Methods are disclosed for manufacturing semiconductor device dies and for removing material from the bottom side of the wafer dies, wherein a contoured surface is provided on the die bottom, such as through an etching process. In addition, methods are disclosed for securing a semiconductor device to a surface. semiconductor wafers and die are also disclosed having contoured bottom surfaces.
|
1. A method of removing material from a semiconductor wafer bottom side, comprising:
providing a semiconductor wafer having top and bottom sides and a plurality of electrical circuits in corresponding die areas on the top side of the wafer, wherein the wafer comprises channels extending into the wafer from the top side toward the bottom side between the die areas of the wafer; removing material from the bottom side of the wafer to provide a contoured bottom surface on at least a portion of the bottom side, wherein removing material from the bottom side of the wafer comprises at least one of grinding and etching; and wherein removing material from the bottom side of the wafer comprises etching a contoured bottom surface in the bottom side of the wafer.
8. A method of fabricating a semiconductor device die, comprising:
providing a semiconductor wafer having top and bottom sides; creating a plurality of electrical circuits in corresponding die areas of the top side the wafer; creating channels extending into the wafer from the top side toward the bottom side between the die areas of the wafer; removing material from the bottom side of the wafer to expose the channels and to provide a contoured bottom surface on at least a portion of the bottom side; wherein removing material from the bottom side of the wafer comprises at least one of grinding and etching; wherein removing material from the bottom side of the wafer comprises selectively etching the bottom side of the wafer according to a pattern to create the contoured surface; and wherein selectively etching the bottom side of the wafer comprises: applying a pattern to the bottom side of the wafer using an etch resistant material; and selectively etching the bottom side pattern using a plasma to create the contoured surface. 2. The method of
3. The method of
applying an etch resistant material pattern to the bottom side of the wafer; and selectively etching the bottom side pattern using a plasma to create the contoured surface.
4. The method of
5. The method of
6. The method of
7. The method of
9. The method of
10. The method of
11. The method of
12. The method of
|
The present invention relates generally to the art of semiconductor device manufacturing and more particularly to methods for fabricating semiconductor devices having contoured bottom surfaces.
In the manufacture of semiconductor devices, such as integrated circuits (ICs), multiple devices and interconnections (e.g., circuits) are formed on a semiconductor wafer and then separated or singulated into individual parts or dies. This allows cost savings and reduced handling compared to forming the devices individually. The individual devices are located within corresponding die areas on the wafer with sufficient spacing provided between adjacent devices for subsequent separation operations and the manufacturing tolerances associated therewith. Typically, the devices are oriented in grid style on the wafer, with rows and columns of devices located on the top or front side of the wafer, wherein the devices are formed by multi-step processing involving selective deposition, removal, and/or doping of areas on the wafer surface to build electrical devices (e.g., transistors, diodes, resistors, capacitors, etc.) and connections therebetween.
Such devices may include integrated circuits, micro electro-mechanical structure (MEMS) devices, optical, opto-electronic, and other types of circuits. Photo-lithographic techniques are commonly employed in order to produce high density devices having hundreds, thousands, or millions of components with very small device feature sizes. Once the devices are created, the individual circuits on the wafer may be tested, after which the individual device dies are separated.
The wafers are typically back-ground through chemical mechanical planarization (CMP) or other material removal techniques, prior to die separation, wherein material is removed from the bottom or back side of the wafer, leaving a smooth bottom surface. The back-grinding is employed to provide dies having a desired final thickness, depending on the target application for which the dies are being produced. Separation of the individual tested dies from the wafer assembly is conventionally done by sawing or otherwise mechanically creating scribe lines such as channels or trenches extending completely through the wafer from the top side, which are located in the spacing or gaps between adjacent devices or die areas. In order to maintain the die in the row and column grid configuration, as well as to mechanically support the die during separation, a tape is applied to the bottom surface (and sometimes also to the top surface) of the wafer prior to the final separation step.
Once the individual dies are physically separated from one another, the dies can be removed from the tape, or alternatively, rows of taped components can be packaged for later provision to pick and place machinery. The semiconductor dies may then be assembled into integrated circuit chips, or may alternatively be secured directly onto printed circuit boards (PCBs), substrates, carriers, suspensions, or other mountings, wherein electrical connections are made to one or more electrically conductive bonding pads on the dies.
When employed in an integrated circuit chip, the semiconductor die is mounted onto a lead frame and wires are connected between lead frame leads and corresponding bonding pads on the die using a technique known as wire bonding. Wire bonding uses fine aluminum or gold wires (e.g., 25 μm in diameter), which are bound to the bonding pads through thermocompression bonding or ultrasonic bonding. Thermocompression bonding involves heating the die and the wire to a high temperature (e.g., about 250 degrees C.), and heating the tip of the wire to form a ball. A holding tool then forces the wire into contact with the bonding pad on the die. The wire adheres to the pad due to the combination of heat and pressure from the tool. The tool is then lifted up and moved in an arc to the appropriate position on the lead frame, while dispensing wire as required, where the process is repeated to bond the wire to the appropriate lead on the lead frame, except that a ball is not formed.
Ultrasonic bonding is sometimes used when the device cannot or should not be heated. The wire and bonding surface (e.g., a bonding pad on the die or a lead on the lead frame) are brought together by the tool, and ultrasonic vibration is used to compress the surfaces together to achieve the desired bond. Once the pads are appropriately connected to the lead frame leads, the lead frame is encapsulated in a ceramic or plastic integrated circuit package (e.g., with portions of the leads externally exposed), which may then be assembled onto a PCB by soldering the exposed leads onto corresponding conductive pads on the board.
Recently, Flip-Chip technology has become popular, wherein an individual semiconductor die is mounted directly to a substrate, PCB, suspension, flex-circuit or the like. Bumps (e.g., solder bumps, plated bumps, gold stud bumps, adhesive bumps, or the like) are added to the bonding pads of the die using a process known as bumping. For example, gold stud bumps are formed through a modified wire bonding technique. This technique makes a gold ball for wire bonding by melting the end of a gold wire to form a sphere. The gold ball is attached to the chip bond pad as the first part of a wire bond. To form gold bumps instead of wire bonds, wire bonders are modified to break off the wire after attaching the ball to the chip bond pad. The resulting gold ball, or "stud bump" remains on the bond pad and provides a permanent connection through the aluminum oxide to the underlying metal.
The bumping step is usually performed during wafer processing prior to separation of the individual die from the wafer. However, the gold stud bump process is applicable to individual single dies or to wafers. With stud bumps attached, the die or chip is then "flipped" over, with the bonding pads facing downward, and the bumps are attached to corresponding pads on the board using ultrasonic bonding techniques (hence the name "Flip-Chip"). This is typically done by locating the die face-down on the circuit board, and engaging the backside of the chip with an ultrasonic tool. Ultrasonic energy is then applied to the die, whereby an electrical and mechanical bond is formed between the bumps on the die, and the corresponding pads on the circuit board.
Such Flip-Chip applications have numerous advantages, including shorter circuit connections, lower noise susceptibility, and higher component density. Accordingly, Flip-Chip technology (sometimes referred to as direct chip attach (DCA) or chip-on-board) has been successfully employed in a variety of applications, including electronic watches, wireless telephones, pagers, high-speed microprocessors, hand-held and lap-top computers. Another important application where chips or semiconductor dies are mounted directly onto a circuit is in hard disk drives, wherein all or part of a pre-amp circuit associated with a read-write head is mounted onto a flexible circuit or suspension located just above the rotating disk media using chip-on-suspension (COS) techniques. Such a pre-amp circuit may be formed in a small, ultra-thin die (e.g., the die may need to be thin, in order to clear the rotating disk), which is mounted directly onto the suspension for electrically conditioning signals to or from the read-write head. The physical size of the suspension circuit calls for die profiles on the order of 1000 to 2000 μm, and thickness on the order of about 125 μm.
However, several problems arise in this and other applications, which conventional die fabrication and separation techniques either fail to adequately address, or may even exacerbate. One problem with existing saw cutting and other mechanical die separation techniques is wasted wafer space. Conventional spacing between adjacent die areas in a wafer is about 100 μm or more, to accommodate saw blade widths (e.g., about 25 μm or more), and the alignment inaccuracies associated with such mechanical cutting operations. Where small die are being manufactured (e.g., such as disk drive pre-amp die for a COS application), the relatively large spacing required for saw cut separation results in a large portion of the overall wafer space being unusable. In addition, many applications, such as disk drives, are susceptible to particles generated by the conventional back-grinding and saw cut separation operations. The saw cut and back-ground dies may be coated conformally in order to capture such particulate matter. However, this adds further processing steps and cost to the manufacturing process.
Additional particles may result from friction and slippage of ultrasonic tools engaging with the smooth bottom or back-side of the semiconductor dies, for example, during thermal-mechanical (e.g., ultrasonic) attachment of the die stud bumps to the corresponding pads on the suspension circuit. This tool slippage can create particles of silicon, which may break free and cause defects in the disk drive system. Moreover, the smooth bottom surface of conventional semiconductor dies provides minimal surface area to the ambient air flow around the die, resulting in less than optimal convection cooling capability for the part. Finally, conventional dies having bumps added to the input/output bonding pads, are susceptible to handling damage to the bumps. Consequently, there is a need for improved wafers, dies, and associated manufacturing and fabrication techniques, by which the above mentioned and other problems and shortcomings can be mitigated or avoided.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended neither to identify key or critical elements of the invention nor to delineate the scope of the invention. Rather, the primary purpose of this summary is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later. The invention relates to semiconductor apparatus and methodologies, which advantageously provide for improved device fabrication, separation, assembly, and operation, which finds utility in association with hard disk drives and other applications.
One aspect of the invention provides for creating slim channels or trenches between die areas in a semiconductor wafer, using a directional etch technique, such as reactive ion etching (RIE). The etched channels may be created lithographically, thereby freeing up the extra spacing between adjacent die areas previously wasted to account for mechanical alignment inaccuracy in saw-cut separating the dies. The etched channels, moreover, may be made much narrower than was possible using a saw blade. For instance, whereas conventional saw blades are about 25 μm wide or more, the etched channels can be made about 15 μm wide or less. Thus, whereas conventional spacing between adjacent wafer dies is typically 100 μm or more, the present invention allows die spacings as low as about 15 μm. This, in turn, reduces the wasted wafer space. For instance, in hard disk drive pre-amp circuit applications where small dies (e.g., with lengths and widths on the order of about 1000 to 2000 μm) are created, wafer utilization can be improved as much as about 10% through the reduced spacing between adjacent dies. Moreover, the use of chemical etching to create the channels between dies reduces or mitigates particulate matter previously associated with saw-cutting techniques.
Another aspect of the invention involves providing a contoured surface on the back or bottom side of the wafer, which may be employed alone, in combination with the etched top side channels above, or with conventional sawcut top side trenching techniques. The bottom side contoured surface may be accomplished by any suitable technique such as grinding or etching. Where a dry chemical etch technique is employed, the particles generated by conventional back-grinding can be avoided, and the removal of the bottom side material can be used to expose the etched or saw-cut top-side channels to achieve die separation or singulation. Furthermore, the provision of the contoured surface on the die bottom provides for exposure of greater die surface area to the ambient operating environment, thus facilitating improved convection cooling of the part. In addition, the contoured bottom surface may aid in reducing or avoiding particles generated during ultrasonic attachment of the die to the suspension or other circuit board. For instance, a contoured interface may be provided in an ultrasonic attachment tool, which cooperatively engages the contoured bottom surface of the die to reduce or mitigate slippage during application of ultrasonic energy.
To the accomplishment of the foregoing and related ends, the following description and annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative of but a few of the various ways in which the principles of the invention may be employed. Other aspects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
The present invention will now be described with reference to the attached drawings, wherein like reference numerals are used to refer to like elements throughout. The invention relates to semiconductor apparatus and methodologies, which advantageously provide for improved device fabrication, separation, assembly, and operation, and which find utility in association with hard disk drives and other applications. Although illustrated and described hereinafter in association with dies for directly mounting on a suspension in chip-on-suspension (COS) fashion, it will be appreciated by those skilled in the art that one or more aspects and features of the invention find application in other situations. For instance, the invention may be applied to integrated circuit manufacturing generally, including but not limited to fabricating dies for direct mounting on boards, suspensions, substrates, carriers, flex circuits, and the like, as well as dies for assembly into integrated circuit chip packages.
Among other features, the invention provides for etching slim channels (e.g., about 15 μm wide) between die areas in a wafer, allowing die spacings as low as about 15 μm, and mitigating particulate problems found in the conventional separation methodologies. The invention also advantageously provides a contoured surface on the bottom side of the wafer to enhance thermal cooling of the die in operation. The contour may be created through patterned or selective etching, whereby particles typical of conventional back-grinding can be avoided or mitigated. The contour further provides for mitigation of particulates resulting from slippage during ultrasonic attachment of dies to circuit boards by facilitating engagement of the contour with a contoured interface on an ultrasonic attachment tool, as well as for improved convection cooling of the die.
Referring initially to
Referring now to
In accordance with an aspect of the present invention, the channels 54 extend into the wafer 52 from a top side 56 toward a bottom side (not shown) between the die areas 54, and are formed using dry chemical etching. For instance, one implementation of the invention provides for removing material from the top side 56 to create the channels 64 using a directional plasma etch, such as reactive ion etching (RIE) to create channels having a width of about 15 μm or more with an aspect ratio (e.g., depth to width) of up to about 15:1. In the illustrated wafer 52, the channels 64 have a depth of about 130 μm or more and about 200 μm or less. RIE techniques comprise ion assisted etching which is anisotropic, where the etching is directional. The RIE involves chemical absorption of reactive molecules on the etched surface, impacting of ions on the surface, and physical disassociation of reaction by-products from the surface, which result in an anisotropic directional etch.
The etching process can employ photo-lithographic techniques, whereby the alignment inaccuracies inherent in the conventional mechanical saw cut scribe line approaches are avoided or mitigated, thereby allowing the spacings 60 and/or 62 to approach the channel widths 56. Also, the etching of channels 64 can provide channel widths 56 narrower than previously possible through mechanical sawing. For example, contemporary saw widths are 25 μm or more, whereas etching has been found to achieve channel widths as low as about 15 μm or less. Moreover, channel etching according to the invention advantageously mitigates or avoids particle generation, crack initiation sites and other associated problems inherent in saw cutting.
Referring now to
Referring now to
As illustrated in
The wafer 102 is then subjected to a back-grind operation 140 to remove further material from the bottom side 108, resulting in a final wafer thickness 112b of about 125 μm as illustrated in FIG. 9. The process 140 can be any type of material removal operation suitable for semiconductor devices, such as grinding or etching, whereby the channels 114 are exposed through the bottom side 108 (e.g., the final wafer thickness 112b is less than the original channel depth 124), thus separating or singulating the individual dies. Thereafter, the individual dies may be assembled into integrated circuit (IC) chip packages using wire bonding, or installed directly onto a circuit board, suspension, or the like using ultrasonic attachment techniques.
Referring now to
The etching of the contoured bottom surface may also be used to separate individual dies from a wafer, for instance, where the bottom-side etch exposes the top side channels between adjacent die areas. In addition, a mating contoured surface can be provided in ultrasonic die attachment tooling for mounting the die on the suspension (e.g., or other circuit board), wherein the engagement of the contoured surfaces mitigates slipping between the tooling and the die, and the associated particle generation. The provision of the contoured bottom surface, moreover, can be employed in association with the above mentioned etched channels, in order to provide die creation and separation substantially free of troublesome particles.
In
However, as discussed above, it will be appreciated that etching the channels 214 advantageously provides for mitigation of particle generation in the fabrication process compared to conventional saw cutting methodologies. Bumps, such as gold stud bumps 230 are provided on the top side 206 of the die areas 204, in order to provide for electrical interconnection to the circuits in the die areas 204. A tape 232 is mounted on the top side 206 covering the stud bumps 230 and the die areas 204 with a carrier layer 234 and an adhesive layer 236, in order to secure the individual dies in spatial relation to one another after die separation.
As illustrated in
Once the pattern of dots 250 is applied (e.g., through jetting or photo-lithographic techniques), an etch operation 260 is performed on the bottom side 208 as illustrated in
The pattern (e.g., size, shape, spacings, pattern, thickness, profile, etc.) of the dots 250 can thus be selected, as well as the etch rate of dots 250, and the process parameters associated with the selective etching 260, in order to provide a variety of different contoured surfaces 280 on the bottom side 208. Referring briefly to
It will be further appreciated that the contoured surface 280 may include contoured shapes 282 in a variety of patterns, spacings, pitches, etc., whereby interface with assembly tooling and convection cooling may be achieved according to specific design goals for a given semiconductor die product. In this regard, the contoured convex shapes and patterning can be selected, for example, according to one or more design criteria, such as to maximize surface area with respect to convection cooling, and/or to minimize airflow resistance and associated vibration effects (e.g., such as in a hard disk drive application where air flow proximate a rotating disk media can cause vibration of one or more system components, which can be reduced using the contoured surface 280 of the pre-amp booster pump circuit die).
The etch process 260 can be any commercially available chemical dry etch process, whereby the pattern of dots 250 and the etch process 260 can be controlled in order to effectuate the desired final contour. Moreover, the process 260 can be continued after initial exposure of the channels 214, so as to provide for a radius or bevel on the edges of the exposed channels 214, in order to mitigate stress points and reduce cracks in the dies 270, 272, and 274. Furthermore, the etch process 260 can be a non-directional etch operation, whereby contouring of the bottom side 208 may be facilitated by the sacrificial removal of the material of wafer 202 and the droplets or dots 250. It will be noted at this point, that although the wafer 202 is illustrated being contoured via selective etching of the bottom side 208 via dots 250 and the etch operation 260, that a contoured surface 280 can be provided on the bottom side 208 through other means in accordance with the invention. For example, a contoured surface 280 may be ground into the bottom side 208 to provide for advantageous convection cooling improvement, and interfacing with ultrasonic tooling in accordance with the present invention.
As illustrated in
Referring also to
Another aspect of the invention provides methods for producing and separating wafer dies. One exemplary die separation method 400 is illustrated in
At 402, a wafer is provided with top and bottom sides, and electrical circuits are created in individual die areas of the wafer at 404. The circuits can be created using known semiconductor wafer processing fabrication techniques, such as photo-lithography, deposition, etching, ion implantation, or the like, by which electrical devices (e.g., transistors, resistors, capacitors, and connections) can be formed in the wafer. At 406, channels are etched in the top side of the wafer between adjacent die areas. The channels etched at 406 extend into the wafer from the top side toward the bottom side, through removal of material from the top side of the wafer using a dry chemical etch process. For example, a directional plasma etch process, such as reactive ion etching (RIE) can be employed at 406 to create channels having a width of about 15 μm or more, and a depth of about 130 μm or more and about 200 μm or less in one implementation.
A carrier tape is then mounted onto the channeled top side of the wafer at 408. The tape fixes the relative location of individual dies in the wafer with respect to one another during subsequent die separation. In addition, where the die areas have bumps (e.g., gold stud bumps or other types of bumps) on the top side, the tape provides mechanical support and protection of the bumps during subsequent handling. Thereafter at 410, material is removed from the bottom or back side of the wafer so as to separate or singulate individual dies. For instance, the removal of material at 410 can comprise exposing the top side channels to separate adjacent dies from one another. The dies can then be removed from the tape for assembly into circuits or integrated circuit packages. The removal of bottom side material at 410, moreover, can be accomplished by any appropriate techniques, such as etching, grinding, or the like. It will be appreciated that the etching of channels at 406 provides for avoidance or mitigation of the particulate matter generated by conventional saw cut channels, and that the material removal at 410 can advantageously be performed using etching techniques in order to avoid or mitigate the same problems.
Another aspect of the invention involves creation of a contoured bottom surface on a die or wafer. The contoured surface provides for effective or improved heat convection away from the die in operation, and may further advantageously provide a low slippage interface for ultrasonic and other assembly tooling, so as to mitigate particle generation. Referring now to
At 506, the bottom side is selectively etched according to the pattern to provide a contoured bottom surface on all or a portion of the bottom side of the wafer. The bottom-side etch at 506 may further expose the channels so as to separate wafer dies from one another. The selective etching of the bottom side of the wafer at 506 can be performed using a plasma to create the contoured surface, for example, wherein a non-directional plasma etch sacrificially removes material from the wafer bottom side as well as from the pattern of polymer droplets in order to created contoured convex features or shapes on the wafer bottom. For instance, a grid pattern of circular polymer droplets can be employed together with a non-directional plasma etch, in order to provide semi-spherical convex shapes on the bottom side of the wafer. These shapes can then be used to interface with ultrasonic tooling during assembly, as well as to provide improved convection cooling during operation of the die circuitry. Any shapes and patterns can be used in accordance with the invention, whereby such advantages can be achieved. A further advantage of the various aspects of the present invention is that bumped, front-side etched, contoured back die can be packaged and shipped while still on the film carrier, thus protecting the gold stud bumps from handling damage.
Referring now to
At 608, the die stud bumps are engaged with the suspension pads, and at 610 the first and second contoured surfaces are engaged. Energy is then transferred from the ultrasonic tool to the die at 612 using the contoured interface, whereby the stud bumps are secured to the suspension pads. The first contoured surface on the die can be provided by any appropriate methodologies, including those illustrated and described above wherein patterned etching is employed. The method 600 provides for assembly of the die to the suspension or circuit while avoiding or mitigating slippage between the ultrasonic tool and the die through the cooperative engagement of the first and second contoured surfaces. The reduction in slipping, in turn, reduces or eliminates particle generation typical in conventional ultrasonic die attachment. The various aspects of the invention, such as channel etching, bottom-side etching to separate dies and to create contoured bottom surfaces, as well as the use of a contoured ultrasonic assembly tool interface may advantageously be combined to provide for substantially particle free fabrication and assembly of semiconductor dies, by which the above mentioned problems associated with such particulate matter can be mitigated or avoided.
Although the invention has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described components (assemblies, devices, circuits, etc.), the terms (including a reference to a "means") used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary implementations of the invention. In addition, while a particular feature of the invention may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms "includes", "having", "has", "with", or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term "comprising."
Patent | Priority | Assignee | Title |
6777267, | Nov 01 2002 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Die singulation using deep silicon etching |
6998328, | Nov 06 2002 | APROLASE DEVELOPMENT CO , LLC | Method for creating neo-wafers from singulated integrated circuit die and a device made according to the method |
7294559, | Jun 16 2005 | Advanced Semiconductor Engineering, Inc. | Wafer dicing process for optical electronic packing |
7601560, | Dec 30 2004 | Robert Bosch GmbH | Method for producing an electronic circuit |
8796563, | Feb 13 2009 | HITACHI ASTEMO, LTD | Connection structure, power module and method of manufacturing the same |
9257342, | Apr 20 2012 | Infineon Technologies AG | Methods of singulating substrates to form semiconductor devices using dummy material |
9406564, | Nov 21 2013 | Infineon Technologies AG | Singulation through a masking structure surrounding expitaxial regions |
9431316, | May 04 2010 | STATS CHIPPAC PTE LTE | Semiconductor device and method of forming channels in back surface of FO-WLCSP for heat dissipation |
9741618, | Apr 20 2012 | Infineon Technologies AG | Methods of forming semiconductor devices |
Patent | Priority | Assignee | Title |
3562057, | |||
5104023, | May 01 1987 | Sumitomo Electric Industries, Ltd. | Apparatus for fabrication semiconductor device |
6184063, | Nov 26 1996 | Texas Instruments Incorporated | Method and apparatus for breaking and separating a wafer into die using a multi-radii dome |
6184064, | Jan 12 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor die back side surface and method of fabrication |
6215172, | Feb 04 1997 | Micron Technology, Inc. | Grinding technique for integrated circuits |
6248648, | Nov 26 1996 | Texas Instruments Incorporated | Method of breaking and separating a wafer into die using a multi-radii dome |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 26 2001 | WACHTLER, KURT P | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012040 | /0075 | |
Jul 27 2001 | Texas Instruments Incorporated | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 26 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 22 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 24 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 01 2006 | 4 years fee payment window open |
Oct 01 2006 | 6 months grace period start (w surcharge) |
Apr 01 2007 | patent expiry (for year 4) |
Apr 01 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 01 2010 | 8 years fee payment window open |
Oct 01 2010 | 6 months grace period start (w surcharge) |
Apr 01 2011 | patent expiry (for year 8) |
Apr 01 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 01 2014 | 12 years fee payment window open |
Oct 01 2014 | 6 months grace period start (w surcharge) |
Apr 01 2015 | patent expiry (for year 12) |
Apr 01 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |