A method and apparatus for treatment of the skin or other biologic tissue includes the ability to subject said skin or other tissue to temperature modulation and radiation, simultaneously. The apparatus that delivers warm or cold material to the treatment site to effect this modulation of temperature may be attached to the apparatus that delivers radiation or it may be a separate entity, that could be utilized with a variety of radiation generating equipment.
|
20. A method of treating a treatment site of biologic tissue that has a normal temperature, said method comprising:
delivering radiation to said treatment site; simultaneously delivering a temperature modifying medium to said treatment site; and controlling the temperature of said medium in a range that extends above or below said normal temperature as said medium is being delivered to said treatment site.
1. An apparatus for delivery of a temperature modifying medium to a treatment site of biologic tissue, coincident with the delivery of radiation to said treatment site, said apparatus comprising:
means for delivering a flow of said medium toward said treatment site; and means for controlling the temperature of said medium, said controlling means having the capability of controlling said temperature in a range that extends above or below the normal temperature of said treatment site.
23. An apparatus for delivery of a temperature modifying medium to a treatment site of biologic tissue, coincident with the delivery of radiation to said treatment site, said apparatus comprising:
means for delivering a flow of said medium toward said treatment site; and means for controlling the temperature and flow rate of said medium, said controlling means having the capability of controlling said temperature in a range that extends above or below the normal temperature of said treatment site and of maintaining said flow rate either steady or variable.
10. An apparatus for delivering radiation and a temperature modifying medium simultaneously to a treatment site of biologic tissue, said apparatus comprising:
first and second delivery means for simultaneously delivering said radiation and said temperature modifying medium, respectively, to said treatment site; means for controlling the temperature of said medium, said controlling means having the capability of controlling said temperature in a range that extends above and below the normal temperature of said treatment site; and means for connecting said first and second delivery means together to permit manual manipulation of the direction of said radiation and said medium flow in concert to said treatment site.
2. The apparatus according to
3. The apparatus according to
wherein said tubing is attached to a semi-rigid stand to maintain the direction of flow of said medium toward said treatment site.
4. The apparatus according to
6. The apparatus according to
means for controlling the flow rate of said medium to said treatment site, wherein said means for controlling said flow rate has the capability of maintaining said flow rate to be either steady or variable.
7. The apparatus according to
8. An apparatus according to
11. The apparatus according to
12. The apparatus according to
wherein said first and second delivery means are secured to said housing to permit manual manipulation of said housing to control the direction of said radiation and said medium flow in concert to said treatment site.
13. The apparatus according to
14. The apparatus according to
15. The apparatus according to
wherein said second delivery means is disposed to deliver said medium into said cavity so that said medium flows adjacent said first delivery means and through said opening toward said treatment site.
16. The apparatus according to
17. The apparatus according to
19. The apparatus according to
21. The method according to
22. The method of
controlling the flow rate of said medium as it is being delivered to said treatment site to be either steady or variable.
24. The apparatus of
|
This application claims the benefit of Provisional application Ser. No 60/049,858, filed Jun. 17, 1997.
The present invention relates generally to a method and apparatus that allows an area of biologic tissue such as the skin to be affected by alteration of its normal temperature,,and by a variety of different kinds of radiation. The method and apparatus allow these effects of temperature change and irradiation to occur simultaneously.
Radiation from various portions of the spectrum is currently utilized in the treatment of a variety of skin conditions. Lasers, intense pulsed light. sources and other radiation emitting devices have been used to treat conditions including birthmarks, tattoos, benign vascular lesions, pigmented lesions, scars, warts, stria distensae, wrinkles and other benign or malignant skin lesions. Lasers and other light sources are also currently used for the removal of unwanted hair on various parts of the body.
For some of these conditions, cooling of the skin is used adjuctively to the delivery of light. Cooling is accomplished in a variety of ways. Cooling is used to reduce side effects and discomfort associated with the delivery of light in the above mentioned clinical situations. Some cooling of the skin is accomplished by the use of cold packs, or ice before and/or after light is delivered to the treatment site. Simultaneous cooling and lasing is currently accomplished by several methods.
One method of simultaneous cooling and lasing (Cool Laser Optics, Coherent Versapulse, Palomar Epitouch, Light Shear, Chill-Tip) utilizes an apparatus that subjects the treatment site to cooling delivered by a lens that is substantially transparent to the wavelength of light to be delivered to the skin. The lens must be in contact with the treatment site. This same lens is made cold by having a recirculating coolant contact an aspect of the lens other than the lens surface contacting the treatment site. A similar apparatus is used where the coolant does not recirculate, but rather is kept cool by ice that is held within the apparatus. Another apparatus sprays coolant at the lens. An index matching gel is sometimes used between the cooling lens and the surface being treated.
A problem with contact lens apparatus is an inability to make good skin contact on concave aspects of the skin surface. Although some contact cooling units have a flexible contact surface, certain areas of the skin, such as naso-ocular angle still cannot be contacted adequately. Another problem is that the lens is substantially transparent to the light being delivered. The lenses are commonly made of quartz glass or sapphire to maximize thermal conductance.
The pulsed spray cooling of the Dynamic Cooling Device (DCD) needs no contact with the treatment surface, but has other problems. DCD uses volatile liquid to spray at the skin. These substances may, or may not, have some hazard potential for the environment or for individuals inhaling these vapors. Whether these concerns are valid will require long term evaluation, and due to these concerns DCD will not be considered suitable or appropriate for some practitioners and patients.
In some instances, pre-cooled transparent gels are applied for similar purposes as stated above but without any method for maintaining a cool temperature of the gel after application to the skin.
Another kind of cooling utilizes a sprayed cryogenic liquid (dynamic cooling). The cryogenic liquid is sprayed at the treatment site just before the laser light is delivered to the skin. Evaporation of the sprayed cryogenic liquid cools the skin's surface.
Cryogenic liquids used with DCD may cause technical problems due to frosting or icing in the delivery system. Furthermore, very exact timing is necessary with DCD to achieve the desired cooling without interfering with the transmittance of light through vaporizing sprayed cryogenic liquid or frosting of the skin. This exact timing as well as the exact quantity of. cryogenic liquid sprayed is microprocessor controlled, and any alteration due to suboptimal functioning could reduce or eliminate the benefit of treatment or cause unanticipated injury.
These various methods of cooling are utilized in an expanding list of laser amenable conditions. Specifically, contact cooling units with a cooling lens component were originally designed for use with laser treatment for lower extremity telangiectasia. These cooling units are now also used with laser treatment for other benign vascular lesions, such as port wine birthmarks, and also for laser removal of hair. Similarly, the spray cooling units are utilized for treating vascular lesions and for hair. removal. Additionally, contact and spray cooling are used for laser treatment of facial wrinkles.
All of the above apparatus and techniques are used to cool tissues. None allow the treatment site to be warmed.
There are lasers (Erbium YAG) that cause debris to be scattered during treatment. Some of these lasers have air flow directed through and out of the end of the laser hand piece. The purpose of this air flow is to prevent debris from entering the laser hand piece and clouding the laser optics inside the hand piece. The temperature of this air flow is not controlled nor is its purpose to modulate the temperature of the treatment site.
Against the forgoing background it is a primary object of the present invention to enhance the ability to alter the temperature of the skin during laser or other irradiation of the skin. Existing technology only has the ability to reduce the skin's temperature.
It is another object of the present invention to allow heating of the skin during laser irradiation or alternatively to allow cooling.
It is still another object of the present invention to provide heating and/or cooling of the skin without making contact with the skin.
It is yet another object of the present invention to vary the temperature of the skin up or down depending on what kind of radiation is being utilized, and what condition is being treated.
Simply from the standpoint of simultaneous cooling and lasing the present invention has the additional object of avoiding problems that exist with the current cooling modalities that were mentioned above.
A further object of the present invention is to deliver warm or cool air to the skin surface without any potential for environmental or personal hazard.
It is an additional object of the present invention to avoid the use of complex technology in the delivery of a cooling medium to the treatment site so as to minimize cost to the user and maximize reliability, efficiency, and safety.
Other and further objects, advantages and features of the present invention will be understood by reference to the following specification in conjunction with the accompanying drawings, in which like reference characters denote like elements of structure and:
FIG. 5,is an elevational view in part and a cross sectional view in part of still another embodiment of a combined temperature modulating device and radiation tool according to the present invention;
The present invention provides apparatus and a method for treatment of biologic tissue that alters the temperature of the tissue either by cooling or by heating or by both while the tissue is being irradiated.
The benefits attributed to cooling laser treatment sites relate to decreased pain and side effects caused by the heat produced by certain high power laser systems or non laser light sources.
The benefits resulting from heating the treatment site include increased blood flow and the ability to reduce the amount of laser power needed. By reducing laser power less side effects result.
With reference to the drawings and, in particular, to
Radiation 16 is provided from a radiation tool generally designated by reference numeral 17. Radiation tool 17 includes a radiation source 18 that delivers radiation 16 via a delivery device 19.
Although the present invention contemplates the use of any type of radiation that is useable to treat biologic tissue, the invention will be described herein where source 18 is a laser. For laser embodiments, delivery device 19 may comprise tubing such as fiber optic cable or other suitable conveyor of laser radiation.
The present invention also contemplates that medium 11 may be any suitable medium in liquid or gas state that can be controlled to warm and/or cool the temperature of the biologic tissue 13 above or below its normal temperature. Also, medium 11 is transparent to radiation 16. In the preferred embodiment, medium 11 is air and source 14 is shown as a source of compressed air.
The temperature and/or flow rate of air 11 are controlled by means situated either at compressed air source 14 or at any suitable location along its flow toward treatment site 12. In a preferred embodiment, the flow rate is controlled at air source 14 and the temperature is controlled by means of a vortex tube 20.
Delivery device 15 is connected at its proximal end to air source 14 by means of a suitable coupler such as a quick connect/disconnect device (not shown). Delivery-device 15 has a delivery tube 21 that is covered by an insulating material 22-made of similar material, running its entire length up to, but not including, vortex tube 20.
Vortex tube 20 controls the temperature of air 11 during its delivery. With reference to
For the case of human skin tissue, the temperature of air 11 is in a range that controls the temperature of the biological tissue at treatment site 12 in a tissue temperature range that extends above and below the normal temperature of the tissue. For many clinical situations, the tissue temperature range will be from slightly above the freezing temperature of water and to about a high fever temperature, for example, about 32.5°C F. to about 105°C F. It is also contemplated that the temperature and/or flow of air may be controlled by valve 26 to be steady or variable during a treatment to accommodate clinical situations having different cooling and/or warming requirements. Depending on these modulating parameters and the heat transfer characteristics of air 11 as it moves from the point of control to treatment site 12, the actual temperature of the air 11 may vary from the above mentioned tissue temperature range.
A hand grip 27 preferably envelopes vortex tube 20. The enveloping is preferably from just above the distal end of hand grip 27 up to and including its proximal end and its connection to delivery device 15. Hand grip 27 permits manipulation of the direction of delivery device 15 as air 11 is delivered to the biologic tissue 13. Hand grip 27 is made of plastic, ASS, or anodized aluminum. In this embodiment, the vortex tube 20 is preferably directed at an angle that permits radiation 16 to pass through air 11 to treatment site 12. In this embodiment, the distal end of the vortex tube 20 is directed at an angle that permits the radiation 16 to pass through air 11 as it is delivered to the treatment site 12.
Delivery device 15 may be formed in a variety of lengths and diameters. In a preferred embodiment, delivery device 15 is about 12 feet long with an inside diameter of about ½ inch and an outside diameter of about ⅝ inch. It may be made from flexible polyurethane, or some other similar material. Vortex tube 17 is preferably flexible, but may be inflexible in some embodiments.
In other embodiments, vortex tube 17 may be omitted and the temperature of air 11 will be controlled by the source 14 or by a cooling or heating device (not shown) that is disposed between the source and treatment site 12.
Referring to
In another embodiment shown in
In another embodiment shown in
In another embodiment, shown in
The delivery device 19 that conveys radiation 16 from radiation source 18 in the embodiments of
The method of the present invention involves delivering radiation to treatment site 12 of biologic tissue 13 and simultaneously delivering a temperature modifying medium to the treatment site. The temperature of the medium is controlled above and below the normal temperature of the tissue. The temperature of the medium can also be modulated during its delivery to the treatment site. Additionally, the flow rate of the medium can be controlled or adjusted.
The present invention having been thus described with particular reference to the preferred forms thereof, it will be obvious that various changes and modifications may be made therein without departing from the spirit and scope of the present invention as defined in the appended claims.
Chess, Cyrus, Barretti, Michael L.
Patent | Priority | Assignee | Title |
10092346, | Jul 20 2010 | Zeltiq Aesthetics, Inc. | Combined modality treatment systems, methods and apparatus for body contouring applications |
10166072, | Apr 19 2007 | MIRADRY, INC | Systems and methods for creating an effect using microwave energy to specified tissue |
10201380, | Jan 31 2014 | ZELTIQ AESTHETICS, INC | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
10245107, | Mar 15 2013 | Cynosure, LLC | Picosecond optical radiation systems and methods of use |
10285757, | Mar 15 2013 | Cynosure, LLC | Picosecond optical radiation systems and methods of use |
10292859, | Sep 26 2006 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
10305244, | Apr 18 2012 | Cynosure, LLC | Picosecond laser apparatus and methods for treating target tissues with same |
10321954, | Aug 01 2011 | MIRADRY, INC | Applicator and tissue interface module for dermatological device |
10383787, | May 18 2007 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
10413359, | Jul 18 2013 | International Business Machines Corporation | Laser-assisted transdermal delivery of nanoparticulates and hydrogels |
10434324, | Apr 22 2005 | Cynosure, LLC | Methods and systems for laser treatment using non-uniform output beam |
10441308, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical instrument blades |
10463429, | Apr 19 2007 | MIRADRY, INC | Methods, devices, and systems for non-invasive delivery of microwave therapy |
10463887, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
10500413, | Jun 19 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
10517627, | Apr 09 2012 | Cilag GmbH International | Switch arrangements for ultrasonic surgical instruments |
10524956, | Jan 07 2016 | ZELTIQ AESTHETICS, INC | Temperature-dependent adhesion between applicator and skin during cooling of tissue |
10531910, | Jul 27 2007 | Cilag GmbH International | Surgical instruments |
10537352, | Oct 08 2004 | Cilag GmbH International | Tissue pads for use with surgical instruments |
10555831, | May 10 2016 | ZELTIQ AESTHETICS, INC | Hydrogel substances and methods of cryotherapy |
10556123, | Jun 19 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
10568759, | Aug 19 2014 | ZELTIQ AESTHETICS, INC | Treatment systems, small volume applicators, and methods for treating submental tissue |
10575890, | Jan 31 2014 | ZELTIQ AESTHETICS, INC | Treatment systems and methods for affecting glands and other targeted structures |
10575892, | Dec 31 2015 | Cilag GmbH International | Adapter for electrical surgical instruments |
10581217, | Apr 18 2012 | Cynosure, LLC | Picosecond laser apparatus and methods for treating target tissues with same |
10595929, | Mar 24 2015 | Cilag GmbH International | Surgical instruments with firing system overload protection mechanisms |
10603064, | Nov 28 2016 | Cilag GmbH International | Ultrasonic transducer |
10603117, | Jun 28 2017 | Cilag GmbH International | Articulation state detection mechanisms |
10610286, | Sep 30 2015 | Cilag GmbH International | Techniques for circuit topologies for combined generator |
10624696, | Apr 19 2007 | MIRADRY, INC | Systems and methods for creating an effect using microwave energy to specified tissue |
10639092, | Dec 08 2014 | Cilag GmbH International | Electrode configurations for surgical instruments |
10646269, | Apr 29 2016 | Cilag GmbH International | Non-linear jaw gap for electrosurgical instruments |
10675176, | Mar 19 2014 | ZELTIQ AESTHETICS, INC | Treatment systems, devices, and methods for cooling targeted tissue |
10675178, | Aug 21 2007 | ZELTIQ AESTHETICS, INC | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
10682297, | May 10 2016 | ZELTIQ AESTHETICS, INC | Liposomes, emulsions, and methods for cryotherapy |
10688321, | Jul 15 2009 | Cilag GmbH International | Ultrasonic surgical instruments |
10709469, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with energy conservation techniques |
10709906, | May 20 2009 | Cilag GmbH International | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
10716615, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
10722261, | Mar 22 2007 | Cilag GmbH International | Surgical instruments |
10722395, | Jan 25 2011 | ZELTIQ AESTHETICS, INC | Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells |
10729494, | Feb 10 2012 | Cilag GmbH International | Robotically controlled surgical instrument |
10736685, | Sep 30 2015 | Cilag GmbH International | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
10751108, | Sep 30 2015 | Cilag GmbH International | Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms |
10751109, | Dec 22 2014 | Cilag GmbH International | High power battery powered RF amplifier topology |
10751117, | Sep 23 2016 | Cilag GmbH International | Electrosurgical instrument with fluid diverter |
10765470, | Jun 30 2015 | Cilag GmbH International | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
10765478, | Mar 15 2013 | CYNOSURCE, LLC | Picosecond optical radiation systems and methods of use |
10765552, | Feb 18 2016 | ZELTIQ AESTHETICS, INC | Cooling cup applicators with contoured heads and liner assemblies |
10779845, | Jun 29 2012 | Cilag GmbH International | Ultrasonic surgical instruments with distally positioned transducers |
10779847, | Aug 25 2016 | Cilag GmbH International | Ultrasonic transducer to waveguide joining |
10779848, | Jan 20 2006 | Cilag GmbH International | Ultrasound medical instrument having a medical ultrasonic blade |
10779849, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with voltage sag resistant battery pack |
10779876, | Oct 24 2011 | Cilag GmbH International | Battery powered surgical instrument |
10779879, | Mar 18 2014 | Cilag GmbH International | Detecting short circuits in electrosurgical medical devices |
10779885, | Jul 24 2013 | MIRADRY, INC | Apparatus and methods for the treatment of tissue using microwave energy |
10779887, | Apr 19 2007 | MIRADRY, INC. | Systems and methods for creating an effect using microwave energy to specified tissue |
10799284, | Mar 15 2017 | Cilag GmbH International | Electrosurgical instrument with textured jaws |
10806500, | Jan 31 2014 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
10820920, | Jul 05 2017 | Cilag GmbH International | Reusable ultrasonic medical devices and methods of their use |
10828057, | Mar 22 2007 | Cilag GmbH International | Ultrasonic surgical instruments |
10828058, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization |
10828059, | Oct 05 2007 | Cilag GmbH International | Ergonomic surgical instruments |
10835307, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
10835768, | Feb 11 2010 | Cilag GmbH International | Dual purpose surgical instrument for cutting and coagulating tissue |
10842523, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument and methods therefor |
10842580, | Jun 29 2012 | Cilag GmbH International | Ultrasonic surgical instruments with control mechanisms |
10849687, | Aug 02 2006 | Cynosure, LLC | Picosecond laser apparatus and methods for its operation and use |
10856896, | Oct 14 2005 | Cilag GmbH International | Ultrasonic device for cutting and coagulating |
10856929, | Jan 07 2014 | Cilag GmbH International | Harvesting energy from a surgical generator |
10856934, | Apr 29 2016 | Cilag GmbH International | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
10874418, | Feb 27 2004 | Cilag GmbH International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
10888347, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
10893883, | Jul 13 2016 | Cilag GmbH International | Ultrasonic assembly for use with ultrasonic surgical instruments |
10898256, | Jun 30 2015 | Cilag GmbH International | Surgical system with user adaptable techniques based on tissue impedance |
10912580, | Dec 16 2013 | Cilag GmbH International | Medical device |
10912599, | Jan 31 2014 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
10912603, | Nov 08 2013 | Cilag GmbH International | Electrosurgical devices |
10925659, | Sep 13 2013 | Cilag GmbH International | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
10932847, | Mar 18 2014 | Cilag GmbH International | Detecting short circuits in electrosurgical medical devices |
10935174, | Aug 19 2014 | ZELTIQ AESTHETICS, INC | Stress relief couplings for cryotherapy apparatuses |
10952759, | Aug 25 2016 | Cilag GmbH International | Tissue loading of a surgical instrument |
10952788, | Jun 30 2015 | Cilag GmbH International | Surgical instrument with user adaptable algorithms |
10952891, | May 13 2014 | ZELTIQ AESTHETICS, INC | Treatment systems with adjustable gap applicators and methods for cooling tissue |
10959771, | Oct 16 2015 | Cilag GmbH International | Suction and irrigation sealing grasper |
10959806, | Dec 30 2015 | Cilag GmbH International | Energized medical device with reusable handle |
10966744, | Jul 12 2016 | Cilag GmbH International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
10966747, | Jun 29 2012 | Cilag GmbH International | Haptic feedback devices for surgical robot |
10966785, | Aug 02 2006 | Cynosure, LLC | Picosecond laser apparatus and methods for its operation and use |
10987123, | Jun 29 2012 | Cilag GmbH International | Surgical instruments with articulating shafts |
10987156, | Apr 29 2016 | Cilag GmbH International | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
10993763, | Jun 29 2012 | Cilag GmbH International | Lockout mechanism for use with robotic electrosurgical device |
11006971, | Oct 08 2004 | Cilag GmbH International | Actuation mechanism for use with an ultrasonic surgical instrument |
11020140, | Jun 17 2015 | Cilag GmbH International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
11033292, | Dec 16 2013 | Cilag GmbH International | Medical device |
11033322, | Sep 30 2015 | Cilag GmbH International | Circuit topologies for combined generator |
11033323, | Sep 29 2017 | Cilag GmbH International | Systems and methods for managing fluid and suction in electrosurgical systems |
11033325, | Feb 16 2017 | Cilag GmbH International | Electrosurgical instrument with telescoping suction port and debris cleaner |
11051840, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with reusable asymmetric handle housing |
11051873, | Jun 30 2015 | Cilag GmbH International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
11058447, | Jul 31 2007 | Cilag GmbH International | Temperature controlled ultrasonic surgical instruments |
11058448, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with multistage generator circuits |
11058475, | Sep 30 2015 | Cilag GmbH International | Method and apparatus for selecting operations of a surgical instrument based on user intention |
11076879, | Apr 26 2017 | ZELTIQ AESTHETICS, INC | Shallow surface cryotherapy applicators and related technology |
11090103, | May 21 2010 | Cilag GmbH International | Medical device |
11090104, | Oct 09 2009 | Cilag GmbH International | Surgical generator for ultrasonic and electrosurgical devices |
11090110, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
11095087, | Apr 18 2012 | Cynosure, LLC | Picosecond laser apparatus and methods for treating target tissues with same |
11096752, | Jun 29 2012 | Cilag GmbH International | Closed feedback control for electrosurgical device |
11123136, | Aug 01 2011 | MIRADRY, INC. | Applicator and tissue interface module for dermatological device |
11129669, | Jun 30 2015 | Cilag GmbH International | Surgical system with user adaptable techniques based on tissue type |
11129670, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
11134978, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly |
11141213, | Jun 30 2015 | Cilag GmbH International | Surgical instrument with user adaptable techniques |
11154418, | Oct 19 2015 | ZELTIQ AESTHETICS, INC | Vascular treatment systems, cooling devices, and methods for cooling vascular structures |
11179173, | Oct 22 2012 | Cilag GmbH International | Surgical instrument |
11179269, | Sep 26 2006 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
11202670, | Feb 22 2016 | Cilag GmbH International | Method of manufacturing a flexible circuit electrode for electrosurgical instrument |
11219549, | Sep 26 2006 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
11224536, | Apr 30 2009 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
11229450, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with motor drive |
11229471, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
11229472, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
11253288, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical instrument blades |
11266430, | Nov 29 2016 | Cilag GmbH International | End effector control and calibration |
11266433, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical instrument blades |
11272952, | Mar 14 2013 | Cilag GmbH International | Mechanical fasteners for use with surgical energy devices |
11291606, | May 18 2007 | Zeltiq Aesthetics, Inc. | Treatment apparatus for removing heat from subcutaneous lipid-rich cells and massaging tissue |
11311326, | Feb 06 2015 | Cilag GmbH International | Electrosurgical instrument with rotation and articulation mechanisms |
11324527, | Nov 15 2012 | Cilag GmbH International | Ultrasonic and electrosurgical devices |
11337747, | Apr 15 2014 | Cilag GmbH International | Software algorithms for electrosurgical instruments |
11344362, | Aug 05 2016 | Cilag GmbH International | Methods and systems for advanced harmonic energy |
11344707, | Nov 28 2016 | THERMA BRIGHT INC | Devices for applying a topical treatment |
11350959, | Aug 25 2016 | Cilag GmbH International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
11369402, | Feb 11 2010 | Cilag GmbH International | Control systems for ultrasonically powered surgical instruments |
11382642, | Feb 11 2010 | Cilag GmbH International | Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments |
11382790, | May 10 2016 | ZELTIQ AESTHETICS, INC | Skin freezing systems for treating acne and skin conditions |
11395760, | Nov 09 2006 | Zeltiq Aesthetics, Inc. | Tissue treatment methods |
11399855, | Mar 27 2014 | Cilag GmbH International | Electrosurgical devices |
11413060, | Jul 31 2014 | Cilag GmbH International | Actuation mechanisms and load adjustment assemblies for surgical instruments |
11413102, | Jun 27 2019 | Cilag GmbH International | Multi-access port for surgical robotic systems |
11418000, | Feb 26 2018 | Cynosure, Inc; Cynosure, LLC | Q-switched cavity dumped sub-nanosecond laser |
11419626, | Apr 09 2012 | Cilag GmbH International | Switch arrangements for ultrasonic surgical instruments |
11419678, | Apr 19 2007 | MIRADRY, INC. | Methods, devices, and systems for non-invasive delivery of microwave therapy |
11426191, | Jun 29 2012 | Cilag GmbH International | Ultrasonic surgical instruments with distally positioned jaw assemblies |
11439426, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
11446086, | Mar 15 2013 | Cynosure, LLC | Picosecond optical radiation systems and methods of use |
11446175, | Jul 31 2018 | ZELTIQ AESTHETICS, INC | Methods, devices, and systems for improving skin characteristics |
11452525, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising an adjustment system |
11452634, | Apr 30 2009 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
11471209, | Mar 31 2014 | Cilag GmbH International | Controlling impedance rise in electrosurgical medical devices |
11484358, | Sep 29 2017 | Cilag GmbH International | Flexible electrosurgical instrument |
11490951, | Sep 29 2017 | Cilag GmbH International | Saline contact with electrodes |
11497546, | Mar 31 2017 | Cilag GmbH International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
11523859, | Jun 28 2012 | Cilag GmbH International | Surgical instrument assembly including a removably attachable end effector |
11547465, | Jun 28 2012 | Cilag GmbH International | Surgical end effector jaw and electrode configurations |
11547468, | Jun 27 2019 | Cilag GmbH International | Robotic surgical system with safety and cooperative sensing control |
11553954, | Jun 30 2015 | Cilag GmbH International | Translatable outer tube for sealing using shielded lap chole dissector |
11559347, | Sep 30 2015 | Cilag GmbH International | Techniques for circuit topologies for combined generator |
11583306, | Jun 29 2012 | Cilag GmbH International | Surgical instruments with articulating shafts |
11583438, | Aug 21 2007 | ZELTIQ AESTHETICS, INC | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
11589916, | Dec 30 2019 | Cilag GmbH International | Electrosurgical instruments with electrodes having variable energy densities |
11602371, | Jun 29 2012 | Cilag GmbH International | Ultrasonic surgical instruments with control mechanisms |
11607268, | Jul 27 2007 | Cilag GmbH International | Surgical instruments |
11607278, | Jun 27 2019 | Cilag GmbH International | Cooperative robotic surgical systems |
11612445, | Jun 27 2019 | Cilag GmbH International | Cooperative operation of robotic arms |
11660089, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising a sensing system |
11664637, | Apr 18 2012 | Cynosure, LLC | Picosecond laser apparatus and methods for treating target tissues with same |
11666375, | Oct 16 2015 | Cilag GmbH International | Electrode wiping surgical device |
11666784, | Jul 31 2007 | Cilag GmbH International | Surgical instruments |
11684402, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
11684412, | Dec 30 2019 | Cilag GmbH International | Surgical instrument with rotatable and articulatable surgical end effector |
11690641, | Jul 27 2007 | Cilag GmbH International | Ultrasonic end effectors with increased active length |
11690643, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
11696776, | Dec 30 2019 | Cilag GmbH International | Articulatable surgical instrument |
11707318, | Dec 30 2019 | Cilag GmbH International | Surgical instrument with jaw alignment features |
11712299, | Aug 02 2006 | Cynosure, LLC. | Picosecond laser apparatus and methods for its operation and use |
11717311, | Jun 29 2012 | Cilag GmbH International | Surgical instruments with articulating shafts |
11717706, | Jul 15 2009 | Cilag GmbH International | Ultrasonic surgical instruments |
11723716, | Dec 30 2019 | Cilag GmbH International | Electrosurgical instrument with variable control mechanisms |
11723729, | Jun 27 2019 | Cilag GmbH International | Robotic surgical assembly coupling safety mechanisms |
11730507, | Feb 27 2004 | Cilag GmbH International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
11744636, | Dec 30 2019 | Cilag GmbH International | Electrosurgical systems with integrated and external power sources |
11751929, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
11759251, | Dec 30 2019 | Cilag GmbH International | Control program adaptation based on device status and user input |
11766276, | Nov 30 2007 | Cilag GmbH International | Ultrasonic surgical blades |
11766287, | Sep 30 2015 | Cilag GmbH International | Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments |
11779329, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising a flex circuit including a sensor system |
11779387, | Dec 30 2019 | Cilag GmbH International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
11786291, | Dec 30 2019 | Cilag GmbH International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
11786294, | Dec 30 2019 | Cilag GmbH International | Control program for modular combination energy device |
11791603, | Feb 26 2018 | Cynosure, LLC. | Q-switched cavity dumped sub-nanosecond laser |
11812957, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising a signal interference resolution system |
11819257, | Jan 31 2014 | Zeltiq Aesthetics, Inc. | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
11839420, | Jun 28 2012 | Cilag GmbH International | Stapling assembly comprising a firing member push tube |
11839422, | Sep 23 2016 | Cilag GmbH International | Electrosurgical instrument with fluid diverter |
11864820, | May 03 2016 | Cilag GmbH International | Medical device with a bilateral jaw configuration for nerve stimulation |
11871955, | Jun 29 2012 | Cilag GmbH International | Surgical instruments with articulating shafts |
11871982, | Oct 09 2009 | Cilag GmbH International | Surgical generator for ultrasonic and electrosurgical devices |
11877734, | Jul 31 2007 | Cilag GmbH International | Ultrasonic surgical instruments |
11883055, | Jul 12 2016 | Cilag GmbH International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
11890491, | Aug 06 2008 | Cilag GmbH International | Devices and techniques for cutting and coagulating tissue |
11896280, | Jan 15 2016 | Cilag GmbH International | Clamp arm comprising a circuit |
11903634, | Jun 30 2015 | Cilag GmbH International | Surgical instrument with user adaptable techniques |
11911063, | Dec 30 2019 | Cilag GmbH International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
11925378, | Aug 25 2016 | Cilag GmbH International | Ultrasonic transducer for surgical instrument |
11931026, | Jun 30 2021 | Cilag GmbH International | Staple cartridge replacement |
11937863, | Dec 30 2019 | Cilag GmbH International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
11937866, | Dec 30 2019 | Cilag GmbH International | Method for an electrosurgical procedure |
11944366, | Dec 30 2019 | Cilag GmbH International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
11950797, | Dec 30 2019 | Cilag GmbH International | Deflectable electrode with higher distal bias relative to proximal bias |
11957342, | Nov 01 2021 | Cilag GmbH International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
11974772, | Jan 15 2016 | Cilag GmbH International | Modular battery powered handheld surgical instrument with variable motor control limits |
11974801, | Dec 30 2019 | Cilag GmbH International | Electrosurgical instrument with flexible wiring assemblies |
11974829, | Jun 30 2021 | Cilag GmbH International | Link-driven articulation device for a surgical device |
11986201, | Dec 30 2019 | Cilag GmbH International | Method for operating a surgical instrument |
11986234, | Dec 30 2019 | Cilag GmbH International | Surgical system communication pathways |
11986421, | Sep 26 2006 | ZELTIQ AESTHETICS, INC | Cooling devices with flexible sensors |
11992640, | Nov 28 2016 | Devices for applying a topical treatment | |
11998229, | Oct 14 2005 | Cilag GmbH International | Ultrasonic device for cutting and coagulating |
11998230, | Nov 29 2016 | Cilag GmbH International | End effector control and calibration |
12053224, | Dec 30 2019 | Cilag GmbH International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
12059224, | Jun 27 2019 | Cilag GmbH International | Robotic surgical system with safety and cooperative sensing control |
12064109, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising a feedback control circuit |
12068571, | Apr 18 2012 | Cynosure, LLC | Picosecond laser apparatus and methods for treating target tissues with same |
12070411, | Apr 28 2006 | Zeltiq Aesthetics, Inc. | Cryoprotectant for use with a treatment device for improved cooling of subcutaneous lipid-rich cells |
12076006, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising an orientation detection system |
12082808, | Dec 30 2019 | Cilag GmbH International | Surgical instrument comprising a control system responsive to software configurations |
12102557, | Jul 31 2018 | Zeltiq Aesthetics, Inc. | Methods, devices, and systems for improving skin characteristics |
12114912, | Dec 30 2019 | Cilag GmbH International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
12114914, | Aug 05 2016 | Cilag GmbH International | Methods and systems for advanced harmonic energy |
12156674, | Jun 17 2015 | Cilag GmbH International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
12167866, | Apr 09 2012 | Cilag GmbH International | Switch arrangements for ultrasonic surgical instruments |
6878144, | Dec 02 1996 | PALOMAR MEDICAL TECHNOLOGIES, LLC | System for electromagnetic radiation dermatology and head for use therewith |
6888319, | Mar 01 2001 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Flashlamp drive circuit |
6974451, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Light energy delivery head |
6976985, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Light energy delivery head |
6997923, | Dec 28 2000 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for EMR treatment |
7029469, | Dec 03 1998 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for laser removal of hair |
7044959, | Mar 12 2002 | The General Hospital Corporation | Method and apparatus for hair growth management |
7060061, | Mar 27 1998 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for the selective targeting of lipid-rich tissues |
7066929, | Dec 02 1999 | RADIANCY INC | Selective photothermolysis |
7077840, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Heads for dermatology treatment |
7135033, | May 23 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Phototreatment device for use with coolants and topical substances |
7204832, | Dec 02 1996 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Cooling system for a photo cosmetic device |
7220254, | Dec 31 2003 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Dermatological treatment with visualization |
7274155, | Mar 01 2001 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Flash lamp drive circuit |
7276058, | Jun 19 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
7309335, | Dec 31 2003 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Dermatological treatment with visualization |
7351252, | Jun 19 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for photothermal treatment of tissue at depth |
7431719, | Dec 02 1996 | PALOMAR MEDICAL TECHNOLOGIES, LLC | System for electromagnetic radiation dermatology and head for use therewith |
7531967, | Mar 01 2001 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Flashlamp drive circuit |
7540869, | Dec 27 2001 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for improved vascular related treatment |
7758621, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for therapeutic EMR treatment on the skin |
7763016, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Light energy delivery head |
7780656, | Dec 10 2004 | RELIANT TECHNOLOGIES, INC | Patterned thermal treatment using patterned cryogen spray and irradiation by light |
7935107, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Heads for dermatology treatment |
7942915, | May 23 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Phototreatment device for use with coolants |
7942916, | May 23 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Phototreatment device for use with coolants and topical substances |
7993382, | Feb 06 2004 | ERCHONIA CORPORATION, A TEXAS CORPORATION | Fat reduction using external laser radiation and niacin |
8002768, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Light energy delivery head |
8073550, | Jul 31 1997 | MIRADRY, INC | Method and apparatus for treating subcutaneous histological features |
8109924, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Heads for dermatology treatment |
8182473, | Dec 02 1996 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Cooling system for a photocosmetic device |
8190243, | Jun 08 2007 | Cynosure, LLC | Thermal surgical monitoring |
8221410, | Jan 05 1996 | Thermage, Inc. | Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient |
8268332, | Apr 01 2004 | The General Hospital Corporation | Method for dermatological treatment using chromophores |
8323273, | Aug 12 2005 | Board of Regents, The University of Texas System | Systems, devices, and methods for optically clearing tissue |
8328794, | Dec 02 1996 | PALOMAR MEDICAL TECHNOLOGIES, LLC | System for electromagnetic radiation dermatology and head for use therewith |
8328796, | May 15 1997 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Light energy delivery head |
8346347, | Sep 15 2005 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Skin optical characterization device |
8367959, | Jul 31 1997 | MIRADRY, INC | Method and apparatus for treating subcutaneous histological features |
8401668, | Apr 19 2007 | MIRADRY, INC | Systems and methods for creating an effect using microwave energy to specified tissue |
8406894, | Dec 12 2007 | MIRADRY, INC | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
8469951, | Aug 01 2011 | MIRADRY, INC | Applicator and tissue interface module for dermatological device |
8535302, | Aug 01 2011 | MIRADRY, INC | Applicator and tissue interface module for dermatological device |
8688228, | Apr 19 2007 | MIRADRY, INC | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
8825176, | Dec 12 2007 | MIRADRY, INC | Apparatus for the noninvasive treatment of tissue using microwave energy |
8853600, | Jul 31 1997 | MIRADRY, INC | Method and apparatus for treating subcutaneous histological features |
8915948, | Jun 19 2002 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method and apparatus for photothermal treatment of tissue at depth |
8932338, | Feb 06 2004 | ERCHONIA CORPORATION, A TEXAS CORPORATION | Noninvasive method for site-specific fat reduction |
9028477, | Aug 01 2011 | MIRADRY, INC | Applicator and tissue interface module for dermatological device |
9028536, | Aug 02 2006 | Cynosure, LLC | Picosecond laser apparatus and methods for its operation and use |
9149331, | Apr 19 2007 | MIRADRY, INC | Methods and apparatus for reducing sweat production |
9168388, | Aug 12 2005 | The Board of Regents, The University of Texas System | System, devices, and methods for optically clearing tissue |
9216058, | Jul 31 1997 | MIRADRY, INC | Method and apparatus for treating subcutaneous histological features |
9241763, | Apr 19 2007 | MIRADRY, INC | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
9314301, | Aug 01 2011 | MIRADRY, INC | Applicator and tissue interface module for dermatological device |
9314368, | Jan 25 2010 | ZELTIQ AESTHETICS, INC | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods |
9375345, | Sep 26 2006 | Zeltiq Aesthetics, Inc. | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile |
9408745, | Aug 21 2007 | ZELTIQ AESTHETICS, INC | Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue |
9427285, | Apr 19 2007 | MIRADRY, INC | Systems and methods for creating an effect using microwave energy to specified tissue |
9452013, | Apr 01 2004 | The General Hospital Corporation | Apparatus for dermatological treatment using chromophores |
9545523, | Mar 14 2013 | ZELTIQ AESTHETICS, INC | Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue |
9655770, | Jul 13 2007 | Zeltiq Aesthetics, Inc. | System for treating lipid-rich regions |
9737434, | Dec 17 2008 | Zeltiq Aestehtics, Inc. | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells |
9780518, | Apr 18 2012 | Cynosure, LLC | Picosecond laser apparatus and methods for treating target tissues with same |
9844460, | Mar 14 2013 | ZELTIQ AESTHETICS, INC | Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same |
9844461, | Jan 25 2010 | ZELTIQ AESTHETICS, INC | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants |
9861421, | Jan 31 2014 | ZELTIQ AESTHETICS, INC | Compositions, treatment systems and methods for improved cooling of lipid-rich tissue |
9861520, | Apr 30 2009 | Zeltiq Aesthetics, Inc. | Device, system and method of removing heat from subcutaneous lipid-rich cells |
9919168, | Jul 23 2009 | PALOMAR MEDICAL TECHNOLOGIES, LLC | Method for improvement of cellulite appearance |
D777338, | Mar 20 2014 | ZELTIQ AESTHETICS, INC | Cryotherapy applicator for cooling tissue |
D924400, | Aug 16 2016 | Cilag GmbH International | Surgical instrument |
ER4998, | |||
ER5091, | |||
ER6729, | |||
ER8191, |
Patent | Priority | Assignee | Title |
4313093, | Mar 23 1979 | Nippon Infrared Industries Co., Ltd. | Laser device |
4733660, | Aug 07 1984 | Medical Laser Research and Development Corporation | Laser system for providing target specific energy deposition and damage |
5057104, | May 30 1989 | Method and apparatus for treating cutaneous vascular lesions | |
5077980, | Oct 15 1987 | CRIO MEDIZINTECHNIK GMBH | Cryotherapy unit |
5282797, | May 30 1989 | Method for treating cutaneous vascular lesions | |
5350417, | May 18 1993 | General Electric Capital Corporation; ARIZANT HEALTHCARE INC | Convective thermal blanket |
5486172, | May 30 1989 | Apparatus for treating cutaneous vascular lesions | |
5520679, | Dec 03 1992 | General Electric Capital Corporation | Ophthalmic surgery method using non-contact scanning laser |
5554172, | May 09 1995 | TEAM MEDICAL, L L C | Directed energy surgical method and assembly |
5570706, | Jul 16 1990 | BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC | Method for ACL reconstruction |
5630811, | Mar 25 1996 | Luxar Corporation | Method and apparatus for hair removal |
5814040, | Apr 05 1994 | The Regents of the University of California | Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery |
5849029, | Dec 26 1995 | ESC MEDICAL SYSTEMS LTD | Method for controlling the thermal profile of the skin |
5944748, | Jul 25 1996 | LIGHT MEDICINE, INC | Photodynamic therapy apparatus and methods |
5951542, | Apr 01 1996 | S L T JAPAN CO , LTD | Method of laser treatment for living tissue and target to be used therein |
5968033, | Nov 03 1997 | Fuller Research Corporation | Optical delivery system and method for subsurface tissue irradiation |
5979454, | May 15 1995 | Regents of the University of California, The | Method and apparatus for causing rapid and deep spatially selective coagulation during thermally mediated therapeutic procedures |
5980512, | Feb 26 1998 | B&S RESEARCH AND DEVELOPMENT | Enhanced laser skin treatment mechanism |
6214034, | Sep 04 1996 | RADIANCY INC | Method of selective photothermolysis |
WO9715236, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 17 1998 | Cool Laser Optics, Inc. | (assignment on the face of the patent) | / | |||
Jun 17 1998 | CHESS, CYRUS | COOL LASER OPTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009265 | /0624 | |
Jun 17 1998 | BARRETTI, MICHAEL L | COOL LASER OPTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009265 | /0635 | |
Jul 19 1999 | COOL LASER OPTICS, INC | GREEN LEAF MEZZANINE CAPITAL, L P | SECURITY AGREEMENT | 010154 | /0651 |
Date | Maintenance Fee Events |
May 24 2006 | REM: Maintenance Fee Reminder Mailed. |
Jul 14 2006 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jul 14 2006 | M2554: Surcharge for late Payment, Small Entity. |
Apr 29 2010 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 13 2014 | REM: Maintenance Fee Reminder Mailed. |
Nov 05 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 05 2005 | 4 years fee payment window open |
May 05 2006 | 6 months grace period start (w surcharge) |
Nov 05 2006 | patent expiry (for year 4) |
Nov 05 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 05 2009 | 8 years fee payment window open |
May 05 2010 | 6 months grace period start (w surcharge) |
Nov 05 2010 | patent expiry (for year 8) |
Nov 05 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 05 2013 | 12 years fee payment window open |
May 05 2014 | 6 months grace period start (w surcharge) |
Nov 05 2014 | patent expiry (for year 12) |
Nov 05 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |