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with distally positioned jaw assemblies
11439426, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11446086, Mar 15 2013 Cynosure, LLC Picosecond optical radiation systems and methods of use
11446175, Jul 31 2018 ZELTIQ AESTHETICS, INC Methods, devices, and systems for improving skin characteristics
11452525, Dec 30 2019 Cilag GmbH International Surgical instrument comprising an adjustment system
11452634, Apr 30 2009 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
11471209, Mar 31 2014 Cilag GmbH International Controlling impedance rise in electrosurgical medical devices
11484358, Sep 29 2017 Cilag GmbH International Flexible electrosurgical instrument
11490951, Sep 29 2017 Cilag GmbH International Saline contact with electrodes
11497546, Mar 31 2017 Cilag GmbH International Area ratios of patterned coatings on RF electrodes to reduce sticking
11523859, Jun 28 2012 Cilag GmbH International Surgical instrument assembly including a removably attachable end effector
11547465, Jun 28 2012 Cilag GmbH International Surgical end effector jaw and electrode configurations
11547468, Jun 27 2019 Cilag GmbH International Robotic surgical system with safety and cooperative sensing control
11553954, Jun 30 2015 Cilag GmbH International Translatable outer tube for sealing using shielded lap chole dissector
11559347, Sep 30 2015 Cilag GmbH International Techniques for circuit topologies for combined generator
11583306, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11583438, Aug 21 2007 ZELTIQ AESTHETICS, INC Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
11589916, Dec 30 2019 Cilag GmbH International Electrosurgical instruments with electrodes having variable energy densities
11602371, Jun 29 2012 Cilag GmbH International Ultrasonic surgical instruments with control mechanisms
11607268, Jul 27 2007 Cilag GmbH International Surgical instruments
11607278, Jun 27 2019 Cilag GmbH International Cooperative robotic surgical systems
11612445, Jun 27 2019 Cilag GmbH International Cooperative operation of robotic arms
11660089, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a sensing system
11664637, Apr 18 2012 Cynosure, LLC Picosecond laser apparatus and methods for treating target tissues with same
11666375, Oct 16 2015 Cilag GmbH International Electrode wiping surgical device
11666784, Jul 31 2007 Cilag GmbH International Surgical instruments
11684402, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11684412, Dec 30 2019 Cilag GmbH International Surgical instrument with rotatable and articulatable surgical end effector
11690641, Jul 27 2007 Cilag GmbH International Ultrasonic end effectors with increased active length
11690643, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11696776, Dec 30 2019 Cilag GmbH International Articulatable surgical instrument
11707318, Dec 30 2019 Cilag GmbH International Surgical instrument with jaw alignment features
11712299, Aug 02 2006 Cynosure, LLC. Picosecond laser apparatus and methods for its operation and use
11717311, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11717706, Jul 15 2009 Cilag GmbH International Ultrasonic surgical instruments
11723716, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with variable control mechanisms
11723729, Jun 27 2019 Cilag GmbH International Robotic surgical assembly coupling safety mechanisms
11730507, Feb 27 2004 Cilag GmbH International Ultrasonic surgical shears and method for sealing a blood vessel using same
11744636, Dec 30 2019 Cilag GmbH International Electrosurgical systems with integrated and external power sources
11751929, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
11759251, Dec 30 2019 Cilag GmbH International Control program adaptation based on device status and user input
11766276, Nov 30 2007 Cilag GmbH International Ultrasonic surgical blades
11766287, Sep 30 2015 Cilag GmbH International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
11779329, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a flex circuit including a sensor system
11779387, Dec 30 2019 Cilag GmbH International Clamp arm jaw to minimize tissue sticking and improve tissue control
11786291, Dec 30 2019 Cilag GmbH International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
11786294, Dec 30 2019 Cilag GmbH International Control program for modular combination energy device
11791603, Feb 26 2018 Cynosure, LLC. Q-switched cavity dumped sub-nanosecond laser
11812957, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a signal interference resolution system
11819257, Jan 31 2014 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
11839420, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing member push tube
11839422, Sep 23 2016 Cilag GmbH International Electrosurgical instrument with fluid diverter
11864820, May 03 2016 Cilag GmbH International Medical device with a bilateral jaw configuration for nerve stimulation
11871955, Jun 29 2012 Cilag GmbH International Surgical instruments with articulating shafts
11871982, Oct 09 2009 Cilag GmbH International Surgical generator for ultrasonic and electrosurgical devices
11877734, Jul 31 2007 Cilag GmbH International Ultrasonic surgical instruments
11883055, Jul 12 2016 Cilag GmbH International Ultrasonic surgical instrument with piezoelectric central lumen transducer
11890491, Aug 06 2008 Cilag GmbH International Devices and techniques for cutting and coagulating tissue
11896280, Jan 15 2016 Cilag GmbH International Clamp arm comprising a circuit
11903634, Jun 30 2015 Cilag GmbH International Surgical instrument with user adaptable techniques
11911063, Dec 30 2019 Cilag GmbH International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
11925378, Aug 25 2016 Cilag GmbH International Ultrasonic transducer for surgical instrument
11931026, Jun 30 2021 Cilag GmbH International Staple cartridge replacement
11937863, Dec 30 2019 Cilag GmbH International Deflectable electrode with variable compression bias along the length of the deflectable electrode
11937866, Dec 30 2019 Cilag GmbH International Method for an electrosurgical procedure
11944366, Dec 30 2019 Cilag GmbH International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
11950797, Dec 30 2019 Cilag GmbH International Deflectable electrode with higher distal bias relative to proximal bias
11957342, Nov 01 2021 Cilag GmbH International Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation
11974772, Jan 15 2016 Cilag GmbH International Modular battery powered handheld surgical instrument with variable motor control limits
11974801, Dec 30 2019 Cilag GmbH International Electrosurgical instrument with flexible wiring assemblies
11974829, Jun 30 2021 Cilag GmbH International Link-driven articulation device for a surgical device
11986201, Dec 30 2019 Cilag GmbH International Method for operating a surgical instrument
11986234, Dec 30 2019 Cilag GmbH International Surgical system communication pathways
11986421, Sep 26 2006 ZELTIQ AESTHETICS, INC Cooling devices with flexible sensors
11992640, Nov 28 2016 Devices for applying a topical treatment
11998229, Oct 14 2005 Cilag GmbH International Ultrasonic device for cutting and coagulating
11998230, Nov 29 2016 Cilag GmbH International End effector control and calibration
12053224, Dec 30 2019 Cilag GmbH International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
12059224, Jun 27 2019 Cilag GmbH International Robotic surgical system with safety and cooperative sensing control
12064109, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a feedback control circuit
12068571, Apr 18 2012 Cynosure, LLC Picosecond laser apparatus and methods for treating target tissues with same
12070411, Apr 28 2006 Zeltiq Aesthetics, Inc. Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells
12076006, Dec 30 2019 Cilag GmbH International Surgical instrument comprising an orientation detection system
12082808, Dec 30 2019 Cilag GmbH International Surgical instrument comprising a control system responsive to software configurations
12102557, Jul 31 2018 Zeltiq Aesthetics, Inc. Methods, devices, and systems for improving skin characteristics
12114912, Dec 30 2019 Cilag GmbH International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
12114914, Aug 05 2016 Cilag GmbH International Methods and systems for advanced harmonic energy
12156674, Jun 17 2015 Cilag GmbH International Ultrasonic surgical blade for use with ultrasonic surgical instruments
12167866, Apr 09 2012 Cilag GmbH International Switch arrangements for ultrasonic surgical instruments
6878144, Dec 02 1996 PALOMAR MEDICAL TECHNOLOGIES, LLC System for electromagnetic radiation dermatology and head for use therewith
6888319, Mar 01 2001 PALOMAR MEDICAL TECHNOLOGIES, LLC Flashlamp drive circuit
6974451, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Light energy delivery head
6976985, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Light energy delivery head
6997923, Dec 28 2000 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for EMR treatment
7029469, Dec 03 1998 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for laser removal of hair
7044959, Mar 12 2002 The General Hospital Corporation Method and apparatus for hair growth management
7060061, Mar 27 1998 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for the selective targeting of lipid-rich tissues
7066929, Dec 02 1999 RADIANCY INC Selective photothermolysis
7077840, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Heads for dermatology treatment
7135033, May 23 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Phototreatment device for use with coolants and topical substances
7204832, Dec 02 1996 PALOMAR MEDICAL TECHNOLOGIES, LLC Cooling system for a photo cosmetic device
7220254, Dec 31 2003 PALOMAR MEDICAL TECHNOLOGIES, LLC Dermatological treatment with visualization
7274155, Mar 01 2001 PALOMAR MEDICAL TECHNOLOGIES, LLC Flash lamp drive circuit
7276058, Jun 19 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for treatment of cutaneous and subcutaneous conditions
7309335, Dec 31 2003 PALOMAR MEDICAL TECHNOLOGIES, LLC Dermatological treatment with visualization
7351252, Jun 19 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for photothermal treatment of tissue at depth
7431719, Dec 02 1996 PALOMAR MEDICAL TECHNOLOGIES, LLC System for electromagnetic radiation dermatology and head for use therewith
7531967, Mar 01 2001 PALOMAR MEDICAL TECHNOLOGIES, LLC Flashlamp drive circuit
7540869, Dec 27 2001 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for improved vascular related treatment
7758621, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for therapeutic EMR treatment on the skin
7763016, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Light energy delivery head
7780656, Dec 10 2004 RELIANT TECHNOLOGIES, INC Patterned thermal treatment using patterned cryogen spray and irradiation by light
7935107, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Heads for dermatology treatment
7942915, May 23 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Phototreatment device for use with coolants
7942916, May 23 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Phototreatment device for use with coolants and topical substances
7993382, Feb 06 2004 ERCHONIA CORPORATION, A TEXAS CORPORATION Fat reduction using external laser radiation and niacin
8002768, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Light energy delivery head
8073550, Jul 31 1997 MIRADRY, INC Method and apparatus for treating subcutaneous histological features
8109924, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Heads for dermatology treatment
8182473, Dec 02 1996 PALOMAR MEDICAL TECHNOLOGIES, LLC Cooling system for a photocosmetic device
8190243, Jun 08 2007 Cynosure, LLC Thermal surgical monitoring
8221410, Jan 05 1996 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
8268332, Apr 01 2004 The General Hospital Corporation Method for dermatological treatment using chromophores
8323273, Aug 12 2005 Board of Regents, The University of Texas System Systems, devices, and methods for optically clearing tissue
8328794, Dec 02 1996 PALOMAR MEDICAL TECHNOLOGIES, LLC System for electromagnetic radiation dermatology and head for use therewith
8328796, May 15 1997 PALOMAR MEDICAL TECHNOLOGIES, LLC Light energy delivery head
8346347, Sep 15 2005 PALOMAR MEDICAL TECHNOLOGIES, LLC Skin optical characterization device
8367959, Jul 31 1997 MIRADRY, INC Method and apparatus for treating subcutaneous histological features
8401668, Apr 19 2007 MIRADRY, INC Systems and methods for creating an effect using microwave energy to specified tissue
8406894, Dec 12 2007 MIRADRY, INC Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
8469951, Aug 01 2011 MIRADRY, INC Applicator and tissue interface module for dermatological device
8535302, Aug 01 2011 MIRADRY, INC Applicator and tissue interface module for dermatological device
8688228, Apr 19 2007 MIRADRY, INC Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
8825176, Dec 12 2007 MIRADRY, INC Apparatus for the noninvasive treatment of tissue using microwave energy
8853600, Jul 31 1997 MIRADRY, INC Method and apparatus for treating subcutaneous histological features
8915948, Jun 19 2002 PALOMAR MEDICAL TECHNOLOGIES, LLC Method and apparatus for photothermal treatment of tissue at depth
8932338, Feb 06 2004 ERCHONIA CORPORATION, A TEXAS CORPORATION Noninvasive method for site-specific fat reduction
9028477, Aug 01 2011 MIRADRY, INC Applicator and tissue interface module for dermatological device
9028536, Aug 02 2006 Cynosure, LLC Picosecond laser apparatus and methods for its operation and use
9149331, Apr 19 2007 MIRADRY, INC Methods and apparatus for reducing sweat production
9168388, Aug 12 2005 The Board of Regents, The University of Texas System System, devices, and methods for optically clearing tissue
9216058, Jul 31 1997 MIRADRY, INC Method and apparatus for treating subcutaneous histological features
9241763, Apr 19 2007 MIRADRY, INC Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
9314301, Aug 01 2011 MIRADRY, INC Applicator and tissue interface module for dermatological device
9314368, Jan 25 2010 ZELTIQ AESTHETICS, INC Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods
9375345, Sep 26 2006 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
9408745, Aug 21 2007 ZELTIQ AESTHETICS, INC Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
9427285, Apr 19 2007 MIRADRY, INC Systems and methods for creating an effect using microwave energy to specified tissue
9452013, Apr 01 2004 The General Hospital Corporation Apparatus for dermatological treatment using chromophores
9545523, Mar 14 2013 ZELTIQ AESTHETICS, INC Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
9655770, Jul 13 2007 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
9737434, Dec 17 2008 Zeltiq Aestehtics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
9780518, Apr 18 2012 Cynosure, LLC Picosecond laser apparatus and methods for treating target tissues with same
9844460, Mar 14 2013 ZELTIQ AESTHETICS, INC Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
9844461, Jan 25 2010 ZELTIQ AESTHETICS, INC Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants
9861421, Jan 31 2014 ZELTIQ AESTHETICS, INC Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
9861520, Apr 30 2009 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
9919168, Jul 23 2009 PALOMAR MEDICAL TECHNOLOGIES, LLC Method for improvement of cellulite appearance
D777338, Mar 20 2014 ZELTIQ AESTHETICS, INC Cryotherapy applicator for cooling tissue
D924400, Aug 16 2016 Cilag GmbH International Surgical instrument
ER4998,
ER5091,
ER6729,
ER8191,
Patent Priority Assignee Title
4313093, Mar 23 1979 Nippon Infrared Industries Co., Ltd. Laser device
4733660, Aug 07 1984 Medical Laser Research and Development Corporation Laser system for providing target specific energy deposition and damage
5057104, May 30 1989 Method and apparatus for treating cutaneous vascular lesions
5077980, Oct 15 1987 CRIO MEDIZINTECHNIK GMBH Cryotherapy unit
5282797, May 30 1989 Method for treating cutaneous vascular lesions
5350417, May 18 1993 General Electric Capital Corporation; ARIZANT HEALTHCARE INC Convective thermal blanket
5486172, May 30 1989 Apparatus for treating cutaneous vascular lesions
5520679, Dec 03 1992 General Electric Capital Corporation Ophthalmic surgery method using non-contact scanning laser
5554172, May 09 1995 TEAM MEDICAL, L L C Directed energy surgical method and assembly
5570706, Jul 16 1990 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Method for ACL reconstruction
5630811, Mar 25 1996 Luxar Corporation Method and apparatus for hair removal
5814040, Apr 05 1994 The Regents of the University of California Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
5849029, Dec 26 1995 ESC MEDICAL SYSTEMS LTD Method for controlling the thermal profile of the skin
5944748, Jul 25 1996 LIGHT MEDICINE, INC Photodynamic therapy apparatus and methods
5951542, Apr 01 1996 S L T JAPAN CO , LTD Method of laser treatment for living tissue and target to be used therein
5968033, Nov 03 1997 Fuller Research Corporation Optical delivery system and method for subsurface tissue irradiation
5979454, May 15 1995 Regents of the University of California, The Method and apparatus for causing rapid and deep spatially selective coagulation during thermally mediated therapeutic procedures
5980512, Feb 26 1998 B&S RESEARCH AND DEVELOPMENT Enhanced laser skin treatment mechanism
6214034, Sep 04 1996 RADIANCY INC Method of selective photothermolysis
WO9715236,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 17 1998Cool Laser Optics, Inc.(assignment on the face of the patent)
Jun 17 1998CHESS, CYRUSCOOL LASER OPTICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092650624 pdf
Jun 17 1998BARRETTI, MICHAEL L COOL LASER OPTICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0092650635 pdf
Jul 19 1999COOL LASER OPTICS, INC GREEN LEAF MEZZANINE CAPITAL, L P SECURITY AGREEMENT0101540651 pdf
Date Maintenance Fee Events
May 24 2006REM: Maintenance Fee Reminder Mailed.
Jul 14 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jul 14 2006M2554: Surcharge for late Payment, Small Entity.
Apr 29 2010M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jun 13 2014REM: Maintenance Fee Reminder Mailed.
Nov 05 2014EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 05 20054 years fee payment window open
May 05 20066 months grace period start (w surcharge)
Nov 05 2006patent expiry (for year 4)
Nov 05 20082 years to revive unintentionally abandoned end. (for year 4)
Nov 05 20098 years fee payment window open
May 05 20106 months grace period start (w surcharge)
Nov 05 2010patent expiry (for year 8)
Nov 05 20122 years to revive unintentionally abandoned end. (for year 8)
Nov 05 201312 years fee payment window open
May 05 20146 months grace period start (w surcharge)
Nov 05 2014patent expiry (for year 12)
Nov 05 20162 years to revive unintentionally abandoned end. (for year 12)