An achromatic beam shaping prism is disclosed which compensates for a fluctuation in oscillating wavelength of a semiconductor laser source of a recording type optical disc system using a single prism having a diffraction grating with a specified pitch so as to make the beam shaping prism achromatic. Two equations are given for specifying the pitch d or d' of the diffraction grating, depending on whether the diffraction grating is applied to the output surface or the input surface of the prism, respectively.
|
1. An achromatic beam-shaping prism, which converts the cross section of a beam incident onto an input surface by a given factor in a specific direction, thereby providing a beam shaping function to a beam output from an output surface of the prism, said achromatic beam shaping prism comprising:
a single prism in which a diffraction grating having a pitch d' which satisfies the following Equation (2) is formed on an input surface of the prism
where
d' is the pitch of the diffraction grating at the input surface of the prism, λ1 is the reference wavelength of the incident beam, λ2 is the wavelength of the incident beam after the change in wavelength of the light source from the reference wavelength, nλ1 is the index of refraction of the prism at wavelength λ1, nλ2 is the index of refraction of the prism at wavelength λ2, θ4 is the angle the output beam makes with the surface normal to the output surface of the prism, and α is the apex angle of the prism.
|
In an optical disc recording system, the equalization of intensity distribution (hereinafter termed "beam shaping") of a laser beam that is output from a semiconductor laser source is desired in order to optimize the shape of a light spot on a disc. For example, beam shaping prisms may be used to either compress or expand the diameter of an incident beam in a specific direction by refracting the beam. Specific examples of such beam shaping prisms are disclosed in Japanese Laid Open Applications H10-268112 and H10-62611. All of these beam shaping prisms are designed so that they not only perform beam shaping, but also can compensate for recording performance degradation caused by wavelength fluctuations of a semiconductor laser that is used to read the optical disc.
Wavelength fluctuations of a semiconductor laser frequently occur at the start of operation of a laser or when the luminous power of the laser is changed. Such wavelength fluctuations are said to be an unavoidable phenomenon in an optical disc system for recording signals on a disc medium when turning the laser ON/OFF. However, in the case where the output of a laser fluctuates from a reference wavelength, the output beam from a beam shaping prism will be emitted at a slightly different inclination as compared with the output beam at the reference wavelength, due to the index of refraction of the beam shaping prism being dependent on wavelength. For a recording-type optical disc system, this becomes a problem in that the position of a reading light spot that is formed on a disc will vary with a change in wavelength. This will cause signal degradation in recording onto a disc as well as in reading from a disc using a photo head.
In the above conventional examples, this problem is solved by using two prisms which are formed of materials that have different, refractive indexes and different dispersions. Thus, by using a pair of prisms that form an achromatic beam shaping system, the angle of an output beam is kept roughly constant so as to prevent a positional fluctuation of a light spot on a disc even when the wavelength of the incident beam fluctuates. Further, a beam shaping optical system that uses two cylindrical lenses in lieu of a pair of prisms has also been known.
An optical system is disclosed in U.S. Pat. No. 5,101,458 which enables the output direction of a beam emitted from a prism to be made substantially constant when the wavelength of an input light beam and the incident angle thereof vary. The technique disclosed in this patent leads light that is output from a waveguide into a prism arranged opposite to the waveguide. The output direction of this light is made constant for a change in wavelength by the action of a diffraction grating formed on the output face of the prism. However, the invention described in the above prior art patent employs both a waveguide and a prism, wherein the prism requires a change of the angle of incidence of the input beam to the prism. Therefore the basic idea of that invention is different from that of the present invention. In the present invention the angle of incidence of the input beam is constant and no waveguide path is needed as a necessary component.
The object of the present invention is to provide an achromatic beam shaping prism in which the output angle of an emitted beam remains substantially the same even when the wavelength of the incident beam changes and which uses a construction that enables both miniaturization and low cost.
The present invention will become more fully understood from the detailed description given below and the accompanying drawings, which are given by way of illustration only and thus are not limitative of the present invention, wherein:
This invention relates to a beam shaping prism which compresses or extends the cross-section of an incident beam in a specific direction. More particularly, this invention is directed to an achromatic beam shaping prism which can maintain the angle of an output beam constant even as the wavelength of a light source, such as a semiconductor laser and the like, fluctuates. The demand for low cost and miniaturization of components is strong for achromatic beam shaping systems. Because plural beam shaping prisms are used in all of the above-mentioned, conventional beam shaping systems, the cost of such systems is highly dependent on the cost of the beam shaping prisms. Likewise, miniaturization of the beam shaping system is highly dependent on the size of the beam shaping prism.
The achromatic beam shaping prism of the present invention converts a beam that is incident onto an input plane of the prism by expanding or compressing the cross-section of the input beam by a given factor in a specific direction so as to shape the cross-section of an output beam from an exit plane of the prism. The achromatic beam shaping prism of a first species of the present invention is formed of a single prism that includes a diffraction grating formed on an output surface thereof that satisfies the following Equation (1):
where
d is the pitch of the diffraction grating at the output surface of the prism,
nλ1 is the index of refraction of the prism material at wavelength λ1,
θ1 is the angle the incident beam makes with the line that is normal to the input surface of the prism,
α is the apex angle of the prism,
nλ2 is the index of refraction of the prism material at wavelength λ2,
λ1 is the reference wavelength of the incident beam, and
λ2 is the wavelength of the incident beam after the change in wavelength of the light source from the reference wavelength.
The achromatic beam shaping prism of the invention converts the cross-section of a beam that is incident onto a surface by expanding it or compressing it by a given factor in a specific direction. Instead of having a diffraction grating on its output surface, as illustrated in
where
d' is the pitch of the diffraction grating at the input surface of the prism,
θ4 is the angle the output beam makes with the line that is normal to the output surface of the prism, and
nλ2, α, nλ1, λ1 and λ2 are as previously defined.
Moreover, when the point of intersection of the optical axis of an incident beam with an input plane or the point of intersection of the optical axis of an output beam with an output plane (the input plane and output plane will each hereinafter be termed a "boundary surface") are taken as rotation centers and the normal to the boundary surface at the point of intersection is rotated so that it overlaps with the optical axis of the beam, the above angle of the incident beam and the above angle of the output beam are taken as positive if the rotation direction is counterclockwise. Furthermore, the apex angle α of the prism represents an angle made by the input plane and the output plane of the prism. If the line where the two planes cross is taken as a rotation axis, the apex angle α is taken as positive if the input plane is rotated counterclockwise in order to align it with the output plane.
The invention will be described in general terms with reference to
As shown in
Moreover, the present invention provides a beam shaping function not only in the case where the angle of incidence (as measured from the surface normal of the input surface 2) takes a relatively large value (as shown in FIG. 1A), but also in the case where the output angle (as measured from the surface normal of the output surface 3) takes a relatively large value (not illustrated).
Furthermore, by providing a diffraction grating on the output surface having a pitch d which satisfies Equation 1, the output angle of the emitted beam can be made to remain substantially constant even when the wavelength of the incident beam fluctuates. Equation (1) specifies a pitch d of a diffraction grating on the output surface which makes the output angle substantially constant even though the wavelength of the beam that is incident the input surface of the prism changes from the reference wavelength λ1 to a wavelength λ2. Thus, the diffraction grating makes the prism achromatic in its refraction of an incident beam. If, instead of having a diffraction grating applied to the output surface, it is desired to have a diffraction grating applied to an input surface of the prism (as shown in
In
Equation (1) specifies the pitch d of a diffraction grating at the output surface which will make the beam shaping prism 1 achromatic.
The following Equations (3)-(5) assume that the incident beam has a reference wavelength λ1:
where
θ2λ1 is the angle of refraction, as measured from the input surface normal, of a beam at the reference wavelength λ1 on the input surface of the prism,
θ3λ1 is the angle of incidence of the beam at reference wavelength λ1 at the output surface of the prism, as measured from the output surface normal,
θ4λ1 is the output angle of the beam at reference wavelength λ1 at the output surface of the prism, as measured from the output surface normal, and
θ1, nλ1, α, d and λ1 are as defined previously.
Equation (3) above is merely Snell's law for the case where the incidence angle θ1 does not vary with the wavelength of the incident beam. Equation (4) relates the angles of a beam transmitted within a triangular prism, as is evident from FIG. 2A. Equation (5) relates the incident angle and exit angle of a collimated beam that is diffracted by a diffraction grating.
The following Equations (6)-(8) are for the case where the wavelength of the incident beam changes from the reference wavelength λ1 to the wavelength λ2;
where
θ2λ2 is the angle of refraction of the beam at the input surface of the prism, after the change in wavelength of the source from λ1 to λ2, as measured from the input surface normal,
θ3λ2 is the angle of incidence of the beam at the output surface of the prism, after the change in wavelength of the source from λ1 to λ2, as measured from the output surface normal,
θ4λ2 is the output angle of the beam after the change in wavelength of the source from λ1 to λ2 at the output surface of the prism, as measured from the output surface normal, and
θ1, nλ2, α, d, and λ2 are as defined previously.
Moreover, for the beam shaping prism to be achromatic, the following Equation (9) must be satisfied:
where θ4λ1 and θ4λ2 are as defined above.
If the difference between Equation (5) and Equation (8) is expressed in terms of the incidence angle θ1 using the above Equations (3)-(9), it becomes the above Equation (1). Furthermore, the aforesaid beam shaping factor β is expressed as β=A/a=(cos θ2 cos θ4)/(cos θ1 cos θ3) by using the angles θ1 to θ4 shown in FIG. 2A.
The above Equation (2) is derived in roughly the same manner as that of Equation (1). Thus, a detailed description will be omitted. By satisfying Equation (2) the beam shaping prism is made achromatic so that substantially no fluctuation of the angle of the output beam occurs even though the wavelength of the incident beam fluctuates. In this way, the beam shaping prisms shown in
Embodiments 1-4 of the achromatic beam shaping prism of present invention are illustrated in
Various embodiments of the invention, all with a diffraction grating that satisfies Equation (1) that is applied to the output surface of a prism, will now be given in detail.
nλ1=1.514521
nλ2=1.514207
θ1=71.86°C
α=38.25°C
where nλ1, nλ2, θ1 and α are as defined above.
Moreover, in this achromatic beam shaping prism 1, a diffraction grating satisfying the above Equation (1) is formed on the output surface 3. Namely, the pitch d of this diffraction grating is taken as 40.05 μm.
In the present embodiment, the output angle θ4 from the prism 1 is taken as 0.0°C. Namely, the present embodiment is an example in which θ4 (=θ4λ1=θ4λ2) used in the description of the above Equation (1) is taken as 0.0 degrees.
nλ1=1.776646
nλ2=1.775578
θ1=70.17°C
α=30.63°C
where nλ1, nλ2, θ1 and α are as defined above.
In this achromatic beam shaping prism 1, a diffraction grating satisfying the above Equation (1) is formed on an output surface 3a. Namely, the pitch of this diffraction grating is taken as 15.59 μm.
As in the first embodiment, the output angle θ4 from the prism 1 in this embodiment is 0.0 degrees.
nλ1=1.514521
nλ2=1.514207
θ1=71.85°C
α=38.86°C
where nλ1, nλ2, θ1 and α are as defined above.
In this achromatic beam shaping prism 1, a diffraction grating satisfying the above Equation (1) is formed on an output surface 3b. Namely, the pitch of this diffraction grating is taken as 39.52 μm.
In the present embodiment, the output angle θ4 from the prism 1 is taken as -0.9°C. In other words, in the present embodiment, λ4 (=θ4λ1=θ4λ2) used in the description of the above Equation (1) is taken as -0.9°C.
nλ1=1.776646
nλ2=1.775578
θ1=70.16°C
α=31.97°C
where nλ1, nλ2, θ1 and α are as defined above.
In this achromatic beam shaping prism 1, a diffraction grating satisfying the above Equation (1) is formed on an output surface 3c. Namely, the pitch d of this diffraction grating is taken as 15.00 μm.
In the present embodiment, the output angle from the prism 1 is taken as -2.5 degrees. In other words, in the present embodiment, θ4 (=θ4λ1=θ4λ2) used in the description of the above Equation (1) is taken as -2.5 degrees.
As described above, this invention provides a beam shaping prism of simple construction which is made to be achromatic in order to correct for fluctuations of the oscillating wavelength of a semiconductor laser source by including a diffraction grating on either the input surface or the output surface of the prism, with the diffraction grating having a different specified pitch depending on whether the diffraction grating is applied to the output surface or the input surface of the prism.
The invention being thus described, it will be obvious that the same may be varied in many ways. For example, the incident angle θ1 and/or the apex angle α of the prism can be readily changed, thereby providing an arbitrary beam shaping factor. Furthermore, the cross-sectional shape of the diffraction grating portion may be any shape, such as rectangular, stepwise, zigzag and so on. If the utilization efficiency of light is considered, however, a zigzag or stepwise cross-sectional shape is preferable. It is also possible for each of Embodiments 2-4 to have the diffraction grating at the input plane of the prism, as in the second species of Embodiment 1 (i.e., as illustrated in FIG. 1B). Also a diffraction grating can be formed on both the input side and output side of the prism, in which case effects similar to those described in the given embodiments can also be obtained. Further, although the above embodiments are described in terms of responding to changes of the oscillating wavelength of a semiconductor laser source, these embodiments can also be used with any light beams containing two wavelengths. Such variations are not to be regarded as a departure from the spirit and scope of the invention. Rather the scope of the invention shall be defined as set forth in the following claims and their legal equivalents. All such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Patent | Priority | Assignee | Title |
7813644, | May 10 2004 | Raytheon Company | Optical device with a steerable light path |
Patent | Priority | Assignee | Title |
5101458, | Nov 08 1990 | The University of Rochester | Achromatic input/output coupler for integrated optical circuits |
5625499, | Dec 11 1992 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Achromatic and apochromatic prism element employing prisms and gratings |
5652681, | Dec 18 1992 | Hughes Electronics | Grism (grating-prism combination) |
JP10268112, | |||
JP1062611, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 16 2001 | Fuji Photo Optical Co., Ltd. | (assignment on the face of the patent) | / | |||
Jul 16 2001 | KATSUMA, TOSHIAKI | FUJI PHOTO OPTICAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 011997 | /0513 |
Date | Maintenance Fee Events |
Sep 29 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 22 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 25 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 22 2006 | 4 years fee payment window open |
Oct 22 2006 | 6 months grace period start (w surcharge) |
Apr 22 2007 | patent expiry (for year 4) |
Apr 22 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 22 2010 | 8 years fee payment window open |
Oct 22 2010 | 6 months grace period start (w surcharge) |
Apr 22 2011 | patent expiry (for year 8) |
Apr 22 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 22 2014 | 12 years fee payment window open |
Oct 22 2014 | 6 months grace period start (w surcharge) |
Apr 22 2015 | patent expiry (for year 12) |
Apr 22 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |