An integrated package suited to the packaging of medical devices and surgical equipment including devices and equipment used in heart by-pass surgery has a container and a snap-fit lid. The container and the lid have topographies suitable to conform to the medical components in the container and hold them securely. The lid has first and second grooves which engage a projection on the container and permit the lid to be used in a shipping orientation and a disposal orientation.
|
1. A packaging system for medical components comprising:
a container having an interior surface and an opening; a lid sized to attach to the container in a manner that covers the opening, the lid having a first side and a second side; and means for attaching the lid to the container such that the lid may be attached to the container with the first side facing the interior surface when the container is in a shipping mode used for shipping medical products or with the second side facing the interior surface when the container is in a disposal mode used for disposing of medical products, a first force being required to remove the lid from the container when the container is in the shipping mode and a second force being required to remove the lid from the container when the container is in the disposal mode, the second force being greater than the first force.
2. The packaging system of
3. The packaging system of
5. The packaging system of
6. The packaging system of
|
This is a continuation of application Ser. No. 09/469,965, filed Dec. 21, 1999, now U.S. Pat. No. 6,311,838, the contents of which are hereby incorporated herein by reference.
This invention relates to the packaging of medical components. More particularly, this invention relates to sterile packages of medical equipment and devices used in heart surgery.
Various sterile packages are used to hold medical components (i.e., devices and equipment) or instruments for surgical procedures. One type of packaging is a molded or thermo-formed sterilized substantially rigid plastic container capable of holding various components. Another type is a flexible pouch into which equipment and supplies can be inserted. The necessary supplies and equipment for a particular surgery are packaged together, sterilized, and delivered to the operating room ready for use.
The current method of packaging oxygenators (i.e., equipment to substitute for lung function during heart by-pass surgery) typically is "bagging" the device in a flexible permeable bag. The device in the bag may be supported by formed plastic within the bag. Supports outside the bag may also used. Such include formed or die-cut foam, die-cut corrugated paperboard, or formed plastic. The flexible permeable bag seals in the oxygenator and acts as a sterile barrier. However, maintaining a sterile barrier with a flexible bag is difficult for a device such as an oxygenator, which may weigh as much as about 6 lb. (2.7 kg), and which contains multiple sharp protrusions (e.g., ports, stopcock manifolds, and mating edges of rigid plastics). Moreover, a flexible bag functions poorly in distributing forces of the oxygenator within the bag, creating pressure points vulnerable to vibrational friction and shock. In addition, the bag can be damaged during handling (before surgery) when the bag and its contents are removed from its shipping container.
Oxygenators are part of perfusion systems used in heart surgery. Similar packaging issues have arisen for perfusion equipment other than oxygenators. Perfusion systems typically contain one or more of an oxygenator, tubing sets, filters, blood reservoirs, sensors, connectors, blood cooling coils and other items comprising an extracorporeal blood circuit that may be used in heart by-pass procedures.
A technician assembles and packages the components of a perfusion system to the specifications of a particular hospital, typically as defined by the surgical team. Thus there are a variety of types of such packages on the market and the components of these packages may very greatly. For example, in addition to the variability in the number and type of components present in the package, the components may be connected in a sequence and with varying lengths of tubing as specified by the surgical team. It is frequently desirable to provide the packages "pre-connected", so that very little, if any, set up of the packaged components is required.
One currently available perfusion package is a rigid thermoformed container with a rigid inner tray securely taped within the container. The inner tray holds the necessary components and devices of the perfusion package by various shaped holders, adhesive tapes, and fasteners. The container is sealed with a breathable covering, such as a polyethylene membrane (such as that commercially available under the trade designation TYVEK™ from E.I. DuPont deNemours and Co.). A breathable covering permits sterilization of the package with ethylene gas.
Another commercial product is a two-tiered system having a rigid thermoformed plate separating the tubing sets on the bottom tier of a rigid container from the oxygenator and pump lines on the top tier. The contents of the package are secured by using shrink-wrap film. The entire tray is covered with sterile surgical paper and sealed in a breathable bag. The system is sterilized and then shipped to the customer.
Yet another packaging system is a semi-rigid corrugated plastic tray that has metal framing to provide added support to the tray. Devices and components are strapped within holders or formed parts that are adhered to the floor of the tray and secured with mechanical fasteners. Once the tray has been packed, it is covered with a corrugated plastic lid. The entire system is placed into a breathable sterile barrier bag for sterilization before use.
Current packaging systems share some disadvantages. Current systems typically are packed to each customer's specifications so each package may have different components in it. There is no defined position in the package for a component. Typically the technician who is packing perfusion equipment loads in the medical components and restrains them from movement by means of various fasteners. Because of this, the systems are not only time-consuming to pack but operator inconsistencies develop because of variable placement of the components. These disadvantages also lead to more costly assembly time.
Disposal of the package, once the components in the package have served their use in surgery, can also be problematic. Typically, the components and the package are placed in bags or pouches for removal and disposal. This also is an additional expense and can be time consuming.
Thus, a need in the art exists for a packaging system for medical components which provides ease of assembly and use, adequate support and cushioning for the components, the ability to vary the types of components without changing the package, and a way to dispose of the package inexpensively and conveniently.
This invention is an integrated package particularly suited to the packaging of medical devices and surgical equipment including devices and equipment used in heart by-pass surgery. The package comprises a container and a snap-fit lid. The lid is positioned in the opening of the container and pushed into position. A projection on the container and a groove on the lid provides a "snap-fit" of the lid to the container.
In a first aspect, this invention is a packaging system for medical components comprising a container having a bottom surface, first and second opposing sidewalls and third and fourth opposing sidewalls, the bottom surface and sidewalls being connected to form an interior surface of the container such that an opening is formed in the container opposite the bottom surface, the opening being defined by a top edge of the sidewalls, the sidewalls having a circumferential projection in the direction of the interior surface; and a lid having a first side and a second side and a perimeter section sized to fit within the opening in the container, the perimeter section having at least one circumferential groove, the lid being configured to attach to the container in a manner that covers the opening in one of a first mode where the second side of the lid is oriented toward the interior surface of the container and a second mode where the first side of the lid is oriented toward the interior surface of the container, the at least one groove being configured to accommodate the projection when the lid is attached in the first mode and when the lid is attached in the second mode.
The circumferential projection may be continuous and the groove may be continuous. In a preferred embodiment, there are two grooves on the lid. In another preferred embodiment, one of these grooves is continuous and the other groove is provided with at least one channel. Preferably, the projection is substantially parallel to the top edge of the sidewalls and the projection is located adjacent the top edge of the sidewalls. When the lid is attached in the first mode, the interior surface of the container and the second side of the lid define a first enclosed volume and when the lid is attached in the second mode, the interior surface of the container and the first side of the lid define a second enclosed volume wherein the first volume is less than the second volume.
In a second aspect, this invention is a packaging system for medical components comprising a container having an interior surface and an opening; a lid configured to attach to the container in a manner that covers the opening, the lid having a shipping side and a disposal side; and means for attaching the lid to the container such that the lid may be attached to the container with the disposal side facing the interior surface or with the shipping side facing the interior surface.
In a third aspect, this invention is a packaging system for medical components comprising a container having a bottom surface, and sidewalls including first and second sidewalls, the bottom surface and sidewalls being connected such that an opening in the container is formed opposite the bottom surface, the first and second sidewalls including at least one rib; a lid configured to cover the opening in the container; and an insert configured for mounting on one of the first and second sidewalls, the insert having a surface configured to be securely affixed to the rib of the first sidewall when the insert is mounted on the first sidewall and to be securely affixed to the rib of the second sidewall when the insert is mounted on the second sidewall.
Preferably, the insert is removably secured to the at least one rib. The rib may have a V-shape. The insert may be a folding plate. The lid may have a topography adapted to conform to the shape of the medical components in the container and the insert may have a topography adapted to conform to the shape of medical components held by the insert.
In a fourth aspect, this invention is a packaging system for medical components, comprising a container having an interior surface and an opening; a lid configured to attach to the container in a manner that covers the opening; and means for securing the medical components within the container.
In a fifth aspect, this invention is a packaging system for medical components comprising a container having an interior surface and an opening, the interior surface having first and second protrusions; a lid configured to attach to the container in a manner that covers the opening; and an insert configured for selective mounting in multiple locations within the container including adjacent one of the first and second protrusions, the insert having a surface configured to be securely affixed to the first protrusion when the insert is mounted adjacent the first protrusion and to be securely affixed to the second protrusion when the insert is to be mounted adjacent the second protrusion.
In a sixth aspect, this invention is a method of packaging medical components comprising supplying a packaging system including a container having an interior surface and an opening, the interior surface having at least one protrusion, a lid configured to attach to the container in a manner that covers the opening, and an insert having a surface configured to connect with the at least one protrusion and to conform to the surface contour of a medical component; placing a medical component within the container with a surface contour of the medical component conforming to the surface of an insert which is connected to the protrusion; and attaching the lid to the container to secure the medical component within the container.
In a seventh aspect, this invention is a method of disposing of used medical components comprising supplying a packaging system for shipment of the medical components, the packaging system comprising a container having an interior surface and an opening, and a lid configured to attach to the container in a manner that covers the opening in both a shipping mode in which a first side of the lid faces the interior surface and a disposal mode in which a second side of the lid faces the interior surface; placing the used medical components in the container in which they were shipped; covering the container with the lid oriented in the disposal mode such that the second side of the lid faces the interior surface.
This invention is a packaging system particularly suited to the packaging of medical components such as medical devices and equipment used in surgery. In a preferred embodiment, the packaging system contains devices and equipment comprising an extracorporeal blood circuit used in heart by-pass surgery. The packaging system comprises a container and a snap-fit lid. The container is provided with a projection that matingly engages with a groove on the snap-fit lid. Alternately, a groove on the container could matingly engage with a projection on the lid. The container is designed to hold various medical components, including one or more of oxygenators, tubing sets, filters, blood reservoirs, sensors, connectors, and blood cooling coils. The components may be joined together by tubing, i.e., pre-connected, for immediate use in surgery. The packaging system minimizes the use of tapes and straps to restrain the medical components from movement and preferably omits the use of tapes and straps.
In a preferred embodiment, first and second parallel grooves on the snap-fit lid are designed to engage with the projection on the container depending on the orientation of the lid. When a first groove engages the projection, the packaging system is in shipping mode. When the second groove engages the projection, the system is in disposal mode. The second groove is designed so that it is very difficult to remove the lid once it has been placed on the container in its disposal mode.
Any suitable inert, sterilizable material may be used to form the packaging system of this invention. Preferably, the container and the lid are each formed from plastic materials to a desired shape, size, and topography. Formed plastic materials include, for example, thermoformed and injection molded polymers. Suitable plastic materials for use in this invention include, for example, polyethylene, polyester, polycarbonate, polyethylene terephthlate, polystyrene, and polyvinylchloride.
The lid and container are manufactured to any desired dimension. A typical packaging system for perfusion equipment may be, for example, about 30 inches wide by 24 inches long by 13 inches high (76 cm by 61 cm by 33 cm).
The lid and the container are designed to hold various components and may have cavities, recesses, partitions, or other features formed into them, producing the desired topography for the system, as described further below. Alternatively, other features can be added to the container or to the lid by use of adhesives or by sonic welding. Preferably, at least some of the medical components are held securely in the container by means of one or more removable inserts. The molded inserts may fit along a sidewall, at a corner, or on the bottom of the container. They can be used as necessary to hold various components. It is preferred that the medical components are held securely in the container by fitting components into designed recesses. This is important particularly after medical components have been pre-connected. In this way, they are ready for use when the container is opened. However, they may alternatively, or additionally, be secured by adhesive, adhesive tapes, mechanical fasteners, and the like. Mechanical fasteners preferably include hook and loop fasteners such as those commercially available under the trade designation VELCRO™ fasteners.
Medical components and devices are placed into the container in a desired arrangement and the lid is positioned onto the container. A permeable "lid-stock" or membrane, such as a permeable high density polyethylene is affixed to the container, typically by heat sealing with a platen. A suitable and conventionally used permeable, as well as tear resistant, material is a polyethylene commercially available under the trade designation TYVEK™ from DuPont.
The packaging system is sterilized by exposing the container to a sterilizing gas, such as ethylene oxide, or to gamma radiation, as is known to those of skill in the art. Sterilizing gas passes through the permeable membrane and into the container. If ethylene oxide is the sterilization method used there may be channels or interruptions in the groove that engages with the projection so that gas may flow through. The lid of the container may be provided with passages or throughways so that gas can flow into the container. After sterilization, the packaging system is placed in a container such as a cardboard box and shipped to the user.
Turning now to the Figures, the features of the packaging system are described in detail.
In an alternate embodiment of the packaging system, the container may be provided with more than one projection. A projection nearest the top opening would be used to engage a groove on a lid. Another projection could be located on one or more walls of the container farther away from the top opening. This projection could be used to engage a groove on a plate or a divider. In this way, a partial or full plate or divider could be positioned within the container. For example, a horizontal plate or divider could be positioned in the container using a projection in the container to engage with a groove on a plate or divider.
Container 10 also has sealing flange 19 disposed about opening 8. The sealing flange permits heat-sealing of a permeable membrane (not shown) over the top of the lid once the components are loaded into the container.
Lid 20 may be provided with various shapes or contours which conform to the shape of the medical components in the container to facilitate holding the components in the container as described further below. Lid 20 has major surfaces or sides 50 and 51 and sidewalls 52, 54, 56, and 58. The perimeter of lid 20 is sized to fit within the opening in the container. The shipping mode of the container is shown with major surface or side 50 facing upward in FIG. 1 and major surface or side 51 facing downward, into the interior of container 10. Lid 20 is provided with groove 22 along the outside perimeter, i.e., the circumference, of the lid sidewalls 52, 54, 56, and 58. Groove 22 engages projection 11 when the lid is pushed onto the container. The preferred orientation for lid 20 is as shown in
In contrast, the cross-section of groove 24 is not the same as that of groove 26. Groove 26 can be viewed as comprised of two surfaces 83 and 85. Surface 83 is substantially perpendicular to the plane of the lid sidewall. This results in a tight fitting engagement of the lid on the container when the lid is positioned for disposal mode and much more difficulty in removing the lid.
During shipment, the combination of permeable barrier (sealed to the top perimeter of the container) and a corrugated over-wrap (not shown) prevent excessive flexing of the container sidewalls. The lid-stock and over-wrap also assist in restraining the lid, and thus also restrain the components in the package. In disposal mode, the used medical components are returned to the container, and the lid is placed on the container in a 180°C orientation from the shipping mode. This results in a larger volume for the enclosed container, as can be seen in
A gasket also could be provided on the lid of the packaging system. This would be useful in disposal mode so that the system can be used as a primary vessel for waste disposal.
Although a particular embodiment of the invention has been disclosed herein in detail, this has been done for the purposes of illustration only, and is not intended to be limiting with respect to the scope of the appended claims. It is contemplated that various substitutions, alterations, and modifications may be made to the embodiment of the invention described herein without departing from the spirit and scope of the invention as defined by the claims.
Johnson, Jeffrey P., Jacobson, Peter S., Stoneburner, Joseph H.
Patent | Priority | Assignee | Title |
10182878, | Jun 05 2012 | MG STROKE ANALYTICS INC | Systems and methods for enhancing preparation and completion of surgical and medical procedures |
10577165, | Sep 25 2017 | SEE Forming L.L.C.; SEE FORMING L L C | Key retention system for product packaging |
10722384, | Mar 01 2017 | Nordson Corporation | Medical material mixer and transfer apparatus and method for using the same |
11155381, | Oct 08 2018 | SEE Forming L.L.C. | Joinable thermoform product packaging |
7308985, | Jul 14 2004 | Boston Scientific Scimed, Inc | Packaging for a kit, and related methods of use |
8303599, | Jan 30 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Syringe |
8403936, | Jan 30 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Syringe and stand |
8945134, | Jan 30 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Syringe and stand |
9186217, | Jun 05 2012 | MG STROKE ANALYTICS INC | Systems and methods for enhancing preparation and completion of surgical and medical procedures |
9376237, | Oct 06 2011 | Wera-Werk Hermann Werner GmbH & Co. KG | Storage device for tools comprising a palpable indication element indicating the organization-defining structural elements |
9717562, | Jun 05 2012 | MG STROKE ANALYTICS INC | Systems and methods for enhancing preparation and completion of surgical and medical procedures |
D500676, | Jul 15 2002 | STEPHENSON GROUP LTD | Mold container |
D713738, | Sep 12 2012 | Apple Inc | Packaging with accessories |
Patent | Priority | Assignee | Title |
3851649, | |||
4523692, | Jun 30 1983 | Reversible security cover for stackable and nestable tote box | |
4697703, | Jul 02 1986 | Joint prosthesis package | |
4736850, | Oct 17 1986 | W L GORE & ASSOCIATES, INC | Endothelial cell harvesting kit |
4807747, | Apr 11 1986 | Champion Spark Plug Company | Package structure for spark plugs |
4850504, | Nov 03 1988 | Kraft Foods, Inc | Spring ring easy-open positive-reclose hermetic food package |
5031768, | Apr 09 1990 | Ultradent Products, Inc. | Instrument tray and disposable receptacle having alternative locking means |
5085317, | Mar 15 1989 | Flugger A/S | Liquid-containing container |
5148920, | Mar 18 1991 | ZIMMER TECHNOLOGY, INC | Package and package insert |
5244087, | May 01 1989 | Canon Kabushiki Kaisha | Container for accommodating ink jet head cartridge |
5392918, | Oct 04 1993 | Kensey Nash Corporation | Sterile packaging including a tray and a holder for a intravascular guide-wire and a vascular puncture closure system |
5398908, | Nov 14 1991 | Zentralschweizerischer Milchverband (MVL) | Container for receipt of an edible good |
5419451, | Nov 10 1993 | Design Specialties, Inc. | Stacking tray and lid assembly |
5494162, | Nov 18 1994 | XOMED SURGICAL PRODUCTS, INC | Package and method for delivering a medical implant |
5507385, | Aug 12 1994 | Rubbermaid Incorporated | Multipurpose storage bin |
5520939, | Mar 31 1994 | Kraft Foods Group Brands LLC | Rigid reclosable bacon package |
5553712, | May 05 1995 | Suncast Corporation | Trading card carrying and display case |
5738241, | Feb 12 1996 | ZETA CONSUMER PRODUCTS CORP | Multi-purpose compartmentalized craft box |
5795604, | Mar 31 1994 | Kraft Foods Group Brands LLC | Rigid reclosable bacon package |
5971152, | Jul 01 1998 | RAY PRODUCTS COMPANY, INC | Container with reinforced tab and method |
6311838, | Dec 21 1999 | Cobe Cardiovascular, Inc. | Packaging system for medical components |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 06 2001 | Cobe Cardiovascular, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 18 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 08 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 13 2015 | REM: Maintenance Fee Reminder Mailed. |
Jul 08 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 08 2006 | 4 years fee payment window open |
Jan 08 2007 | 6 months grace period start (w surcharge) |
Jul 08 2007 | patent expiry (for year 4) |
Jul 08 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 08 2010 | 8 years fee payment window open |
Jan 08 2011 | 6 months grace period start (w surcharge) |
Jul 08 2011 | patent expiry (for year 8) |
Jul 08 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 08 2014 | 12 years fee payment window open |
Jan 08 2015 | 6 months grace period start (w surcharge) |
Jul 08 2015 | patent expiry (for year 12) |
Jul 08 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |