A one trip method for drilling a wellbore below a cemented casing is disclosed. An apparatus for use in performing the method is also disclosed. The method comprises lowering a drill bit into a casing cemented in the wellbore. The casing has float equipment connected therein. The drill bit is rotated in the casing above the float equipment so that it expands radially outwardly to a diameter greater than the inner diameter of the casing.
The float equipment, which can be a float shoe or a float collar or any other type of float equipment known in the art, includes an outer case with a valve connected therein. The outer case is comprised of a drillable material. Thus, the drill bit utilized to drill the wellbore can begin its drilling operation above the float equipment and successfully drill a wellbore below the casing having a diameter greater than the inner diameter of the casing.
|
1. A floating apparatus for use with a well casing string comprising:
an outer case comprised of a drillable material; a drillable check valve disposed in said outer case; a drillable body portion connecting said check valve to said outer case; and a tubular extension comprised of a drillable material connected to and extending upwardly from said floating apparatus, said drillable tubular extension adapted to be connected to said casing string.
9. An apparatus for use on a casing string comprising:
a drillable outer case having an upper end and a lower end; a check valve disposed in said drillable outer case to allow flow downwardly through said apparatus and to prevent flow upwardly therethrough; and a drillable tubular extension connected to and extending upwardly from said upper end of said drillable outer case, said tubular extension having an upper end adapted to be connected to said casing string.
16. A method of drilling a wellbore below a cemented casing, said casing having float equipment connected thereto with a drillable tubular, the method comprising:
lowering a bi-center drill bit through said casing into said drillable tubular; rotating said bi-center drill bit in said tubular so that it expands radially in said tubular to a diameter greater than an inner diameter of said cemented casing; and drilling out at least a portion of said tubular and drilling out said float equipment with said bi-center drill bit so that the wellbore below said casing has a diameter greater than said inner diameter of said casing.
12. A method of creating a wellbore extension below a casing cemented in a wellbore, the casing having float equipment connected thereto, the method comprising:
lowering a drill bit into said casing, said drill bit having a working diameter greater than said inner diameter of said casing cemented in said wellbore and having a non-working diameter less than said inner diameter of said cemented casing; rotating said drill bit at a selected speed so that said drill bit expands radially from its non-working to its working diameter before said drill bit reaches said float equipment; and lowering said drill bit while said drill bit is at its rotating working diameter to drill out said float equipment and to create said wellbore extension, said wellbore extension having a diameter greater than said inner diameter of said casing cemented in said wellbore.
2. The floating apparatus of
3. The floating apparatus of
4. The floating apparatus of
5. The floating apparatus of
7. The apparatus of
a valve housing, said valve housing being connected to said outer case; and a valve element disposed in said valve housing, said valve element being moveable between a closed position wherein flow through said apparatus is prevented and an open position wherein flow therethrough is permitted.
8. The floating apparatus of
a drillable tubular extension connected to a lower end of said drillable outer case; and a second floating apparatus connected to a lower end of said drillable tubular extension connected to the lower end of the drillable outer case, said second floating apparatus comprising: a drillable outer case; and a valve disposed in said outer case and connected thereto with a cement body portion. 10. The apparatus of
11. The apparatus of
13. The method of
14. The method of
15. The method of
17. The method of
drilling said wellbore having a greater diameter than said inner diameter of said casing to a desired depth below said casing.
18. The method of
a drillable outer case; a drillable valve disposed in said outer case; and a cement body portion connecting said valve to said outer case.
19. The method of
|
This invention relates to floating equipment used in cementing operations, and to methods of drilling out float equipment to create a wellbore below a cemented casing, wherein the wellbore below the casing has a diameter larger than the inner diameter of the cemented casing.
Typically, after a well for the production of oil and/or gas has been drilled, casing will be lowered into the well and cemented in the well. Generally, casings of decreasing diameter will be used as the depth of the wellbore increases. In other words, a large diameter casing may be cemented in the uppermost portion of the wellbore, and a liner, which is simply a smaller diameter casing will extend from the lower end of the casing in the uppermost well portion. Additional liners of decreasing diameter can be cemented in the well until the desired depth is reached.
When casing is lowered into a well floating equipment, such as float shoes and float collars may be used in the casing. Typical of the float equipment that might be used is the Halliburton Super Seal II Float Collar and the Halliburton Super Seal II Float Shoe as shown in the Oct. 8, 1993, Halliburton Casing Sales Manual, pages 1-13 and 1-23, respectively. Other examples of float equipment are shown in U.S. Pat. No. 5,647,434 to Sullaway et al. and U.S. Pat. No. 5,472,035 to Sullaway et al., both of which are incorporated by reference. All of the float equipment disclosed therein has a valve affixed to an outer case, which is connected to the casing.
There are times when it is desirable to create a wellbore below the cemented casing that has a diameter greater than the inner diameter of the cemented casing. For example, there are times when it is necessary to set a liner having an outer diameter such that the wellbore in which the liner must be set is larger than the inner diameter of the casing thereabove.
When such a liner is to be placed in the well, the valve portion of the float equipment attached to the casing must be drilled out. The current practice of drilling out float equipment in the cemented casing is with a standard drill bit that has a diameter slightly less than the inner diameter of the casing string and of the outer case or outer housing of the float equipment which is attached to and forms a part of the casing. The same drill bit is sometimes used to drill ahead or past the bottom end of the float shoe to a depth that would enable another string of casing (i.e., the liner) to be run and cemented in place. If the wellbore below the casing is required to be greater than the inner diameter of the previous cemented casing, a process called underreaming is generally used. Underreaming is a process wherein the wellbore is drilled to the desired depth with the standard drill bit utilized to drill through the float equipment. That bit is removed and a special underreaming drill bit is lowered through the casing. Once the underreaming drill bit passes below the end of the casing and into the open end cased wellbore, the hole is underreamed. Thus, typically two trips are required to perform underreaming operations, one to drill through the cement plugs and float equipment and cemented casing string, as well as any open hole required to be drilled, and another special underreaming bit for underreaming operations.
Bi-center drill bits may also be used to drill the wellbore below the already cemented casing. Bi-center bits can thus be run through a specific inner diameter, for example the casing drift inner diameter, and can be rotated after passing through the casing to drill a wellbore having a diameter greater than the casing inner diameter. Bi-center drill bits have a non-working or non-rotating diameter, and have a larger working or rotating diameter. Using a bi-center bit is advantageous over underreaming since it is not required that the entire length of the wellbore be drilled with the drill bit that is utilized to drill out the float equipment. Instead, the float equipment can be drilled out to slightly below the end of the casing with a standard drill bit which can then removed from the well. The bi-center drill bit can then be utilized and can begin drilling below the bottom end of the float equipment which is part of the previously cemented casing string. While use of a bi-center bit saves some time, it still requires two trips into the well which is time consuming and costly. Thus, there is a need for a method and apparatus which will provide for one trip drilling of a wellbore below a cemented casing, wherein the wellbore below the cemented casing has a diameter larger than the inner diameter of the already cemented casing string.
The present invention solves the foregoing by providing a method and apparatus for creating a wellbore having a diameter larger than the inner diameter of a previously cemented casing in one trip.
The method comprises lowering a drill bit through cemented casing. The drill bit has a non-working or non-rotating diameter that is smaller than the inner diameter of the previously cemented casing. The casing, as is well known in the art, will typically have float equipment connected therein. The float equipment can comprise a float shoe, and/or a float collar or any other type of float equipment known in the art. The drill bit, which preferably will comprise a bi-center drill bit, will be lowered into the casing to the point at which it is desired to begin drilling of the wellbore. The drill bit is then rotated at a selected speed which will cause the drill bit to move from its non-working or non-operating position to a working or rotating position in which the drill bit will drill a hole or wellbore having a diameter greater than the inner diameter of the previously cemented casing. The drill bit is rotated in the casing at a point above the float equipment and is lowered so that it will drill out any casing therebelow along with the float equipment. The drill bit is continually lowered in its working rotating position until the desired depth of the wellbore is reached. Rotation of the drill bit may then be stopped and the drill bit withdrawn from the well through the previously cemented casing.
The floating equipment utilized with the casing comprises an outer case having a valve disposed therein. The valve is preferably connected to the outer case with a cement body portion. The outer case of the floating equipment is adapted to be connected in the casing string and preferably has threads so that it can be threaded in the casing string. The outer case is comprised of a drillable material so that the drill bit utilized to drill the wellbore below the cemented casing can drill through the float equipment including the valve, body portion and the outer case. Any tubulars or joints used between float collars and/or a float collar and the float shoe are also comprised of a drillable material.
Referring now to the drawings and more particularly to
A first or bottom cement or wiper plug 52 is pumped ahead of the cement slurry to be used to cement casing string 20 in the wellbore. The cementing plug will sealingly engage the inner surface of casing string 20 and will separate the drilling fluid ahead of the bottom cement plug 52 and the cement slurry behind cement plug 52. Bottom cement plug 52 has a rupturable member across the top thereof. Once bottom plug 52 lands on float collar 30, continued displacement of cement behind bottom plug 52 will cause the rupturable member to rupture allowing flow through bottom plug 52, float collar 30, float shoe 32 and into an annulus 54 between casing string 20 and wellbore 15. When the required volume of cement slurry has been pumped through the casing, a second or top cementing plug 56 is released into the pipe to separate the cement slurry from additional drilling fluid or other fluid used to displace the cement slurry down the pipe. Upper cement plug 56, also referred to as wiper plug 56 will sealingly engage and wipe the walls of casing 20. As shown in
Once the cement job is complete, a drill bit can be lowered into the casing string and the well 10 can be drilled deeper as depicted in FIG. 1B. The portion of the well 10 below original bottom 25 may be referred to as lower wellbore, or wellbore extension 59. Wellbore extension 59 is created by lowering a drill bit through casing 20, wherein the drill bit has an inner diameter less than an inner diameter 60 of casing 20. The diameter of the drill bit utilized must be smaller than the innermost diameter of casing 20 which may be defined on any of casing portions 51, 36, 48, and 42, and herein is shown as inner diameter 60. If it is necessary and desirable to create a wellbore extension having a diameter greater than innermost diameter 60, an additional trip into the wellbore is required to create underreamed section 61 of wellbore extension 58. Underreaming is a procedure that is well known in the art.
Prior art float collars are made with steel outer cases. Outer case 74 is not comprised of steel, but rather is to be comprised of a drillable material such as, but not limited to aluminum or nonmetallic materials including engineering grade plastics, resins, composites or other suitably known materials. Float shoe 72 comprises an outer case 80 having a valve 82 connected thereto with a body portion which is preferably a cement body portion 84. Valve 82 is well known in the art and may be like that utilized in the Halliburton Super Seal II Float Shoe or like that shown in the above-referenced U.S. Patents. Valve 82, as is known in the art, may comprise a valve housing 83 having a valve element 85 disposed therein, along with other components, all of which are comprised of a drillable material such as, but not limited to phenolic plastic. The valve element and valve housing of float collar 70 are likewise comprised of drillable materials.
Outer case 80 of float shoe 72, instead of being comprised of steel as is known in the prior art, is made from a drillable material which may include, but which is not limited to aluminum or nonmetallic materials including engineering grade plastics, resins, composites, or other suitable known materials.
Casing string 65 may comprise an upper casing or upper casing portion 86 having an inner diameter 88 and a lower end 89. Upper casing 86 is comprised of steel. Upper casing 86 has a coupling 90 connected thereto, preferably threadably connected thereto at lower end 89. Coupling 90 is attached to a lower casing or lower casing portion 92 at the upper end 91 thereof. Lower casing 92 defines a longitudinal central opening 94. Lower casing 92 comprises a first, or upper, drillable shoe tubular 96 connected to coupling 90. Drillable shoe tubular is preferably comprised of one of the drillable materials set forth herein. Drillable shoe tubular 96 defines an inner diameter 98 and has a lower end 100. Drillable shoe tubular 96 is connected at its lower end thereof to outer case 74 of float collar 70. Outer case 74 is in turn connected to a coupling 102. Coupling 102 is connected to a second or lower drillable shoe tubular 104. Coupling 102 and drillable shoe tubular 104 are preferably comprised of one of the drillable materials set forth herein. Lower shoe tubular 104 may be referred to as a shoe track and the volume between float collar 70 and a float shoe may be referred to as a shoe track volume. Second or lower shoe tubular 104 has an upper end 106, a lower end 108 and defines an inner diameter 110. Lower shoe tubular 104 is connected at its lower end 108 to outer case 80 of float shoe 72.
Casing 65 is cemented in wellbore 64 in normal fashion utilizing bottom and top cement plugs 124 and 126, respectively. Because, as will be explained in more detail hereinbelow, the casing can be drilled out from a point above the cement plugs, it is not necessary that fully competent cement be placed around the float shoe, or the float collar since that portion of the casing will be drilled out. Thus, if desired, the length of the shoe track can be shortened and the need for competent cement in the annulus below the float collar can be eliminated since that cement will be drilled out.
Referring now to
Wellbore extension 128, which may also be referred to as lower wellbore 128, can be drilled starting at a point above float collar 70 since all of the materials from coupling 90 downwardly, including the outer cases 74 and 80 of float collar 70 and float shoe 72, respectively, drillable shoe tubular 96, coupling 102 and lower shoe tubular 104 are comprised of the drillable materials defined herein. Thus, it is not necessary to first make a bit trip to drill through cement plugs 124 and 126 and the interiors of the float collar and float shoes 70 and 72, respectively, with a drill bit having a diameter smaller than the inner diameter of the casing and then to remove that drill bit and underream or use a bi-center drill bit below the lower end of the float shoe. Only one trip is required with bi-center drill bit 112 since the drill bit will expand to a diameter greater than that of the inner diameter of the casing, and since the bi-center drill bit is capable of drilling through the drillable materials that exist in the well below coupling 90. Lower wellbore 128 can be drilled to any desired depth and has a lower end 132. Once lower wellbore 128 reaches its desired depth, the bit 112 can be withdrawn to the surface, in its non-rotating position 120, through the portion of casing 65 cemented in well 63 above lower wellbore 128. Pipe 136 can be lowered into lower wellbore 128 and cemented therein in any manner known in the art. Thus, the invention provides a method and apparatus for drilling a wellbore extension in one trip wherein the wellbore extension or lower wellbore has a diameter greater than the inner diameter of the casing cemented in the wellbore above the wellbore extension.
As depicted in
Thus, the present invention provides a method and apparatus for drilling a wellbore or wellbore extension below a previously existing steel casing cemented in the well, wherein the wellbore extension has a diameter greater than the inner diameter of the casing. The invention provides a method and apparatus for doing so with one trip into the wellbore and thus it saves time and money. The present invention is therefore well adapted to carry out the objects and obtain the benefits and advantages mentioned as well as those which are inherent therein. While numerous changes to the apparatus and methods can be made by those skilled in the art, such changes are encompassed within the spirit of this invention as defined by the appended claims.
Rogers, Henry E., Moore, Seth R.
Patent | Priority | Assignee | Title |
10016810, | Dec 14 2015 | BAKER HUGHES HOLDINGS LLC | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
10092953, | Jul 29 2011 | BAKER HUGHES HOLDINGS LLC | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
10221637, | Aug 11 2015 | BAKER HUGHES HOLDINGS LLC | Methods of manufacturing dissolvable tools via liquid-solid state molding |
10240419, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Downhole flow inhibition tool and method of unplugging a seat |
10301909, | Aug 17 2011 | BAKER HUGHES, A GE COMPANY, LLC | Selectively degradable passage restriction |
10335858, | Apr 28 2011 | BAKER HUGHES, A GE COMPANY, LLC | Method of making and using a functionally gradient composite tool |
10378303, | Mar 05 2015 | BAKER HUGHES, A GE COMPANY, LLC | Downhole tool and method of forming the same |
10612659, | May 08 2012 | BAKER HUGHES OILFIELD OPERATIONS, LLC | Disintegrable and conformable metallic seal, and method of making the same |
10669797, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Tool configured to dissolve in a selected subsurface environment |
10697266, | Jul 22 2011 | BAKER HUGHES, A GE COMPANY, LLC | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
10737321, | Aug 30 2011 | BAKER HUGHES, A GE COMPANY, LLC | Magnesium alloy powder metal compact |
11090719, | Aug 30 2011 | BAKER HUGHES HOLDINGS LLC | Aluminum alloy powder metal compact |
11167343, | Feb 21 2014 | Terves, LLC | Galvanically-active in situ formed particles for controlled rate dissolving tools |
11365164, | Feb 21 2014 | Terves, LLC | Fluid activated disintegrating metal system |
11613952, | Feb 21 2014 | Terves, LLC | Fluid activated disintegrating metal system |
11649526, | Jul 27 2017 | Terves, LLC | Degradable metal matrix composite |
11898223, | Jul 27 2017 | Terves, LLC | Degradable metal matrix composite |
7240731, | Feb 04 2003 | BAKER HUGHES HOLDINGS LLC | Shoe for expandable liner system and method |
7322413, | Jul 15 2005 | Halliburton Energy Services, Inc | Equalizer valve assembly |
7527104, | Feb 07 2006 | Halliburton Energy Services, Inc | Selectively activated float equipment |
7552772, | Feb 04 2003 | Baker Hughes Incorporated | Locating recess in a shoe for expandable liner system |
7644774, | Feb 07 2006 | Halliburton Energy Services, Inc. | Selectively activated float equipment |
7699111, | Jan 29 2008 | TAM INTERNATIONAL, INC. | Float collar and method |
8327931, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Multi-component disappearing tripping ball and method for making the same |
8424610, | Mar 05 2010 | Baker Hughes Incorporated | Flow control arrangement and method |
8425651, | Jul 30 2010 | BAKER HUGHES HOLDINGS LLC | Nanomatrix metal composite |
8573295, | Nov 16 2010 | BAKER HUGHES OILFIELD OPERATIONS LLC | Plug and method of unplugging a seat |
8631876, | Apr 28 2011 | BAKER HUGHES HOLDINGS LLC | Method of making and using a functionally gradient composite tool |
8714268, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Method of making and using multi-component disappearing tripping ball |
8776884, | Aug 09 2010 | BAKER HUGHES HOLDINGS LLC | Formation treatment system and method |
8783365, | Jul 28 2011 | BAKER HUGHES HOLDINGS LLC | Selective hydraulic fracturing tool and method thereof |
9022107, | Dec 08 2009 | Baker Hughes Incorporated | Dissolvable tool |
9033055, | Aug 17 2011 | BAKER HUGHES HOLDINGS LLC | Selectively degradable passage restriction and method |
9057242, | Aug 05 2011 | BAKER HUGHES HOLDINGS LLC | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
9068428, | Feb 13 2012 | BAKER HUGHES HOLDINGS LLC | Selectively corrodible downhole article and method of use |
9079246, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Method of making a nanomatrix powder metal compact |
9080098, | Apr 28 2011 | BAKER HUGHES HOLDINGS LLC | Functionally gradient composite article |
9090955, | Oct 27 2010 | BAKER HUGHES HOLDINGS LLC | Nanomatrix powder metal composite |
9090956, | Aug 30 2011 | BAKER HUGHES HOLDINGS LLC | Aluminum alloy powder metal compact |
9101978, | Dec 08 2009 | BAKER HUGHES OILFIELD OPERATIONS LLC | Nanomatrix powder metal compact |
9109269, | Aug 30 2011 | BAKER HUGHES HOLDINGS LLC | Magnesium alloy powder metal compact |
9109429, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Engineered powder compact composite material |
9127515, | Oct 27 2010 | BAKER HUGHES HOLDINGS LLC | Nanomatrix carbon composite |
9133695, | Sep 03 2011 | BAKER HUGHES HOLDINGS LLC | Degradable shaped charge and perforating gun system |
9139928, | Jun 17 2011 | BAKER HUGHES HOLDINGS LLC | Corrodible downhole article and method of removing the article from downhole environment |
9187990, | Sep 03 2011 | BAKER HUGHES HOLDINGS LLC | Method of using a degradable shaped charge and perforating gun system |
9227243, | Jul 29 2011 | BAKER HUGHES HOLDINGS LLC | Method of making a powder metal compact |
9243475, | Jul 29 2011 | BAKER HUGHES HOLDINGS LLC | Extruded powder metal compact |
9267347, | Dec 08 2009 | Baker Huges Incorporated | Dissolvable tool |
9284812, | Nov 21 2011 | BAKER HUGHES HOLDINGS LLC | System for increasing swelling efficiency |
9347119, | Sep 03 2011 | BAKER HUGHES HOLDINGS LLC | Degradable high shock impedance material |
9605508, | May 08 2012 | BAKER HUGHES OILFIELD OPERATIONS, LLC | Disintegrable and conformable metallic seal, and method of making the same |
9631138, | Apr 28 2011 | Baker Hughes Incorporated | Functionally gradient composite article |
9643144, | Sep 02 2011 | BAKER HUGHES HOLDINGS LLC | Method to generate and disperse nanostructures in a composite material |
9643250, | Jul 29 2011 | BAKER HUGHES HOLDINGS LLC | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
9682425, | Dec 08 2009 | BAKER HUGHES HOLDINGS LLC | Coated metallic powder and method of making the same |
9707739, | Jul 22 2011 | BAKER HUGHES HOLDINGS LLC | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
9802250, | Aug 30 2011 | Baker Hughes | Magnesium alloy powder metal compact |
9816339, | Sep 03 2013 | BAKER HUGHES HOLDINGS LLC | Plug reception assembly and method of reducing restriction in a borehole |
9833838, | Jul 29 2011 | BAKER HUGHES HOLDINGS LLC | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
9856547, | Aug 30 2011 | BAKER HUGHES HOLDINGS LLC | Nanostructured powder metal compact |
9910026, | Jan 21 2015 | Baker Hughes Incorporated | High temperature tracers for downhole detection of produced water |
9925589, | Aug 30 2011 | BAKER HUGHES, A GE COMPANY, LLC | Aluminum alloy powder metal compact |
9926763, | Jun 17 2011 | BAKER HUGHES, A GE COMPANY, LLC | Corrodible downhole article and method of removing the article from downhole environment |
9926766, | Jan 25 2012 | BAKER HUGHES HOLDINGS LLC | Seat for a tubular treating system |
Patent | Priority | Assignee | Title |
3776250, | |||
4042014, | May 10 1976 | BJ Services Company | Multiple stage cementing of well casing in subsea wells |
4067358, | Jul 18 1975 | Halliburton Company | Indexing automatic fill-up float valve |
4171019, | Jan 12 1978 | Davis-Lynch, Inc. | Apparatus and method for re-entering and cementing an underwater well |
4190112, | Sep 11 1978 | Pump down wipe plug and cementing/drilling process | |
4413682, | Jun 07 1982 | Baker Oil Tools, Inc. | Method and apparatus for installing a cementing float shoe on the bottom of a well casing |
4712619, | Jul 30 1986 | HALLIBURTON COMPANY, A CORP OF DE | Poppet valve |
4834184, | Sep 22 1988 | HALLIBURTON COMPANY, A DE CORP | Drillable, testing, treat, squeeze packer |
5472053, | Sep 14 1994 | Halliburton Company | Leakproof floating apparatus and method for fabricating said apparatus |
5647434, | Mar 21 1996 | Haliburton Company | Floating apparatus for well casing |
5722491, | Oct 11 1996 | Halliburton Company | Well cementing plug assemblies and methods |
6070667, | Feb 05 1998 | Halliburton Energy Services, Inc | Lateral wellbore connection |
6082451, | Apr 16 1996 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Wellbore shoe joints and cementing systems |
GB2351513, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 28 2001 | ROGERS, HENRY E | Halliburton Energy Services, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011664 | /0372 | |
Mar 12 2001 | MOORE, SETH R | Halliburton Energy Services, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011664 | /0372 | |
Mar 19 2001 | Halliburton Energy Services, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 22 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 02 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 25 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 04 2006 | 4 years fee payment window open |
Aug 04 2006 | 6 months grace period start (w surcharge) |
Feb 04 2007 | patent expiry (for year 4) |
Feb 04 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 04 2010 | 8 years fee payment window open |
Aug 04 2010 | 6 months grace period start (w surcharge) |
Feb 04 2011 | patent expiry (for year 8) |
Feb 04 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 04 2014 | 12 years fee payment window open |
Aug 04 2014 | 6 months grace period start (w surcharge) |
Feb 04 2015 | patent expiry (for year 12) |
Feb 04 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |