A system and method for path protection switching in ring networks is provided in which the path protection switch occurs at the transmitter node that initiated a particular virtual channel of data packets onto the ring network. A failure in one of the data communication-paths of the ring network is detected by the network nodes on either side of the failure. These network nodes then initiate a wrap mechanism that embeds a special feedback wrap indicator flag into packets received at the two nodes, and then wraps (or transmits back) these packets (with the feedback indicator) in the opposite direction towards the transmitter node that initiated the packets onto the ring. Each transmitter node detects whether received packets are associated with virtual channels that it initiated onto the ring and if so detected, then determine whether the feedback indicator flag is set. If so, then a protection switch occurs at the transmitter node so that additional packets associated with the particular virtual channel are switched in a direction opposite to the failure. A ring continuity mechanism is used to determine when to revert the transmitter nodes back to their prior operating state, and a garbage collection function is also included.
|
16. A method of discarding packets in a ring network, comprising the steps of:
(a) detecting an anomalous condition between two nodes in the ring network; (b) if an anomaly is detected, then setting a wrap indicator flag in packets received at the two nodes and wrappping those packets away from the anomaly; and (c) if a packet having a wrap indicator flag set is received at a node that is wrapping packets away from an anomaly, then discarding those received packets.
6. A method of path protection switching in a ring network, comprising the steps of:
Detecting a failure at a first network node in the ring network; setting a forward wrap notification indicator in the overhead section of each packet received at the first network node; wrapping the received packets away from the failure and back towards a second network node that initiated the packets onto the ring network; detecting the wrapped packets at the second network node; and switching the transmitter of the second network node so that additional packets are transmitted away from the first network node where the failure exists.
11. A system for path protection switching in a ring network having a plurality of network nodes coupled together by one or more data communication paths, comprising:
a detector in each of two network nodes for detecting a faulty condition between the nodes; a wrap controller in each of the two network nodes for engaging a wrap mechanism when the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards a transmitter network node that initially transmitted the data packets onto the ring network; a detector at the transmitter network node for detecting the wrapped packets; and a path protection controller at the transmitter network node that switches additional packets away from the faulty condition wherein the path protection controller includes a virtual path controller and a local switch.
12. A system for path protection switching in a ring network having a plurality of network nodes coupled together by one or more data communication paths, comprising:
a detector in each of two network nodes for detecting a faulty condition between the nodes; a wrap controller in each of the two network nodes for engaging a wrap mechanism when the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards a transmitter network node that initially transmitted the data packets onto the ring network; a detector at the transmitter network node for detecting the wrapped packets; and a path protection controller at the transmitter network node that switches additional packets away from the faulty condition, wherein the wrap controller-embeds a feedback indicator flag into the wrapped packets to indicate that the packets have been wrapped away from a faulty condition.
13. A system for path protection switching in a ring network having a plurality of network nodes coupled together by one or more data communication paths, comprising:
a detector in each of two network nodes for detecting a faulty condition between the nodes; a wrap controller in each of the two network nodes for engaging a wrap mechanism when the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards a transmitter network node that initially transmitted the data packets onto the ring network; a detector at the transmitter network node for detecting the wrapped packets; and a path protection controller at the transmitter network node that switches additional packets away from the faulty condition, wherein the path protection controller embeds a virtual channel indicator into each packet that is initiated onto the ring network by the particular transmitter network node so that if the packets are wrapped by another node, the transmitter network node can determine which packets to protection switch.
1. A method of path protection switching in a ring network having a plurality of network nodes coupled together by one or more data communication paths, comprising the steps of:
detecting a faulty condition between two of the network nodes in the ring network; engaging a wrap mechanism at the two network nodes where the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards the transmitter network node that initially transmitted the data packets onto the ring network; detecting the wrapped packets at the transmitter network node; engaging a path protection switch at the transmitter network node that switches additional packets away from the faulty condition; embedding a feedback wrap indicator flag in the wrapped packets to indicate that the packets have been wrapped by one of the two network nodes where the faulty condition is detected; and examining the wrapped packets at the transmitter node to determine whether the feedback wrap indicator flag is set, and if so, then engaging the path protection switch at the transmitter node.
15. A system for path protection switching in a ring network having a plurality of network nodes coupled together by one or more data communication paths, comprising:
a detector in each of two network nodes for detecting a faulty condition between the nodes; a wrap controller in each of the two network nodes for engaging a wrap mechanism when the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards a transmitter network node that initially transmitted the data packets onto the ring network; a detector at the transmitter network node for detecting the wrapped packets; a path protection controller at the transmitter network node that switches additional packets away from the faulty condition; a master ring continuity detector node that continuously senses whether a faulty condition exists on the ring network, and transmits ring continuity status packets to each of the other network nodes; and wherein the path protection controller reverts back to its prior switching state when the master node transmits ring continuity status packets that indicate that the fault condition has been corrected.
10. A system for path protection switching in a ring network having a plurality of network nodes coupled together by one or more data communication paths, comprising:
a detector in each of two network nodes for detecting a faulty condition between the nodes; a wrap controller in each of the two network nodes for engaging a wrap mechanism when the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards a transmitter network node that initially transmitted the data packets onto the ring network; a detector at the transmitter network node for detecting the wrapped packets; and a path protection controller at the transmitter network node that switches additional packets away from the faulty condition, wherein the plurality of network nodes include add-drop multiplexers that include: a frame relay agent including the wrap controller and the path protection controller; a packet-over sonet agent coupled to the frame relay agent for encapsulating packet data into the sonet payload envelope; and a transmitter/receiver agent for transmitting and receiving the sonet payloads onto the ring network. 2. The method of
embedding a virtual channel identifier into each packet transmitted onto the ring network by a particular transmitter node, wherein the virtual channel identifier uniquely identifies which network node in the ring network initiated the packet onto the ring, and also identifies the virtual channel of the packet; and examining the wrapped packets at the transmitter node to determine whether the particular transmitter initiated these packets onto the network.
3. The method of
sensing that the faulty condition has been removed from the data communication path coupling the two network nodes; and the transmitter nodes then switching back to the prior operational state so that additional packets are transmitted towards the prior faulty condition.
4. The method of
receiving packets at a network node that is configured to wrap packets away from a faulty condition; and if the feedback wrap indicator flag of the received packets is already set, then discarding the received packets.
5. Thee method of
providing a master network node that continuously tests the ring network's continuity to determine whether a faulty condition exists on one of the data communication paths; and transmitting ring continuity protocol packets from the master network node to the other network nodes in the ring network, wherein the ring continuity protocol packets indicate whether a faulty condition exists.
7. The method of
embedding virtual channel identification information into each packet initiated onto the ring network by the second network node; and the second network node only switching its transmitter for those packets associated with virtual channels initiated by the second network node.
8. The method of
the second network node determining that the failure has been corrected; and switching its transmitter so that additional packets are transmitted back in the direction towards the prior failure.
9. The method of
providing a master network node that continuously tests the ring continuity of the ring network and transmits ring continuity protocol packets to each of the other network nodes; and receiving the ring continuity protocol packets at the second network node and determining whether the ring is continuous.
14. The system of
|
1. Technical Field
The present invention is directed to the field of data communication networks. More particularly, the present invention provides a system and method for path protection switching in a ring network.
2. Description of the Related Art
Ring networks are well known in the data communication art. Typical ring systems include Fiber Distributed Digital Interface ("FDDI") rings, token-ring structures, and more recently Synchronous Optical Network ("SONET") rings. A ring network typically includes a plurality of network nodes coupled together by one or more data communication channels (or paths). These network nodes may, in turn, couple to local nodes or networks, or may couple to other ring structures.
In a SONET network, the network nodes are logically connected by a plurality of virtual paths that coexist on the one or more physical network connections that couple the nodes. Each virtual path may include a plurality of virtual channels, wherein each virtual channel transports packets (or cells) that are formatted according to the SONET standard format, which is known as the Synchronous Payload Envelope ("SPE"). The SPE further defines the data cells as overhead and payload sections. Overhead information is used to maintain the operation and maintenance of the network, whereas payload information represents the deliverable information of the system being transported in the particular virtual channel. The physical network connection spanning the network nodes may include one or more fiber optic connections. In some network topologies, a single fiber carries payload information in both directions around the ring, whereas in others there is one fiber for one sense of direction, and another fiber for the other sense of direction. In a SONET ring network these two senses of direction are typically referred to as the east and west directions of the ring.
One important concept in ring network design is path protection switching. Path protection switching involves sensing when a fault has occured on the ring network and routing data traffic to accomodate the faulty connection. In some ring systems, a separate path protection channel or connection is provided so that if the main data path is severed (or otherwise inoperative), the system switches traffic onto theprotection channel. However, these systems require a separate physical channel between the network nodes, as well as additional hardware to support the path protection channel. Moreover, if the path protection wire (or fiber) is physically routed in proximity to the main connection between the nodes (as is common), then A fault (such as a fiber cut of the main connection from a back-hoe or other heavy machinery) will likely result in the path protection channel being faulty as well.
Another type of path protection switching known as receiver-based protection switching does not involve a separate path protection line as in the system described above, but rather includes special switching circuitry at the receiver of each network node, which is utilized to avoid the faulty path. This type of path protection switching is commonly implemented in SONET Unidirectional Path Switched Rings ("UPSR"). A UPSR typically utilizes two optical fibers, one for transporting data in one direction around the ring, and a second for transporting data in the other direction around the ring.
In a receiver-based path protection switching system, two identical payload streams (data streams) are transmitted along two separate virtual paths connecting two network nodes--the transmitter node and the receiver node. The two paths represent the two directions of transmission from one node to the next, i.e., "east" and "west." Operationally, the transmitter of a particular virtual channel launches two identical payload streams in either direction (east and west) towards the receiver node. The receiver node receives the two payload streams, compares their relative transmission quality, and switches from one stream to the other (at the receiver node) based on this comparison.
The main problems with this type of path protection scheme are: (1) it is wasteful of bandwidth since it requires doubling the amount of data necessary to transport useful information on the ring network; (2) switching time in response to a fault is relatively slow; and (3) it requires relatively complex circuitry on both the transmitter and receiver sides of the virtual path in order to manage the dual transmissions.
A system and method for path protection switching in ring networks is provided in which the path protection switch occurs at the transmitter node that initiated a particular virtual channel of data packets onto the ring network. A failure in one of the data communication paths of the ring network is detected by the network nodes on either side of the failure. These network nodes then initiate a wrap mechanism that embeds a special feedback wrap indicator flag into packets that are received at the two nodes, and then wraps (or transmits back) these packets (with the feedback indicator) back in the opposite direction towards the transmitter node that initiated the packets onto the ring. Each transmitter node detects whether received packets are associated with virtual channels that it initiated onto the ring, and if so detected, then determine whether the feedback indicator flag is set. If so, then a protection switch occurs at the transmitter node so that additional packets associated with the particular virtual channel are switched in a direction opposite to the failure. A ring continuity mechanism is used to determine when to revert the transmitter nodes back to their prior operating state, and a garbage collection function is also included.
According to one aspect of the invention a method of path protection switching in a ring network is provided. The ring network includes a plurality of network nodes coupled together by one or more data communication paths. The method includes the steps of (1) detecting a faulty condition between two of the network nodes in the ring network; (2) engaging a wrap mechanism at the two network nodes where the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards the transmitter network node that initially transmitted the data packets onto the ring network; (3) detecting the wrapped packets at the transmitter network node; and (4) engaging a path protection switch at the transmitter network node that switches additional packets away from the faulty condition.
According to another aspect of the invention, a method of path protection switching in a ring network, comprising the steps of: detecting a failure at a first network node in the ring network; setting a forward wrap notification indicator in the overhead section of each packet received at the first network node; wrapping the received packets away from the failure and back towards a second network node that initiated the packets onto the ring network; detecting the wrapped packets at the second network node; and switching the transmitter of the second network node so that additional packets are transmitted away from the first network node where the failure exists.
Still another aspect of the invention provides a system for path protection switching in a ring network, the system including: (A) a detector in each of two network nodes for detecting a faulty condition between the nodes; (B) a wrap controller in each of the two network nodes for engaging a wrap mechanism when the faulty condition is detected in order to wrap data packets received at these nodes away from the faulty condition and back towards a transmitter network node that initially transmitted the data packets onto the ring network; (C) a detector at the transmitter network node for detecting the wrapped packets; and (D) a path protection controller at the transmitter network node that switches additional packets away from the faulty condition.
Yet another aspect of the invention provides a method of garbage collection in a ring network, comprising the steps of: (a) detecting an anomalous condition between two nodes in the ring network; (b) if an anomaly is detected, then setting a wrap indicator flag in packets received at the two nodes and wrapping those packets away from the anomaly; and (c) if a packet having a wrap indicator flag set is received at a node that is wrapping packets away from an anomaly, then discarding those received packets.
It should be noted that these are just some of the many aspects of the present invention. Other aspects not specified will become apparent upon reading the detailed description set forth below.
The present invention overcomes the disadvantages of presently known path protection systems and methods and also provides many advantages, such as: (1) optimized for ring structures; (2) does not waste system bandwidth, as in the receiver-based systems; (3) provides fast protection switching; (4) low cost and low complexity; and (5) easily integrates with existing network node devices (such as a SONET add-drop multiplexer).
These are just a few of the many advantages of the present invention, which is described in more detail below in terms of the preferred embodiments. As will be appreciated, the invention is capable of other and different embodiments, and its several details are capable of modifications in various respects, all without departing from the spirit of the invention. Accordingly, the drawings and description of the preferred embodiments set forth below are to be regarded as illustrative in nature and not restrictive.
The present invention satisfies the general need noted above and provides many advantages, as will become apparent from the following description when read in conjunction with the accompanying drawings, wherein:
Turning now to the drawing figures,
Each network node 12 is preferably coupled to two other network nodes 12 in the ring structure 10. For example, network node N0 is coupled to network nodes N1 and N5. The coupling between the nodes in
In such a SONET ring network 10, the network nodes 12 are logically connected by a plurality of virtual paths that coexist on the physical network connection(s) 14. Virtual paths are also known as logical paths or "pipes." For example, although there is only one physical connection from node N0 to node N1 to node N2, there may be numerous virtual paths between these nodes, such as one virtual path from N0 to N1, another from N0 to N2 and another from N1 to N2. Each virtual path may include a plurality of virtual channels, wherein each virtual channel transports packets (or cells) formatted according to the SONET SPE. For more information on SONET formats, line-speeds, and theory of operation, see John Bellamy, Digital Telephony, 2d Edition (1991), pp. 403-425.
In the present invention, there are three stages to the path protection function. First, a failure (or anomaly) is detected at the two nodes 12 that are associated with the failed path, and a "wrap" mechanism is initiated at each of these nodes in order to reroute packets away from the fault 22. At the same time that the wrap mechanism is initiated, the two nodes that are wrapping packets also embed a feedback indicator into the wrapped packets to indicate that a failure has occurred at that node, and that the packets have been wrapped back towards the node that initiated the packet. Second, for each virtual channel that has been wrapped, its associated transmitter node detects the returning packets associated with the wrapped virtual channel and initiates a protection switch so that additional local packets that are added to the virtual channel are not transmitted towards the fault, but instead are transmitted in the other direction around the ring. Third, once the failure has been corrected the system returns to normal operation using the ring continuity function.
The wrap mechanism is shown graphically in
Turning back to
Consider the example data stream flow shown in
As described in more detail below, the present invention further includes embedded signaling bits in the wrapped packets/cells that trigger a protection switch at the transmitter where the packets/cells originated. For example, when the wrapped packets from N5 return to N0, the embedded signaling bits for the particular virtual channel are detected at N0, which then engages a path protection switching function that switches additional packets from LN0 away from the faulty condition 22 and in the opposite direction of transmission.
In the present invention, the two signaling identifiers embedded into the overhead section of the packet/cell facilitate path protection switching at the transmitter node of a particular virtual channel. These two identifiers are the virtual channel identifier 36 (or "VCI"), and the forward wrap notification indicator 38 (or "FWN"). The VCI 36 is preferably a multi-bit signal that identifies the transmitter node that launched the packet onto the ring network 10 as well as the particular virtual channel that the packet is associated with. This later identification is necessary since a transmitter for a particular network node 12, such as node N0, could have multiple virtual channels associated with it, and each of these virtual channels may need to be individually path protection switched. The FWN indicator 38 is preferably a single-bit that indicates whether or not this packet/cell has been wrapped around a failure. The VCI indicator 36 is embedded into the packet/cell overhead 34 by the transmitter that launched the particular virtual channel onto the network, whereas the FWN indicator 38 is set at the receiver node 12 where the wrap occurs.
Consider first the situation where a fault has not occurred in the ring and local traffic from LN0 is being added to the packet stream by network node N0 for transmission to local node LN4 coupled to network node N4. In this situation, packets from LN0 are received at N0 and switched 44 towards node N5 via data path 14B. Since these packets are destined for node N4, they are normally passed-through node N5 and re-transmitted onto the data path between nodes N5 and N4.
Now assume that at time T0 (50) a failure occurs at the node N5/N4 interface. The failure could be a line-cut in the fiber optic cable coupling the two nodes, or it could be some degradation in the signal level or quality of the transmission. In any event, the VP CTL circuit 42 in node N5 determines that an anomaly has occurred in the path between itself and node N4 and declares a failure. When this occurs, the wrap function is initiated 52 at node N5. In the same manner, the VP CTL 42 in node N4 also detects the anomaly and initiates a wrap function.
As described above, the wrap function causes pass-through packets received at node N5 to be transmitted back to node N0 with the FWN indicator flag 38 set 54 to indicate that the packets associated with the particular virtual channel have been wrapped. Those packets that are to be dropped by node N5 (i.e. packets that are destined for local node LN5) are not wrapped, but simply dropped out of the SONET data stream. This is the first stage of path protection switching in the invention--at time T0 the failure occurs 50, at time T1 the failure is detected by the virtual path controller 42 and the wrap function is initiated 52, and at time T2 the FWN bit 38 is set on each packet/cell wrapped by the particular network node 12.
Once the dampening timer 80 has expired, the nodes enter the suspend state 76. In this state, the wrap function has been suspended, but the system is not yet ready to return to the normal mode of operation. While in the suspend state 76, a wait-to-restore timer 82 delays for a predetermined period of time. The purpose of this timer is to permit the transmitter nodes to revert to their normal condition (assuming the transmitters are provisioned for revertiveness). Like the anomaly dampening timer 80, the purpose of the wait-to-restore timer 82 is to prevent transients in the ring network 10.
Turning back to
Having received at least one packet for the particular virtual channel with the FWN bit set, the VP CTL circuit 42 latches the switch 44 so that additional packets/cells associated with this virtual channel received from local node LN0 are switched towards network node N1 and away from the fault at network node N5. This is the second stage of path protection switching in the invention--at time T3 data packets/cells are inspected to determine if they were initiated onto the ring by this node, and whether they have been wrapped by another node 56, at time T4 the VP CTL circuit 42 latches the local switch 44 if the packet is associated with a virtual channel initiated by this node, and if the FWN indicator 38 is set 58, and at time T5 additional packets received by node N0 are switched away from the fault.
In the same manner, each of the nodes 12 in the network inspects incoming packets from other nodes to determine: (a) if the packets are associated with a virtual channel initiated by this node; and (b) if a wrap has been initiated by another node. If these two conditions are met, then the VP CTL circuit 42 of the particular node that initiated the virtual channel latches its local switch 44 to route additional packets associated with the particular virtual channel away from the fault. The final stage of the path protection switching mechanism of the present invention--restoring the network to normal operating condition--utilizes the ring continuity mechanism described below.
Assuming at first a continuous ring (no fault), the nodes 12 are in the continuous ring state 92. However, at some point an anomaly occurs, such as a cable cut between nodes N5 and N4 as in
At this point, the various transmitter nodes are still configured to protection switch local traffic away from the faulty condition. When these nodes receive the "ring continuity" packets indicating that the fault has been removed, the VP CTL circuit 42 can then determine whether to switch 44 back so that the locally generated packets are again being routed towards the node where the fault previously existed. Whether or not the network nodes 12 will "revert" back to their prior condition depends on the design of the nodes. In some cases the nodes 12 will be provisioned with revertiveness, so that after ring continuity is asserted they will switch back to their prior operating condition. In other cases, however, the nodes will not revert, but will simply continue transmitting packets in the direction away from the prior fault. Then if a fault occurs in the new direction of transmission, and packets are wrapped back from that new direction, the VP CTL circuit 42 will again detect the FWN indicator bit 38 and will switch 44 back to the initial direction of transmission.
Another aspect of the present invention relates to the concept of garbage collection. Garbage collection in a ring network is the process of eliminating packets/cells from the data stream that, for whatever reason, are looping endlessly (or could potentially loop endlessly) in the ring. By providing the embedded feedback indicators in the overhead of the packet/cell virtual channels, the present invention provides an elegant solution to the problem of garbage collection.
At time T1(110), a packet/cell enters node N5 and is wrapped back at time T2 (112) in the other direction towards N0 and ultimately towards the other nodes, including N4. At time T3 the packet exits N5 with the FWN indicator bit 38 set. The packet/cell is then transported around the ring network in the direction away from N5. At time T4 the packet enters node N4, which is also wrapping packets. If the packet is to be dropped at node N4, then it will be routed accordingly. But if it is a through packet and its FWN indicator bit 38 is already set, then the packet will be discarded. Thus, by embedding the FWN indicator 38 in wrapped packets, a simple garbage collection function is achieved with a simple rule that governs when to discard packets--if a packet enters a node which is wrapping packets in which it should pass through that node, and that packet already has its FWN indicator flag 38 set, the packet is discarded.
Finally,
The east and west SONET T/R agents 120 provide the SONET layer interfacing to the ring network 10 and also interface the SONET protocol to the POS protocol. The corresponding POS agents 122 send and receive packets from the FR agent 124 and couple them to the SONET agents 120. These POS agents 122 utilize standard POS protocol definitions for framing packets into the SONET SPE. The FR agent 124 is a higher-level agent that manages point-to-point communications over the network, setting up and tearing down the numerous virtual channels that can be created within the SONET data stream and adding/dropping packets to and from the local node connection 126. The FR agent 124 preferably includes the VP CTL circuit 42 for detecting faults in the various virtual channels, and for engaging the path protection and revertiveness functions of the associated path switch 44, which is also included in the FR agent.
The preferred embodiments of the invention described with reference to the drawing figures are presented only as examples of the present invention, which is limited only by the claims. Other elements, steps, methods and techniques that are insubstantially different from those described herein are also within the scope of the invention.
Patent | Priority | Assignee | Title |
11503501, | Nov 17 2017 | HUAWEI TECHNOLOGIES CO , LTD | Method and apparatus for link status notification |
6766482, | Oct 31 2001 | RPX Corporation | Ethernet automatic protection switching |
6947374, | Apr 28 2000 | Fujitsu Limited | Apparatus for user connection setting in a connection oriented mode communication system |
6950883, | Mar 12 2001 | AT&T Corp; AT&T Corp. | Ring capacity efficient architecture |
7113699, | Aug 15 2001 | Ciena Corporation | Fault forwarding in an optical network |
7142504, | Apr 25 2001 | Cisco Systems, Inc | Fault tolerant network traffic management |
7200109, | Nov 30 1999 | Ciena Corporation | Method and system for protecting frame relay traffic over SONET rings |
7269129, | Jan 16 2001 | Fujitsu Limited | Transmitting apparatus |
7311570, | Oct 07 2005 | Automatic system for adjusting the trim of a motor boat | |
7457540, | Apr 29 2005 | Fujitsu Limited | System and method for shaping traffic in optical light-trails |
7466917, | Mar 15 2005 | Fujitsu Limited | Method and system for establishing transmission priority for optical light-trails |
7486612, | Dec 10 2002 | TELLABS PETALUMA, INC | Fault-tolerant multicasting network |
7499465, | Jul 19 2005 | Fujitsu Limited | Heuristic assignment of light-trails in an optical network |
7515828, | Mar 15 2005 | Fujitsu Limited | System and method for implementing optical light-trails |
7532570, | Apr 25 2001 | Cisco Technology, Inc. | Fault tolerant network traffic management |
7590353, | Aug 31 2005 | Fujitsu Limited | System and method for bandwidth allocation in an optical light-trail |
7606240, | Jun 16 2005 | Extreme Networks | Ethernet automatic protection switching |
7609966, | Feb 18 2005 | Fujitsu Limited | Method and system for time-sharing transmission frequencies in an optical network |
7616891, | Mar 30 2005 | Fujitsu Limited | System and method for transmission and reception of traffic in optical light-trails |
7706256, | Nov 04 2004 | HUAWEI TECHNOLOGIES CO , LTD | Protection switching method and apparatus for nodes in a resilient packet ring network |
7787763, | Apr 04 2005 | Fujitsu Limited | System and method for protecting optical light-trails |
7801034, | Apr 28 2006 | Fujitsu Limited | System and method for bandwidth allocation in an optical light-trail |
8477638, | Dec 02 2008 | Cisco Technology, Inc. | Latency enhancements for multicast traffic over spatial reuse protocol (SRP) |
8520507, | Mar 08 2004 | Extreme Networks, Inc. | Ethernet automatic protection switching |
8559300, | Jan 30 2006 | Robert Bosch GmbH | Redundant communications network |
8750097, | Jun 12 2008 | TELEFONAKTIEBOLAGET L M ERICSSON PUBL | Maintenance of overlay networks |
9106441, | Nov 16 2004 | Bosch Rexroth AG | Method and apparatus for operating and identifying channels of a redundant communication network |
9380362, | Aug 08 2013 | Level 3 Communications, LLC | Out-of-band management of fiber optics systems and devices |
9647751, | Aug 08 2013 | Level 3 Communications, LLC | Out-of band management of fiber optics systems and devices |
9716652, | Mar 05 2012 | TELEFONAKTIEBOLAGET L M ERICSSON PUBL | Handling of data transfers in a network with a ring topology |
Patent | Priority | Assignee | Title |
4538026, | Feb 28 1983 | NEC Corporation | Loop back system for loop transmission line |
4633246, | Jan 09 1984 | E I DU PONT DE NEMOURS AND COMPANY INCORPORATED, WILMINGTON, DE | Time divison multiplex ring |
4646286, | Aug 02 1985 | Nortel Networks Limited | Communications system with protection switching and channel identities |
4837760, | Aug 02 1985 | Nortel Networks Limited | Communications system with protection switching using individual selectors |
5029158, | Jul 23 1987 | Nortel Networks Limited | Protection switching in a multi-channel communications system |
5528580, | Dec 21 1994 | Electronics and Telecommunications Research Institute; Korea Telecommunication Authority | Add-drop control apparatus |
5572513, | Mar 18 1994 | Fujitsu Limited | Path protection switching device |
5754528, | Mar 18 1994 | Fujitsu Limited | Virtual ring configuration method and virtual ring system |
5757774, | Mar 18 1994 | Fujitsu Limited | Network traffic protection system |
5790520, | Sep 20 1993 | Fujitsu Limited | Path protection switch ring system for line saving even though line setting operation was not carried out |
5793745, | May 06 1996 | HANGER SOLUTIONS, LLC | Bundled protection switching in a wide area network background of the invention |
5838724, | Mar 04 1997 | Silicon Laboratories Inc | Spectral and power shaping mapper for high data rate signalling |
5872780, | May 21 1992 | Alcatel Network Systems, Inc. | Sonet data transfer protocol between facility interfaces and cross-connect |
6226111, | Dec 06 1996 | TELCORDIA TECHNOLOGIES, INC , A CORP OF DELAWARE | Inter-ring cross-connect for survivable multi-wavelength optical communication networks |
6295146, | Jan 14 1998 | Verizon Patent and Licensing Inc | System and method for sharing a spare channel among two or more optical ring networks |
6396852, | Nov 18 1997 | AT&T Corp | Ring bundling in the design of rings for telecommunications networks |
6430700, | Apr 27 1998 | Cisco Technology, Inc. | System and method for fault recovery for a two line bi-directional ring network |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 1999 | DUPONT, JEAN-LOU | Reltec Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010028 | /0153 | |
May 31 1999 | Reltec Corporation | MARCONI COMMUNICATIONS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 010043 | /0815 | |
May 31 1999 | Reltec Corporation | MARCONI COMMUNICATIONS, INC DELAWARE CORPORATION | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 010209 | /0637 | |
May 31 1999 | RELTEC COMMUNICATIONS INC | MARCONI COMMUNICATIONS INC | CORRECTIVE ASSIGNMENT TO CORRECT THE RELTEC CORPORATION TO RELTEC COMMUNICATIONS INC AND MARCONI COMMUNICATIONS, INC TO MARCONI COMMUNICATIONS INC PREVIOUSLY RECORDED ON REEL 010043 FRAME 0815 ASSIGNOR S HEREBY CONFIRMS THE RELTEC COMMUNICATIONS INC TO MARCONI COMMUNICATIONS INC | 018282 | /0811 | |
Jun 02 1999 | Marconi Communications, Inc. | (assignment on the face of the patent) | / | |||
Oct 28 2003 | MARCONI COMMUNICATIONS, INC | MARCONI INTELLECTUAL PROPERTY RINGFENCE INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014675 | /0855 | |
Jan 01 2006 | MARCONI INTELLECTUAL PROPERTY RINGFENCE INC | Ericsson AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018047 | /0028 |
Date | Maintenance Fee Events |
Dec 26 2006 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 18 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 15 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 15 2006 | 4 years fee payment window open |
Jan 15 2007 | 6 months grace period start (w surcharge) |
Jul 15 2007 | patent expiry (for year 4) |
Jul 15 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 2010 | 8 years fee payment window open |
Jan 15 2011 | 6 months grace period start (w surcharge) |
Jul 15 2011 | patent expiry (for year 8) |
Jul 15 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 2014 | 12 years fee payment window open |
Jan 15 2015 | 6 months grace period start (w surcharge) |
Jul 15 2015 | patent expiry (for year 12) |
Jul 15 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |